blob: 05da22a442bc4f42b9bf9e06e747c77aeb082475 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "OutputHLSL.h"
#include "UnfoldSelect.h"
#include "common/debug.h"
#include "InfoSink.h"
namespace sh
{
// Integer to TString conversion
TString str(int i)
{
char buffer[20];
sprintf(buffer, "%d", i);
return buffer;
}
OutputHLSL::OutputHLSL(TParseContext &context) : TIntermTraverser(true, true, true), mContext(context)
{
mUnfoldSelect = new UnfoldSelect(context, this);
mUsesTexture2D = false;
mUsesTexture2D_bias = false;
mUsesTexture2DProj = false;
mUsesTexture2DProj_bias = false;
mUsesTextureCube = false;
mUsesTextureCube_bias = false;
mUsesEqualMat2 = false;
mUsesEqualMat3 = false;
mUsesEqualMat4 = false;
mUsesEqualVec2 = false;
mUsesEqualVec3 = false;
mUsesEqualVec4 = false;
mUsesEqualIVec2 = false;
mUsesEqualIVec3 = false;
mUsesEqualIVec4 = false;
mUsesEqualBVec2 = false;
mUsesEqualBVec3 = false;
mUsesEqualBVec4 = false;
mArgumentIndex = 0;
}
OutputHLSL::~OutputHLSL()
{
delete mUnfoldSelect;
}
void OutputHLSL::output()
{
mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header and footer
header();
footer();
mContext.infoSink.obj << mHeader.c_str();
mContext.infoSink.obj << mBody.c_str();
mContext.infoSink.obj << mFooter.c_str();
}
TInfoSinkBase &OutputHLSL::getBodyStream()
{
return mBody;
}
void OutputHLSL::header()
{
EShLanguage language = mContext.language;
TInfoSinkBase &out = mHeader;
if (language == EShLangFragment)
{
TString uniforms;
TString varyingInput;
TString varyingGlobals;
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
int semanticIndex = 0;
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqUniform)
{
if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end())
{
uniforms += "uniform " + typeString(type) + " " + decorate(name) + arrayString(type) + ";\n";
}
}
else if (qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
// Program linking depends on this exact format
varyingInput += " " + typeString(type) + " " + decorate(name) + arrayString(type) + " : TEXCOORD" + str(semanticIndex) + ";\n";
varyingGlobals += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
semanticIndex += type.isArray() ? type.getArraySize() : 1;
}
}
else if (qualifier == EvqGlobal || qualifier == EvqTemporary)
{
// Globals are declared and intialized as an aggregate node
}
else if (qualifier == EvqConst)
{
// Constants are repeated as literals where used
}
else UNREACHABLE();
}
}
out << "uniform float4 gl_Window;\n"
"uniform float2 gl_Depth;\n"
"uniform bool gl_PointsOrLines;\n"
"uniform bool gl_FrontCCW;\n"
"\n";
out << uniforms;
out << "\n"
"struct PS_INPUT\n"
"{\n";
out << varyingInput;
out << " float4 gl_FragCoord : TEXCOORD" << semanticIndex << ";\n";
out << " float vFace : VFACE;\n"
"};\n"
"\n";
out << varyingGlobals;
out << "\n"
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color[1] : COLOR;\n"
"};\n"
"\n"
"static float4 gl_Color[1] = {float4(0, 0, 0, 0)};\n"
"static float4 gl_FragCoord = float4(0, 0, 0, 0);\n"
"static float2 gl_PointCoord = float2(0.5, 0.5);\n"
"static bool gl_FrontFacing = false;\n"
"\n";
if (mUsesTexture2D)
{
out << "float4 gl_texture2D(sampler2D s, float2 t)\n"
"{\n"
" return tex2D(s, t);\n"
"}\n"
"\n";
}
if (mUsesTexture2D_bias)
{
out << "float4 gl_texture2D(sampler2D s, float2 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x, t.y, 0, bias));\n"
"}\n"
"\n";
}
if (mUsesTexture2DProj)
{
out << "float4 gl_texture2DProj(sampler2D s, float3 t)\n"
"{\n"
" return tex2Dproj(s, float4(t.x, t.y, 0, t.z));\n"
"}\n"
"\n"
"float4 gl_texture2DProj(sampler2D s, float4 t)\n"
"{\n"
" return tex2Dproj(s, t);\n"
"}\n"
"\n";
}
if (mUsesTexture2DProj_bias)
{
out << "float4 gl_texture2DProj(sampler2D s, float3 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x / t.z, t.y / t.z, 0, bias));\n"
"}\n"
"\n"
"float4 gl_texture2DProj(sampler2D s, float4 t, float bias)\n"
"{\n"
" return tex2Dbias(s, float4(t.x / t.w, t.y / t.w, 0, bias));\n"
"}\n"
"\n";
}
if (mUsesTextureCube)
{
out << "float4 gl_textureCube(samplerCUBE s, float3 t)\n"
"{\n"
" return texCUBE(s, t);\n"
"}\n"
"\n";
}
if (mUsesTextureCube_bias)
{
out << "float4 gl_textureCube(samplerCUBE s, float3 t, float bias)\n"
"{\n"
" return texCUBEbias(s, float4(t.x, t.y, t.z, bias));\n"
"}\n"
"\n";
}
}
else // Vertex shader
{
TString uniforms;
TString attributeInput;
TString attributeGlobals;
TString varyingOutput;
TString varyingGlobals;
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
int semanticIndex = 0;
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqUniform)
{
if (mReferencedUniforms.find(name.c_str()) != mReferencedUniforms.end())
{
uniforms += "uniform " + typeString(type) + " " + decorate(name) + arrayString(type) + ";\n";
