blob: eff7feeb45d8734dce9686bcb309b8aba62664aa [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/Program.h"
#include "common/debug.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/utilities.h"
namespace gl
{
unsigned int Program::mCurrentSerial = 1;
std::string str(int i)
{
char buffer[20];
sprintf(buffer, "%d", i);
return buffer;
}
Uniform::Uniform(GLenum type, const std::string &name, unsigned int arraySize) : type(type), name(name), arraySize(arraySize)
{
int bytes = UniformTypeSize(type) * arraySize;
data = new unsigned char[bytes];
memset(data, 0, bytes);
dirty = true;
handlesSet = false;
}
Uniform::~Uniform()
{
delete[] data;
}
UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
Program::Program(ResourceManager *manager, GLuint handle) : mResourceManager(manager), mHandle(handle), mSerial(issueSerial())
{
mFragmentShader = NULL;
mVertexShader = NULL;
mPixelExecutable = NULL;
mVertexExecutable = NULL;
mConstantTablePS = NULL;
mConstantTableVS = NULL;
mInfoLog = NULL;
mValidated = false;
unlink();
mDeleteStatus = false;
mRefCount = 0;
}
Program::~Program()
{
unlink(true);
if (mVertexShader != NULL)
{
mVertexShader->release();
}
if (mFragmentShader != NULL)
{
mFragmentShader->release();
}
}
bool Program::attachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mVertexShader)
{
return false;
}
mVertexShader = (VertexShader*)shader;
mVertexShader->addRef();
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mFragmentShader)
{
return false;
}
mFragmentShader = (FragmentShader*)shader;
mFragmentShader->addRef();
}
else UNREACHABLE();
return true;
}
bool Program::detachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mVertexShader != shader)
{
return false;
}
mVertexShader->release();
mVertexShader = NULL;
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mFragmentShader != shader)
{
return false;
}
mFragmentShader->release();
mFragmentShader = NULL;
}
else UNREACHABLE();
unlink();
return true;
}
int Program::getAttachedShadersCount() const
{
return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0);
}
IDirect3DPixelShader9 *Program::getPixelShader()
{
return mPixelExecutable;
}
IDirect3DVertexShader9 *Program::getVertexShader()
{
return mVertexExecutable;
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
if (index < MAX_VERTEX_ATTRIBS)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributeBinding[i].erase(name);
}
mAttributeBinding[index].insert(name);
}
}
GLuint Program::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int Program::getSemanticIndex(int attributeIndex)
{
if (attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS)
{
return mSemanticIndex[attributeIndex];
}
return -1;
}
// Returns the index of the texture unit corresponding to a Direct3D 9 sampler
// index referenced in the compiled HLSL shader
GLint Program::getSamplerMapping(unsigned int samplerIndex)
{
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
GLint logicalTextureUnit = -1;
if (mSamplers[samplerIndex].active)
{
logicalTextureUnit = mSamplers[samplerIndex].logicalTextureUnit;
}
if (logicalTextureUnit < MAX_TEXTURE_IMAGE_UNITS)
{
return logicalTextureUnit;
}
return -1;
}
SamplerType Program::getSamplerType(unsigned int samplerIndex)
{
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
assert(mSamplers[samplerIndex].active);
return mSamplers[samplerIndex].type;
}
bool Program::isSamplerDirty(unsigned int samplerIndex) const
{
if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]))
{
return mSamplers[samplerIndex].dirty;
}
else UNREACHABLE();
return false;
}
void Program::setSamplerDirty(unsigned int samplerIndex, bool dirty)
{
if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]))
{
mSamplers[samplerIndex].dirty = dirty;
}
else UNREACHABLE();
}
GLint Program::getUniformLocation(const char *name, bool decorated)
{
std::string _name = decorated ? name : decorate(name);
int subscript = 0;
// Strip any trailing array operator and retrieve the subscript