}
}
else if (qualifier == EvqAttribute)
{
if (mReferencedAttributes.find(name.c_str()) != mReferencedAttributes.end())
{
attributeInput += " " + typeString(type) + " " + decorate(name) + arrayString(type) + " : TEXCOORD" + str(semanticIndex) + ";\n";
attributeGlobals += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
semanticIndex += type.isArray() ? type.getArraySize() : 1;
}
}
else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
// Program linking depends on this exact format
varyingOutput += " " + typeString(type) + " " + decorate(name) + arrayString(type) + " : TEXCOORD0;\n"; // Actual semantic index assigned during link
varyingGlobals += "static " + typeString(type) + " " + decorate(name) + arrayString(type) + " = " + initializer(type) + ";\n";
}
}
else if (qualifier == EvqGlobal || qualifier == EvqTemporary)
{
// Globals are declared and intialized as an aggregate node
}
else if (qualifier == EvqConst)
{
// Constants are repeated as literals where used
}
else UNREACHABLE();
}
}
out << "uniform float2 gl_HalfPixelSize;\n"
"\n";
out << uniforms;
out << "\n"
"struct VS_INPUT\n"
"{\n";
out << attributeInput;
out << "};\n"
"\n";
out << attributeGlobals;
out << "\n"
"struct VS_OUTPUT\n"
"{\n"
" float4 gl_Position : POSITION;\n"
" float gl_PointSize : PSIZE;\n"
" float4 gl_FragCoord : TEXCOORD0;\n"; // Actual semantic index assigned during link
out << varyingOutput;
out << "};\n"
"\n"
"static float4 gl_Position = float4(0, 0, 0, 0);\n"
"static float gl_PointSize = float(1);\n";
out << varyingGlobals;
out << "\n";
}
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n"
"uniform gl_DepthRangeParameters gl_DepthRange;\n"
"\n"
"float vec1(float x)\n"
"{\n"
" return x;\n"
"}\n"
"\n"
"float vec1(float2 xy)\n"
"{\n"
" return xy[0];\n"
"}\n"
"\n"
"float vec1(float3 xyz)\n"
"{\n"
" return xyz[0];\n"
"}\n"
"\n"
"float vec1(float4 xyzw)\n"
"{\n"
" return xyzw[0];\n"
"}\n"
"\n"
"float2 vec2(float x)\n"
"{\n"
" return float2(x, x);\n"
"}\n"
"\n"
"float2 vec2(float x, float y)\n"
"{\n"
" return float2(x, y);\n"
"}\n"
"\n"
"float2 vec2(float2 xy)\n"
"{\n"
" return xy;\n"
"}\n"
"\n"
"float2 vec2(float3 xyz)\n"
"{\n"
" return float2(xyz[0], xyz[1]);\n"
"}\n"
"\n"
"float2 vec2(float4 xyzw)\n"
"{\n"
" return float2(xyzw[0], xyzw[1]);\n"
"}\n"
"\n"
"float3 vec3(float x)\n"
"{\n"
" return float3(x, x, x);\n"
"}\n"
"\n"
"float3 vec3(float x, float y, float z)\n"
"{\n"
" return float3(x, y, z);\n"
"}\n"
"\n"
"float3 vec3(float2 xy, float z)\n"
"{\n"
" return float3(xy[0], xy[1], z);\n"
"}\n"
"\n"
"float3 vec3(float x, float2 yz)\n"
"{\n"
" return float3(x, yz[0], yz[1]);\n"
"}\n"
"\n"
"float3 vec3(float3 xyz)\n"
"{\n"
" return xyz;\n"
"}\n"
"\n"
"float3 vec3(float4 xyzw)\n"
"{\n"
" return float3(xyzw[0], xyzw[1], xyzw[2]);\n"
"}\n"
"\n"
"float4 vec4(float x)\n"
"{\n"
" return float4(x, x, x, x);\n"
"}\n"
"\n"
"float4 vec4(float x, float y, float z, float w)\n"
"{\n"
" return float4(x, y, z, w);\n"
"}\n"
"\n"
"float4 vec4(float2 xy, float z, float w)\n"
"{\n"
" return float4(xy[0], xy[1], z, w);\n"
"}\n"
"\n"
"float4 vec4(float x, float2 yz, float w)\n"
"{\n"
" return float4(x, yz[0], yz[1], w);\n"
"}\n"
"\n"
"float4 vec4(float x, float y, float2 zw)\n"
"{\n"
" return float4(x, y, zw[0], zw[1]);\n"
"}\n"
"\n"
"float4 vec4(float2 xy, float2 zw)\n"
"{\n"
" return float4(xy[0], xy[1], zw[0], zw[1]);\n"
"}\n"
"\n"
"float4 vec4(float3 xyz, float w)\n"
"{\n"
" return float4(xyz[0], xyz[1], xyz[2], w);\n"
"}\n"
"\n"
"float4 vec4(float x, float3 yzw)\n"
"{\n"
" return float4(x, yzw[0], yzw[1], yzw[2]);\n"
"}\n"
"\n"
"float4 vec4(float4 xyzw)\n"
"{\n"
" return xyzw;\n"
"}\n"
"\n"
"bool xor(bool p, bool q)\n"
"{\n"
" return (p || q) && !(p && q);\n"
"}\n"
"\n"
"float mod(float x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n"
"float2 mod(float2 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n"
"float3 mod(float3 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n"
"float4 mod(float4 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n"
"float faceforward(float N, float I, float Nref)\n"
"{\n"
" if(dot(Nref, I) < 0)\n"
" {\n"
" return N;\n"
" }\n"
" else\n"
" {\n"
" return -N;\n"
" }\n"
"}\n"
"\n"
"float2 faceforward(float2 N, float2 I, float2 Nref)\n"
"{\n"
" if(dot(Nref, I) < 0)\n"
" {\n"
" return N;\n"
" }\n"
" else\n"
" {\n"
" return -N;\n"
" }\n"
"}\n"
"\n"
"float3 faceforward(float3 N, float3 I, float3 Nref)\n"
"{\n"
" if(dot(Nref, I) < 0)\n"
" {\n"
" return N;\n"
" }\n"
" else\n"
" {\n"
" return -N;\n"
" }\n"
"}\n"
"\n"
"float4 faceforward(float4 N, float4 I, float4 Nref)\n"
"{\n"
" if(dot(Nref, I) < 0)\n"
" {\n"
" return N;\n"
" }\n"
" else\n"
" {\n"
" return -N;\n"
" }\n"
"}\n"
"\n";
if (mUsesEqualMat2)
{
out << "bool equal(float2x2 m, float2x2 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1];\n"
"}\n";
}
if (mUsesEqualMat3)
{
out << "bool equal(float3x3 m, float3x3 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] &&\n"
" m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2];\n"
"}\n";
}
if (mUsesEqualMat4)
{
out << "bool equal(float4x4 m, float4x4 n)\n"
"{\n"
" return m[0][0] == n[0][0] && m[0][1] == n[0][1] && m[0][2] == n[0][2] && m[0][3] == n[0][3] &&\n"
" m[1][0] == n[1][0] && m[1][1] == n[1][1] && m[1][2] == n[1][2] && m[1][3] == n[1][3] &&\n"
" m[2][0] == n[2][0] && m[2][1] == n[2][1] && m[2][2] == n[2][2] && m[2][3] == n[2][3] &&\n"
" m[3][0] == n[3][0] && m[3][1] == n[3][1] && m[3][2] == n[3][2] && m[3][3] == n[3][3];\n"
"}\n";
}
if (mUsesEqualVec2)
{
out << "bool equal(float2 v, float2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualVec3)
{
out << "bool equal(float3 v, float3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualVec4)
{
out << "bool equal(float4 v, float4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
if (mUsesEqualIVec2)
{
out << "bool equal(int2 v, int2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualIVec3)
{
out << "bool equal(int3 v, int3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualIVec4)
{
out << "bool equal(int4 v, int4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
if (mUsesEqualBVec2)
{
out << "bool equal(bool2 v, bool2 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y;\n"
"}\n";
}
if (mUsesEqualBVec3)
{
out << "bool equal(bool3 v, bool3 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z;\n"
"}\n";
}
if (mUsesEqualBVec4)
{
out << "bool equal(bool4 v, bool4 u)\n"
"{\n"
" return v.x == u.x && v.y == u.y && v.z == u.z && v.w == u.w;\n"
"}\n";
}
}
void OutputHLSL::footer()
{
EShLanguage language = mContext.language;
TInfoSinkBase &out = mFooter;
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
if (language == EShLangFragment)
{
out << "PS_OUTPUT main(PS_INPUT input)\n"
"{\n"
" float rhw = 1.0 / input.gl_FragCoord.w;\n"
" gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * gl_Window.x + gl_Window.z;\n"
" gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * gl_Window.y + gl_Window.w;\n"
" gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * gl_Depth.x + gl_Depth.y;\n"
" gl_FragCoord.w = rhw;\n"
" gl_FrontFacing = gl_PointsOrLines || (gl_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n";
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
out << " " + decorate(name) + " = input." + decorate(name) + ";\n";
}
}
}
}
out << "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n"
" output.gl_Color[0] = gl_Color[0];\n";
}
else // Vertex shader
{
out << "VS_OUTPUT main(VS_INPUT input)\n"
"{\n";
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
const TType &type = variable->getType();
TQualifier qualifier = type.getQualifier();
if (qualifier == EvqAttribute)
{
if (mReferencedAttributes.find(name.c_str()) != mReferencedAttributes.end())
{
out << " " + decorate(name) + " = input." + decorate(name) + ";\n";
}
}
}
}
out << "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position.x = gl_Position.x - gl_HalfPixelSize.x * gl_Position.w;\n"
" output.gl_Position.y = -(gl_Position.y - gl_HalfPixelSize.y * gl_Position.w);\n"
" output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output.gl_Position.w = gl_Position.w;\n"
" output.gl_PointSize = gl_PointSize;\n"
" output.gl_FragCoord = gl_Position;\n";
TSymbolTableLevel *symbols = mContext.symbolTable.getGlobalLevel();
for (TSymbolTableLevel::const_iterator namedSymbol = symbols->begin(); namedSymbol != symbols->end(); namedSymbol++)
{
const TSymbol *symbol = (*namedSymbol).second;
const TString &name = symbol->getName();
if (symbol->isVariable())
{
const TVariable *variable = static_cast<const TVariable*>(symbol);
TQualifier qualifier = variable->getType().getQualifier();
if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut)
{
if (mReferencedVaryings.find(name.c_str()) != mReferencedVaryings.end())
{
// Program linking depends on this exact format
out << " output." + decorate(name) + " = " + decorate(name) + ";\n";
}
}
}
}
}
out << " return output;\n"
"}\n";
}
void OutputHLSL::visitSymbol(TIntermSymbol *node)
{
TInfoSinkBase &out = mBody;
TString name = node->getSymbol();
if (name == "gl_FragColor")
{
out << "gl_Color[0]";
}
else if (name == "gl_FragData")
{
out << "gl_Color";
}
else
{
TQualifier qualifier = node->getQualifier();
if (qualifier == EvqUniform)
{
mReferencedUniforms.insert(name.c_str());
}
else if (qualifier == EvqAttribute)
{