size_t open = _name.find_last_of('[');
size_t close = _name.find_last_of(']');
if (open != std::string::npos && close == _name.length() - 1)
{
subscript = atoi(_name.substr(open + 1).c_str());
_name.erase(open);
}
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].name == _name &&
mUniformIndex[location].element == subscript)
{
return location;
}
}
return -1;
}
bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat),
v, sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for (int i = 0; i < count; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 2,
v, 2 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 3,
v, 3 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
v, 4 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT2)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
value, 4 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT3)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 9,
value, 9 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT4)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16,
value, 16 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT ||
targetUniform->type == GL_SAMPLER_2D ||
targetUniform->type == GL_SAMPLER_CUBE)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
v, sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for (int i = 0; i < count; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
v, 2 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
v, 3 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
v, 4 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::getUniformfv(GLint location, GLfloat *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
}
}
break;
case GL_FLOAT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLfloat),
count * sizeof(GLfloat));
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (float)intParams[i];
}
}
break;
default: UNREACHABLE();
}
return true;
}
bool Program::getUniformiv(GLint location, GLint *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)boolParams[i];
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)floatParams[i];
}
}
break;
case GL_INT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLint),
count * sizeof(GLint));
break;
default: UNREACHABLE();
}
return true;
}
void Program::dirtyAllUniforms()
{
unsigned int numUniforms = mUniforms.size();
for (unsigned int index = 0; index < numUniforms; index++)
{
mUniforms[index]->dirty = true;
}
}
void Program::dirtyAllSamplers()
{
for (unsigned int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; ++index)
{
mSamplers[index].dirty = true;
}
}
// Applies all the uniforms set for this program object to the Direct3D 9 device
void Program::applyUniforms()
{
unsigned int numUniforms = mUniformIndex.size();
for (unsigned int location = 0; location < numUniforms; location++)
{
if (mUniformIndex[location].element != 0)
{
continue;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
if (targetUniform->dirty)
{
int arraySize = targetUniform->arraySize;
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
GLboolean *b = (GLboolean*)targetUniform->data;
switch (targetUniform->type)
{
case GL_BOOL: applyUniform1bv(location, arraySize, b); break;
case GL_BOOL_VEC2: applyUniform2bv(location, arraySize, b); break;
case GL_BOOL_VEC3: applyUniform3bv(location, arraySize, b); break;
case GL_BOOL_VEC4: applyUniform4bv(location, arraySize, b); break;
case GL_FLOAT: applyUniform1fv(location, arraySize, f); break;
case GL_FLOAT_VEC2: applyUniform2fv(location, arraySize, f); break;
case GL_FLOAT_VEC3: applyUniform3fv(location, arraySize, f); break;
case GL_FLOAT_VEC4: applyUniform4fv(location, arraySize, f); break;
case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, arraySize, f); break;
case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, arraySize, f); break;
case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, arraySize, f); break;
case GL_SAMPLER_2D:
case GL_SAMPLER_CUBE:
case GL_INT: applyUniform1iv(location, arraySize, i); break;
case GL_INT_VEC2: applyUniform2iv(location, arraySize, i); break;
case GL_INT_VEC3: applyUniform3iv(location, arraySize, i); break;
case GL_INT_VEC4: applyUniform4iv(location, arraySize, i); break;
default:
UNREACHABLE();
}
targetUniform->dirty = false;
}
}
}
// Compiles the HLSL code of the attached shaders into executable binaries
ID3DXBuffer *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable)
{
if (!hlsl)
{
return NULL;
}
ID3DXBuffer *binary = NULL;
ID3DXBuffer *errorMessage = NULL;
HRESULT result = D3DXCompileShader(hlsl, (UINT)strlen(hlsl), NULL, NULL, "main", profile, 0, &binary, &errorMessage, constantTable);
if (SUCCEEDED(result))
{
return binary;
}
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (ID3DXBuffer*)NULL);
}
if (errorMessage)
{
const char *message = (const char*)errorMessage->GetBufferPointer();
appendToInfoLog("%s\n", message);
TRACE("\n%s", hlsl);
TRACE("\n%s", message);
}
return NULL;
}
// Packs varyings into generic varying registers, using the algorithm from [OpenGL ES Shading Language 1.00 rev. 17] appendix A section 7 page 111
// Returns the number of used varying registers, or -1 if unsuccesful
int Program::packVaryings(const Varying *packing[][4])
{
Context *context = getContext();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
int n = VariableRowCount(varying->type) * varying->size;
int m = VariableColumnCount(varying->type);
bool success = false;
if (m == 2 || m == 3 || m == 4)
{
for (int r = 0; r <= maxVaryingVectors - n && !success; r++)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 0; x < m && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 0;
for (int y = 0; y < n; y++)
{
for (int x = 0; x < m; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
if (!success && m == 2)
{
for (int r = maxVaryingVectors - n; r >= 0 && !success; r--)
{
bool available = true;
for (int y = 0; y < n && available; y++)
{
for (int x = 2; x < 4 && available; x++)
{
if (packing[r + y][x])
{
available = false;
}
}
}
if (available)
{
varying->reg = r;
varying->col = 2;
for (int y = 0; y < n; y++)
{
for (int x = 2; x < 4; x++)
{
packing[r + y][x] = &*varying;
}
}
success = true;
}
}
}
}
else if (m == 1)
{
int space[4] = {0};
for (int y = 0; y < maxVaryingVectors; y++)
{
for (int x = 0; x < 4; x++)
{
space[x] += packing[y][x] ? 0 : 1;
}
}
int column = 0;
for (int x = 0; x < 4; x++)
{
if (space[x] > n && space[x] < space[column])
{
column = x;
}
}
if (space[column] > n)
{
for (int r = 0; r < maxVaryingVectors; r++)
{
if (!packing[r][column])
{
varying->reg = r;
for (int y = r; y < r + n; y++)
{
packing[y][column] = &*varying;
}
break;
}
}
varying->col = column;
success = true;
}
}
else UNREACHABLE();
if (!success)
{
appendToInfoLog("Could not pack varying %s", varying->name.c_str());
return -1;
}
}
// Return the number of used registers
int registers = 0;
for (int r = 0; r < maxVaryingVectors; r++)
{
if (packing[r][0] || packing[r][1] || packing[r][2] || packing[r][3])
{
registers++;
}
}
return registers;
}
bool Program::linkVaryings()
{
if (mPixelHLSL.empty() || mVertexHLSL.empty())
{
return false;
}
const Varying *packing[MAX_VARYING_VECTORS_SM3][4] = {NULL};
int registers = packVaryings(packing);
if (registers < 0)
{
return false;
}
Context *context = getContext();
const bool sm3 = context->supportsShaderModel3();
const int maxVaryingVectors = context->getMaximumVaryingVectors();
if (registers == maxVaryingVectors && mFragmentShader->mUsesFragCoord)
{
appendToInfoLog("No varying registers left to support gl_FragCoord");
return false;
}
for (VaryingList::iterator input = mFragmentShader->varyings.begin(); input != mFragmentShader->varyings.end(); input++)
{
bool matched = false;
for (VaryingList::iterator output = mVertexShader->varyings.begin(); output != mVertexShader->varyings.end(); output++)
{
if (output->name == input->name)
{
if (output->type != input->type || output->size != input->size)