mReferencedAttributes.insert(name.c_str());
}
else if (qualifier == EvqVaryingOut || qualifier == EvqInvariantVaryingOut || qualifier == EvqVaryingIn || qualifier == EvqInvariantVaryingIn)
{
mReferencedVaryings.insert(name.c_str());
}
out << decorate(name);
}
}
bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
case EOpInitialize: outputTriplet(visit, NULL, " = ", NULL); break;
case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", transpose(";
}
else
{
out << "))";
}
break;
case EOpMatrixTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", ";
}
else
{
out << ")";
}
break;
case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break;
case EOpIndexDirect: outputTriplet(visit, NULL, "[", "]"); break;
case EOpIndexIndirect: outputTriplet(visit, NULL, "[", "]"); break;
case EOpIndexDirectStruct: outputTriplet(visit, NULL, ".", NULL); break;
case EOpVectorSwizzle:
if (visit == InVisit)
{
out << ".";
TIntermAggregate *swizzle = node->getRight()->getAsAggregate();
if (swizzle)
{
TIntermSequence &sequence = swizzle->getSequence();
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
if (element)
{
int i = element->getUnionArrayPointer()[0].getIConst();
switch (i)
{
case 0: out << "x"; break;
case 1: out << "y"; break;
case 2: out << "z"; break;
case 3: out << "w"; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
}
else UNREACHABLE();
return false; // Fully processed
}
break;
case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break;
case EOpSub: outputTriplet(visit, "(", " - ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break;
case EOpEqual:
case EOpNotEqual:
if (node->getLeft()->isScalar())
{
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "(", " == ", ")");
}
else
{
outputTriplet(visit, "(", " != ", ")");
}
}
else if (node->getLeft()->getBasicType() == EbtStruct)
{
if (node->getOp() == EOpEqual)
{
out << "(";
}
else
{
out << "!(";
}
const TTypeList *fields = node->getLeft()->getType().getStruct();
for (size_t i = 0; i < fields->size(); i++)
{
const TType *fieldType = (*fields)[i].type;
node->getLeft()->traverse(this);
out << "." + fieldType->getFieldName() + " == ";
node->getRight()->traverse(this);
out << "." + fieldType->getFieldName();
if (i < fields->size() - 1)
{
out << " && ";
}
}
out << ")";
return false;
}
else
{
if (node->getLeft()->isMatrix())
{
switch (node->getLeft()->getSize())
{
case 2 * 2: mUsesEqualMat2 = true; break;
case 3 * 3: mUsesEqualMat3 = true; break;
case 4 * 4: mUsesEqualMat4 = true; break;
default: UNREACHABLE();
}
}
else if (node->getLeft()->isVector())
{
switch (node->getLeft()->getBasicType())
{
case EbtFloat:
switch (node->getLeft()->getSize())
{
case 2: mUsesEqualVec2 = true; break;
case 3: mUsesEqualVec3 = true; break;
case 4: mUsesEqualVec4 = true; break;
default: UNREACHABLE();
}
break;
case EbtInt:
switch (node->getLeft()->getSize())
{
case 2: mUsesEqualIVec2 = true; break;
case 3: mUsesEqualIVec3 = true; break;
case 4: mUsesEqualIVec4 = true; break;
default: UNREACHABLE();
}
break;
case EbtBool:
switch (node->getLeft()->getSize())
{
case 2: mUsesEqualBVec2 = true; break;
case 3: mUsesEqualBVec3 = true; break;
case 4: mUsesEqualBVec4 = true; break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "equal(", ", ", ")");
}
else
{
outputTriplet(visit, "!equal(", ", ", ")");
}
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break;
case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break;
case EOpMatrixTimesMatrix: outputTriplet(visit, "mul(", ", ", ")"); break;
case EOpLogicalOr: outputTriplet(visit, "(", " || ", ")"); break;
case EOpLogicalXor: outputTriplet(visit, "xor(", ", ", ")"); break;
case EOpLogicalAnd: outputTriplet(visit, "(", " && ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpNegative: outputTriplet(visit, "(-", NULL, ")"); break;
case EOpVectorLogicalNot: outputTriplet(visit, "(!", NULL, ")"); break;
case EOpLogicalNot: outputTriplet(visit, "(!", NULL, ")"); break;
case EOpPostIncrement: outputTriplet(visit, "(", NULL, "++)"); break;
case EOpPostDecrement: outputTriplet(visit, "(", NULL, "--)"); break;
case EOpPreIncrement: outputTriplet(visit, "(++", NULL, ")"); break;
case EOpPreDecrement: outputTriplet(visit, "(--", NULL, ")"); break;
case EOpConvIntToBool:
case EOpConvFloatToBool:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "bool(", NULL, ")"); break;
case 2: outputTriplet(visit, "bool2(", NULL, ")"); break;
case 3: outputTriplet(visit, "bool3(", NULL, ")"); break;
case 4: outputTriplet(visit, "bool4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvBoolToFloat:
case EOpConvIntToFloat:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "float(", NULL, ")"); break;
case 2: outputTriplet(visit, "float2(", NULL, ")"); break;
case 3: outputTriplet(visit, "float3(", NULL, ")"); break;
case 4: outputTriplet(visit, "float4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpConvFloatToInt:
case EOpConvBoolToInt:
switch (node->getOperand()->getType().getNominalSize())
{
case 1: outputTriplet(visit, "int(", NULL, ")"); break;
case 2: outputTriplet(visit, "int2(", NULL, ")"); break;
case 3: outputTriplet(visit, "int3(", NULL, ")"); break;
case 4: outputTriplet(visit, "int4(", NULL, ")"); break;
default: UNREACHABLE();
}
break;
case EOpRadians: outputTriplet(visit, "radians(", NULL, ")"); break;
case EOpDegrees: outputTriplet(visit, "degrees(", NULL, ")"); break;
case EOpSin: outputTriplet(visit, "sin(", NULL, ")"); break;
case EOpCos: outputTriplet(visit, "cos(", NULL, ")"); break;
case EOpTan: outputTriplet(visit, "tan(", NULL, ")"); break;
case EOpAsin: outputTriplet(visit, "asin(", NULL, ")"); break;
case EOpAcos: outputTriplet(visit, "acos(", NULL, ")"); break;
case EOpAtan: outputTriplet(visit, "atan(", NULL, ")"); break;
case EOpExp: outputTriplet(visit, "exp(", NULL, ")"); break;
case EOpLog: outputTriplet(visit, "log(", NULL, ")"); break;
case EOpExp2: outputTriplet(visit, "exp2(", NULL, ")"); break;
case EOpLog2: outputTriplet(visit, "log2(", NULL, ")"); break;
case EOpSqrt: outputTriplet(visit, "sqrt(", NULL, ")"); break;
case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", NULL, ")"); break;
case EOpAbs: outputTriplet(visit, "abs(", NULL, ")"); break;
case EOpSign: outputTriplet(visit, "sign(", NULL, ")"); break;
case EOpFloor: outputTriplet(visit, "floor(", NULL, ")"); break;
case EOpCeil: outputTriplet(visit, "ceil(", NULL, ")"); break;
case EOpFract: outputTriplet(visit, "frac(", NULL, ")"); break;
case EOpLength: outputTriplet(visit, "length(", NULL, ")"); break;
case EOpNormalize: outputTriplet(visit, "normalize(", NULL, ")"); break;
// case EOpDPdx: outputTriplet(visit, "ddx(", NULL, ")"); break;
// case EOpDPdy: outputTriplet(visit, "ddy(", NULL, ")"); break;
// case EOpFwidth: outputTriplet(visit, "fwidth(", NULL, ")"); break;
case EOpAny: outputTriplet(visit, "any(", NULL, ")"); break;
case EOpAll: outputTriplet(visit, "all(", NULL, ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node)
{
EShLanguage language = mContext.language;
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpSequence:
{
for (TIntermSequence::iterator sit = node->getSequence().begin(); sit != node->getSequence().end(); sit++)
{
if (isSingleStatement(*sit))
{
mUnfoldSelect->traverse(*sit);
}
(*sit)->traverse(this);
out << ";\n";
}
return false;
}
case EOpDeclaration:
if (visit == PreVisit)
{
TIntermSequence &sequence = node->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
bool visit = true;
if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal))
{
if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration
{
if (variable->getQualifier() == EvqGlobal)
{
out << "static ";
}
out << typeString(variable->getType()) + " ";
for (TIntermSequence::iterator sit = sequence.begin(); sit != sequence.end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
symbol->traverse(this);
out << arrayString(symbol->getType());
out << " = " + initializer(variable->getType());
}
else
{
(*sit)->traverse(this);
}
if (visit && this->inVisit)
{
if (*sit != sequence.back())
{
visit = this->visitAggregate(InVisit, node);
}
}
}
if (visit && this->postVisit)
{
this->visitAggregate(PostVisit, node);
}
}
else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration
{
const TType &type = variable->getType();
const TTypeList &fields = *type.getStruct();
out << "struct " + decorate(type.getTypeName()) + "\n"
"{\n";
for (unsigned int i = 0; i < fields.size(); i++)
{
const TType &field = *fields[i].type;
out << " " + typeString(field) + " " + field.getFieldName() + ";\n";
}
out << "};\n";
}
else UNREACHABLE();
}
return false;
}
else if (visit == InVisit)
{
out << ", ";
}
break;
case EOpPrototype:
if (visit == PreVisit)
{
out << typeString(node->getType()) << " " << decorate(node->getName()) << "(";
TIntermSequence &arguments = node->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ");\n";
return false;
}
break;
case EOpComma: outputTriplet(visit, NULL, ", ", NULL); break;
case EOpFunction:
{
TString name = TFunction::unmangleName(node->getName());
if (visit == PreVisit)
{
out << typeString(node->getType()) << " ";
if (name == "main")
{
out << "gl_main(";
}
else
{
out << decorate(name) << "(";
}
TIntermSequence &sequence = node->getSequence();
TIntermSequence &arguments = sequence[0]->getAsAggregate()->getSequence();
for (unsigned int i = 0; i < arguments.size(); i++)