{
appendToInfoLog("Type of vertex varying %s does not match that of the fragment varying", output->name.c_str());
return false;
}
output->reg = input->reg;
output->col = input->col;
matched = true;
break;
}
}
if (!matched)
{
appendToInfoLog("Fragment varying varying %s does not match any vertex varying", input->name.c_str());
return false;
}
}
std::string varyingSemantic = (sm3 ? "COLOR" : "TEXCOORD");
mVertexHLSL += "struct VS_INPUT\n"
"{\n";
int semanticIndex = 0;
for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
switch (attribute->type)
{
case GL_FLOAT: mVertexHLSL += " float "; break;
case GL_FLOAT_VEC2: mVertexHLSL += " float2 "; break;
case GL_FLOAT_VEC3: mVertexHLSL += " float3 "; break;
case GL_FLOAT_VEC4: mVertexHLSL += " float4 "; break;
case GL_FLOAT_MAT2: mVertexHLSL += " float2x2 "; break;
case GL_FLOAT_MAT3: mVertexHLSL += " float3x3 "; break;
case GL_FLOAT_MAT4: mVertexHLSL += " float4x4 "; break;
default: UNREACHABLE();
}
mVertexHLSL += decorate(attribute->name) + " : TEXCOORD" + str(semanticIndex) + ";\n";
semanticIndex += VariableRowCount(attribute->type);
}
mVertexHLSL += "};\n"
"\n"
"struct VS_OUTPUT\n"
"{\n"
" float4 gl_Position : POSITION;\n";
for (int r = 0; r < registers; r++)
{
int registerSize = packing[r][3] ? 4 : (packing[r][2] ? 3 : (packing[r][1] ? 2 : 1));
mVertexHLSL += " float" + str(registerSize) + " v" + str(r) + " : " + varyingSemantic + str(r) + ";\n";
}
if (mFragmentShader->mUsesFragCoord)
{
mVertexHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
}
if (mVertexShader->mUsesPointSize && sm3)
{
mVertexHLSL += " float gl_PointSize : PSIZE;\n";
}
mVertexHLSL += "};\n"
"\n"
"VS_OUTPUT main(VS_INPUT input)\n"
"{\n";
for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
mVertexHLSL += " " + decorate(attribute->name) + " = ";
if (VariableRowCount(attribute->type) > 1) // Matrix
{
mVertexHLSL += "transpose";
}
mVertexHLSL += "(input." + decorate(attribute->name) + ");\n";
}
mVertexHLSL += "\n"
" gl_main();\n"
"\n"
" VS_OUTPUT output;\n"
" output.gl_Position.x = gl_Position.x - dx_HalfPixelSize.x * gl_Position.w;\n"
" output.gl_Position.y = -(gl_Position.y - dx_HalfPixelSize.y * gl_Position.w);\n"
" output.gl_Position.z = (gl_Position.z + gl_Position.w) * 0.5;\n"
" output.gl_Position.w = gl_Position.w;\n";
if (mVertexShader->mUsesPointSize && sm3)
{
mVertexHLSL += " output.gl_PointSize = clamp(gl_PointSize, 1.0, " + str((int)ALIASED_POINT_SIZE_RANGE_MAX_SM3) + ");\n";
}
if (mFragmentShader->mUsesFragCoord)
{
mVertexHLSL += " output.gl_FragCoord = gl_Position;\n";
}
for (VaryingList::iterator varying = mVertexShader->varyings.begin(); varying != mVertexShader->varyings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
int r = varying->reg + i * rows + j;
mVertexHLSL += " output.v" + str(r);
bool sharedRegister = false; // Register used by multiple varyings
for (int x = 0; x < 4; x++)
{
if (packing[r][x] && packing[r][x] != packing[r][0])
{
sharedRegister = true;
break;
}
}
if(sharedRegister)
{
mVertexHLSL += ".";
for (int x = 0; x < 4; x++)
{
if (packing[r][x] == &*varying)
{
switch(x)
{
case 0: mVertexHLSL += "x"; break;
case 1: mVertexHLSL += "y"; break;
case 2: mVertexHLSL += "z"; break;
case 3: mVertexHLSL += "w"; break;
}
}
}
}
mVertexHLSL += " = " + varying->name;
if (varying->array)
{
mVertexHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
mVertexHLSL += "[" + str(j) + "]";
}
mVertexHLSL += ";\n";
}
}
}
}
mVertexHLSL += "\n"
" return output;\n"
"}\n";
mPixelHLSL += "struct PS_INPUT\n"
"{\n";
for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
mPixelHLSL += " float4 v" + n + " : " + varyingSemantic + n + ";\n";
}
}
}
else UNREACHABLE();
}
if (mFragmentShader->mUsesFragCoord)
{
mPixelHLSL += " float4 gl_FragCoord : " + varyingSemantic + str(registers) + ";\n";
if (sm3) {
mPixelHLSL += " float2 dx_VPos : VPOS;\n";
}
}
if (mFragmentShader->mUsesPointCoord && sm3)
{