{
TIntermSymbol *symbol = arguments[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments.size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
sequence.erase(sequence.begin());
out << ")\n"
"{\n";
}
else if (visit == PostVisit)
{
out << "}\n";
}
}
break;
case EOpFunctionCall:
{
if (visit == PreVisit)
{
TString name = TFunction::unmangleName(node->getName());
if (node->isUserDefined())
{
out << decorate(name) << "(";
}
else
{
if (name == "texture2D")
{
if (node->getSequence().size() == 2)
{
mUsesTexture2D = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTexture2D_bias = true;
}
else UNREACHABLE();
out << "gl_texture2D(";
}
else if (name == "texture2DProj")
{
if (node->getSequence().size() == 2)
{
mUsesTexture2DProj = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTexture2DProj_bias = true;
}
else UNREACHABLE();
out << "gl_texture2DProj(";
}
else if (name == "textureCube")
{
if (node->getSequence().size() == 2)
{
mUsesTextureCube = true;
}
else if (node->getSequence().size() == 3)
{
mUsesTextureCube_bias = true;
}
else UNREACHABLE();
out << "gl_textureCube(";
}
else if (name == "texture2DLod")
{
UNIMPLEMENTED(); // Requires the vertex shader texture sampling extension
}
else if (name == "texture2DProjLod")
{
UNIMPLEMENTED(); // Requires the vertex shader texture sampling extension
}
else if (name == "textureCubeLod")
{
UNIMPLEMENTED(); // Requires the vertex shader texture sampling extension
}
else UNREACHABLE();
}
}
else if (visit == InVisit)
{
out << ", ";
}
else
{
out << ")";
}
}
break;
case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break;
case EOpConstructFloat: outputTriplet(visit, "vec1(", NULL, ")"); break;
case EOpConstructVec2: outputTriplet(visit, "vec2(", ", ", ")"); break;
case EOpConstructVec3: outputTriplet(visit, "vec3(", ", ", ")"); break;
case EOpConstructVec4: outputTriplet(visit, "vec4(", ", ", ")"); break;
case EOpConstructBool: UNIMPLEMENTED(); /* FIXME */ out << "Construct bool"; break;
case EOpConstructBVec2: UNIMPLEMENTED(); /* FIXME */ out << "Construct bvec2"; break;
case EOpConstructBVec3: UNIMPLEMENTED(); /* FIXME */ out << "Construct bvec3"; break;
case EOpConstructBVec4: UNIMPLEMENTED(); /* FIXME */ out << "Construct bvec4"; break;
case EOpConstructInt: UNIMPLEMENTED(); /* FIXME */ out << "Construct int"; break;
case EOpConstructIVec2: UNIMPLEMENTED(); /* FIXME */ out << "Construct ivec2"; break;
case EOpConstructIVec3: UNIMPLEMENTED(); /* FIXME */ out << "Construct ivec3"; break;
case EOpConstructIVec4: UNIMPLEMENTED(); /* FIXME */ out << "Construct ivec4"; break;
case EOpConstructMat2: outputTriplet(visit, "float2x2(", ", ", ")"); break;
case EOpConstructMat3: outputTriplet(visit, "float3x3(", ", ", ")"); break;
case EOpConstructMat4: outputTriplet(visit, "float4x4(", ", ", ")"); break;
case EOpConstructStruct: outputTriplet(visit, "{", ", ", "}"); break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break;
case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break;
case EOpMod: outputTriplet(visit, "mod(", ", ", ")"); break;
case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break;
case EOpAtan:
if (node->getSequence().size() == 1)
{
outputTriplet(visit, "atan(", ", ", ")");
}
else if (node->getSequence().size() == 2)
{
outputTriplet(visit, "atan2(", ", ", ")");
}
else UNREACHABLE();
break;
case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break;
case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break;
case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break;
case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break;
case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break;
case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break;
case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break;
case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break;
case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break;
case EOpFaceForward: outputTriplet(visit, "faceforward(", ", ", ")"); break;
case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break;
case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node)
{
TInfoSinkBase &out = mBody;
if (node->usesTernaryOperator())
{
out << "t" << mUnfoldSelect->getTemporaryIndex();
}
else // if/else statement
{
mUnfoldSelect->traverse(node->getCondition());
out << "if(";
node->getCondition()->traverse(this);
out << ")\n"
"{\n";
if (node->getTrueBlock())
{
node->getTrueBlock()->traverse(this);
}
out << ";}\n";
if (node->getFalseBlock())
{
out << "else\n"
"{\n";
node->getFalseBlock()->traverse(this);
out << ";}\n";
}
}
return false;
}
void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node)
{
TInfoSinkBase &out = mBody;
const TType &type = node->getType();
if (type.isField())
{
out << type.getFieldName();
}
else
{
int size = type.getObjectSize();
if (type.getBasicType() == EbtStruct)
{
out << "{";
}
else
{
bool matrix = type.isMatrix();
TBasicType elementType = node->getUnionArrayPointer()[0].getType();
switch (elementType)
{
case EbtBool:
if (!matrix)
{
switch (size)
{
case 1: out << "bool("; break;
case 2: out << "bool2("; break;
case 3: out << "bool3("; break;
case 4: out << "bool4("; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
break;
case EbtFloat:
if (!matrix)
{
switch (size)
{
case 1: out << "float("; break;
case 2: out << "float2("; break;
case 3: out << "float3("; break;
case 4: out << "float4("; break;
default: UNREACHABLE();
}
}
else
{
switch (size)
{
case 4: out << "float2x2("; break;
case 9: out << "float3x3("; break;
case 16: out << "float4x4("; break;
default: UNREACHABLE();
}
}
break;
case EbtInt:
if (!matrix)
{
switch (size)
{
case 1: out << "int("; break;
case 2: out << "int2("; break;
case 3: out << "int3("; break;
case 4: out << "int4("; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
break;
default:
UNIMPLEMENTED(); // FIXME
}
}
for (int i = 0; i < size; i++)
{
switch (node->getUnionArrayPointer()[i].getType())
{
case EbtBool:
if (node->getUnionArrayPointer()[i].getBConst())
{
out << "true";
}
else
{
out << "false";
}
break;
case EbtFloat:
out << node->getUnionArrayPointer()[i].getFConst();
break;
case EbtInt:
out << node->getUnionArrayPointer()[i].getIConst();
break;
default:
UNIMPLEMENTED(); // FIXME
}
if (i != size - 1)
{
out << ", ";
}
}
if (type.getBasicType() == EbtStruct)
{
out << "}";
}
else
{
out << ")";
}
}
}
bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node)
{
if (handleExcessiveLoop(node))
{
return false;
}
TInfoSinkBase &out = mBody;
if (!node->testFirst())
{
out << "do\n"
"{\n";
}
else
{
if (node->getInit())
{
mUnfoldSelect->traverse(node->getInit());
}
if (node->getTest())
{
mUnfoldSelect->traverse(node->getTest());
}
if (node->getTerminal())
{
mUnfoldSelect->traverse(node->getTerminal());
}
out << "for(";
if (node->getInit())
{
node->getInit()->traverse(this);
}
out << "; ";
if (node->getTest())
{
node->getTest()->traverse(this);
}
out << "; ";
if (node->getTerminal())
{
node->getTerminal()->traverse(this);
}
out << ")\n"
"{\n";
}
if (node->getBody())
{
node->getBody()->traverse(this);
}
out << "}\n";
if (!node->testFirst())
{
out << "while(\n";
node->getTest()->traverse(this);
out << ")";
}
out << ";\n";
return false;
}
bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = mBody;
switch (node->getFlowOp())
{
case EOpKill: outputTriplet(visit, "discard", NULL, NULL); break;
case EOpBreak: outputTriplet(visit, "break", NULL, NULL); break;
case EOpContinue: outputTriplet(visit, "continue", NULL, NULL); break;
case EOpReturn:
if (visit == PreVisit)
{
if (node->getExpression())
{
out << "return ";
}
else
{
out << "return;\n";
}
}
else if (visit == PostVisit)
{
out << ";\n";
}
break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::isSingleStatement(TIntermNode *node)
{
TIntermAggregate *aggregate = node->getAsAggregate();
if (aggregate)
{
if (aggregate->getOp() == EOpSequence)
{
return false;
}
else
{
for (TIntermSequence::iterator sit = aggregate->getSequence().begin(); sit != aggregate->getSequence().end(); sit++)
{
if (!isSingleStatement(*sit))
{
return false;
}
}
return true;
}
}
return true;
}
// Handle loops with more than 255 iterations (unsupported by D3D9) by splitting them
bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node)
{
TInfoSinkBase &out = mBody;
// Parse loops of the form:
// for(int index = initial; index [comparator] limit; index += increment)
TIntermSymbol *index = NULL;
TOperator comparator = EOpNull;
int initial = 0;
int limit = 0;
int increment = 0;
// Parse index name and intial value
if (node->getInit())
{
TIntermAggregate *init = node->getInit()->getAsAggregate();
if (init)
{
TIntermSequence &sequence = init->getSequence();
TIntermTyped *variable = sequence[0]->getAsTyped();
if (variable && variable->getQualifier() == EvqTemporary)
{
TIntermBinary *assign = variable->getAsBinaryNode();
if (assign->getOp() == EOpInitialize)
{
TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
if (symbol && constant)
{
if (constant->getBasicType() == EbtInt && constant->getSize() == 1)
{
index = symbol;
initial = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
}
}
// Parse comparator and limit value
if (index != NULL && node->getTest())
{
TIntermBinary *test = node->getTest()->getAsBinaryNode();
if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
{
TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->getSize() == 1)