mPixelHLSL += " float2 gl_PointCoord : TEXCOORD0;\n";
}
if (mFragmentShader->mUsesFrontFacing)
{
mPixelHLSL += " float vFace : VFACE;\n";
}
mPixelHLSL += "};\n"
"\n"
"struct PS_OUTPUT\n"
"{\n"
" float4 gl_Color[1] : COLOR;\n"
"};\n"
"\n"
"PS_OUTPUT main(PS_INPUT input)\n"
"{\n";
if (mFragmentShader->mUsesFragCoord)
{
mPixelHLSL += " float rhw = 1.0 / input.gl_FragCoord.w;\n";
if (sm3) {
mPixelHLSL += " gl_FragCoord.x = input.dx_VPos.x;\n"
" gl_FragCoord.y = input.dx_VPos.y;\n";
} else {
mPixelHLSL += " gl_FragCoord.x = (input.gl_FragCoord.x * rhw) * dx_Viewport.x + dx_Viewport.z;\n"
" gl_FragCoord.y = (input.gl_FragCoord.y * rhw) * dx_Viewport.y + dx_Viewport.w;\n";
}
mPixelHLSL += " gl_FragCoord.z = (input.gl_FragCoord.z * rhw) * dx_Depth.x + dx_Depth.y;\n"
" gl_FragCoord.w = rhw;\n";
}
if (mFragmentShader->mUsesPointCoord && sm3)
{
mPixelHLSL += " gl_PointCoord = float2(input.gl_PointCoord.x, 1.0 - input.gl_PointCoord.y);\n";
}
if (mFragmentShader->mUsesFrontFacing)
{
mPixelHLSL += " gl_FrontFacing = dx_PointsOrLines || (dx_FrontCCW ? (input.vFace >= 0.0) : (input.vFace <= 0.0));\n";
}
for (VaryingList::iterator varying = mFragmentShader->varyings.begin(); varying != mFragmentShader->varyings.end(); varying++)
{
if (varying->reg >= 0)
{
for (int i = 0; i < varying->size; i++)
{
int rows = VariableRowCount(varying->type);
for (int j = 0; j < rows; j++)
{
std::string n = str(varying->reg + i * rows + j);
mPixelHLSL += " " + varying->name;
if (varying->array)
{
mPixelHLSL += "[" + str(i) + "]";
}
if (rows > 1)
{
mPixelHLSL += "[" + str(j) + "]";
}
mPixelHLSL += " = input.v" + n + ";\n";
}
}
}
else UNREACHABLE();
}
mPixelHLSL += "\n"
" gl_main();\n"
"\n"
" PS_OUTPUT output;\n"
" output.gl_Color[0] = gl_Color[0];\n"
"\n"
" return output;\n"
"}\n";
TRACE("\n%s", mPixelHLSL.c_str());
TRACE("\n%s", mVertexHLSL.c_str());
return true;
}
// Links the HLSL code of the vertex and pixel shader by matching up their varyings,
// compiling them into binaries, determining the attribute mappings, and collecting
// a list of uniforms
void Program::link()
{
unlink();
if (!mFragmentShader || !mFragmentShader->isCompiled())
{
return;
}
if (!mVertexShader || !mVertexShader->isCompiled())
{
return;
}
mPixelHLSL = mFragmentShader->getHLSL();
mVertexHLSL = mVertexShader->getHLSL();
if (!linkVaryings())
{
return;
}
Context *context = getContext();
const char *vertexProfile = context->supportsShaderModel3() ? "vs_3_0" : "vs_2_0";
const char *pixelProfile = context->supportsShaderModel3() ? "ps_3_0" : "ps_2_0";
ID3DXBuffer *vertexBinary = compileToBinary(mVertexHLSL.c_str(), vertexProfile, &mConstantTableVS);
ID3DXBuffer *pixelBinary = compileToBinary(mPixelHLSL.c_str(), pixelProfile, &mConstantTablePS);
if (vertexBinary && pixelBinary)
{
IDirect3DDevice9 *device = getDevice();
HRESULT vertexResult = device->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable);
HRESULT pixelResult = device->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable);
if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult));
vertexBinary->Release();
pixelBinary->Release();
vertexBinary = NULL;
pixelBinary = NULL;
if (mVertexExecutable && mPixelExecutable)
{
if (!linkAttributes())
{
return;
}
if (!linkUniforms(mConstantTablePS))
{
return;
}
if (!linkUniforms(mConstantTableVS))
{
return;
}
// these uniforms are searched as already-decorated because gl_ and dx_
// are reserved prefixes, and do not receive additional decoration
mDepthRangeNearLocation = getUniformLocation("gl_DepthRange.near", true);
mDepthRangeFarLocation = getUniformLocation("gl_DepthRange.far", true);
mDepthRangeDiffLocation = getUniformLocation("gl_DepthRange.diff", true);
mDxDepthLocation = getUniformLocation("dx_Depth", true);
mDxViewportLocation = getUniformLocation("dx_Viewport", true);
mDxHalfPixelSizeLocation = getUniformLocation("dx_HalfPixelSize", true);
mDxFrontCCWLocation = getUniformLocation("dx_FrontCCW", true);
mDxPointsOrLinesLocation = getUniformLocation("dx_PointsOrLines", true);