{
comparator = test->getOp();
limit = constant->getUnionArrayPointer()[0].getIConst();
}
}
}
}
// Parse increment
if (index != NULL && comparator != EOpNull && node->getTerminal())
{
TIntermBinary *binaryTerminal = node->getTerminal()->getAsBinaryNode();
TIntermUnary *unaryTerminal = node->getTerminal()->getAsUnaryNode();
if (binaryTerminal)
{
TOperator op = binaryTerminal->getOp();
TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->getSize() == 1)
{
int value = constant->getUnionArrayPointer()[0].getIConst();
switch (op)
{
case EOpAddAssign: increment = value; break;
case EOpSubAssign: increment = -value; break;
default: UNIMPLEMENTED();
}
}
}
}
else if (unaryTerminal)
{
TOperator op = unaryTerminal->getOp();
switch (op)
{
case EOpPostIncrement: increment = 1; break;
case EOpPostDecrement: increment = -1; break;
case EOpPreIncrement: increment = 1; break;
case EOpPreDecrement: increment = -1; break;
default: UNIMPLEMENTED();
}
}
}
if (index != NULL && comparator != EOpNull && increment != 0)
{
if (comparator == EOpLessThanEqual)
{
comparator = EOpLessThan;
limit += 1;
}
if (comparator == EOpLessThan)
{
int iterations = (limit - initial + 1) / increment;
if (iterations <= 255)
{
return false; // Not an excessive loop
}
while (iterations > 0)
{
int remainder = (limit - initial + 1) % increment;
int clampedLimit = initial + increment * std::min(255, iterations) - 1 - remainder;
// for(int index = initial; index < clampedLimit; index += increment)
out << "for(int ";
index->traverse(this);
out << " = ";
out << initial;
out << "; ";
index->traverse(this);
out << " < ";
out << clampedLimit;
out << "; ";
index->traverse(this);
out << " += ";
out << increment;
out << ")\n"
"{\n";
if (node->getBody())
{
node->getBody()->traverse(this);
}
out << "}\n";
initial += 255 * increment;
iterations -= 255;
}
return true;
}
else UNIMPLEMENTED();
}
return false; // Not handled as an excessive loop
}
void OutputHLSL::outputTriplet(Visit visit, const char *preString, const char *inString, const char *postString)
{
TInfoSinkBase &out = mBody;
if (visit == PreVisit && preString)
{
out << preString;
}
else if (visit == InVisit && inString)
{
out << inString;
}
else if (visit == PostVisit && postString)
{
out << postString;
}
}
TString OutputHLSL::argumentString(const TIntermSymbol *symbol)
{
TQualifier qualifier = symbol->getQualifier();
const TType &type = symbol->getType();
TString name = symbol->getSymbol();
if (name.empty()) // HLSL demands named arguments, also for prototypes
{
name = "x" + str(mArgumentIndex++);
}
else
{
name = decorate(name);
}
return qualifierString(qualifier) + " " + typeString(type) + " " + name + arrayString(type);
}
TString OutputHLSL::qualifierString(TQualifier qualifier)
{
switch(qualifier)
{
case EvqIn: return "in";
case EvqOut: return "out";
case EvqInOut: return "inout";
case EvqConstReadOnly: return "const";
default: UNREACHABLE();
}
return "";
}
TString OutputHLSL::typeString(const TType &type)
{
if (type.getBasicType() == EbtStruct)
{
return decorate(type.getTypeName());
}
else if (type.isMatrix())
{
switch (type.getNominalSize())
{
case 2: return "float2x2";
case 3: return "float3x3";
case 4: return "float4x4";
}
}
else
{
switch (type.getBasicType())
{
case EbtFloat:
switch (type.getNominalSize())
{
case 1: return "float";
case 2: return "float2";
case 3: return "float3";
case 4: return "float4";
}
case EbtInt:
switch (type.getNominalSize())
{
case 1: return "int";
case 2: return "int2";
case 3: return "int3";
case 4: return "int4";
}
case EbtBool:
switch (type.getNominalSize())
{
case 1: return "bool";
case 2: return "bool2";
case 3: return "bool3";
case 4: return "bool4";
}
case EbtVoid:
return "void";
case EbtSampler2D:
return "sampler2D";
case EbtSamplerCube:
return "samplerCUBE";
}
}
UNIMPLEMENTED(); // FIXME
return "<unknown type>";
}
TString OutputHLSL::arrayString(const TType &type)
{
if (!type.isArray())
{
return "";
}
return "[" + str(type.getArraySize()) + "]";
}
TString OutputHLSL::initializer(const TType &type)
{
TString string;
int arraySize = type.isArray() ? type.getArraySize() : 1;
if (type.isArray())
{
string += "{";
}
for (int element = 0; element < arraySize; element++)
{
string += typeString(type) + "(";
for (int component = 0; component < type.getInstanceSize(); component++)
{
string += "0";
if (component < type.getInstanceSize() - 1)
{
string += ", ";
}
}
string += ")";
if (element < arraySize - 1)
{
string += ", ";
}
}
if (type.isArray())
{
string += "}";
}
return string;
}
TString OutputHLSL::decorate(const TString &string)
{
if (string.substr(0, 3) != "gl_")
{
return "_" + string;
}
else
{
return string;
}
}
}