mLinked = true; // Success
}
}
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool Program::linkAttributes()
{
unsigned int usedLocations = 0;
// Link attributes that have a binding location
for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
int location = getAttributeBinding(attribute->name);
if (location != -1) // Set by glBindAttribLocation
{
if (!mLinkedAttribute[location].name.empty())
{
// Multiple active attributes bound to the same location; not an error
}
mLinkedAttribute[location] = *attribute;
int rows = VariableRowCount(attribute->type);
if (rows + location > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute->name.c_str(), location);
return false;
}
for (int i = 0; i < rows; i++)
{
usedLocations |= 1 << (location + i);
}
}
}
// Link attributes that don't have a binding location
for (AttributeArray::iterator attribute = mVertexShader->mAttributes.begin(); attribute != mVertexShader->mAttributes.end(); attribute++)
{
int location = getAttributeBinding(attribute->name);
if (location == -1) // Not set by glBindAttribLocation
{
int rows = VariableRowCount(attribute->type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, rows, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + rows > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Too many active attributes (%s)", attribute->name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = *attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
int rows = std::max(VariableRowCount(mLinkedAttribute[attributeIndex].type), 1);
for (int r = 0; r < rows; r++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
return true;
}
int Program::getAttributeBinding(const std::string &name)
{
for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++)
{
if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end())
{
return location;
}
}
return -1;
}
bool Program::linkUniforms(ID3DXConstantTable *constantTable)
{
D3DXCONSTANTTABLE_DESC constantTableDescription;
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
constantTable->GetDesc(&constantTableDescription);
for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++)
{
D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex);
constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount);
if (!defineUniform(constantHandle, constantDescription))
{
return false;
}
}
return true;
}
// Adds the description of a constant found in the binary shader to the list of uniforms
// Returns true if succesful (uniform not already defined)
bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name)
{
if (constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int samplerIndex = constantDescription.RegisterIndex;
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
mSamplers[samplerIndex].active = true;
mSamplers[samplerIndex].type = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? SAMPLER_CUBE : SAMPLER_2D;
mSamplers[samplerIndex].logicalTextureUnit = 0;
mSamplers[samplerIndex].dirty = true;
}
switch(constantDescription.Class)
{
case D3DXPC_STRUCT:
{
for (unsigned int arrayIndex = 0; arrayIndex < constantDescription.Elements; arrayIndex++)
{
for (unsigned int field = 0; field < constantDescription.StructMembers; field++)
{
D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field);
D3DXCONSTANT_DESC fieldDescription;
UINT descriptionCount = 1;
mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount);
std::string structIndex = (constantDescription.Elements > 1) ? ("[" + str(arrayIndex) + "]") : "";
if (!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + structIndex + "."))
{
return false;
}
}
}
return true;
}
case D3DXPC_SCALAR:
case D3DXPC_VECTOR:
case D3DXPC_MATRIX_COLUMNS:
case D3DXPC_OBJECT:
return defineUniform(constantDescription, name + constantDescription.Name);
default:
UNREACHABLE();
return false;
}
}
bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name)
{
Uniform *uniform = createUniform(constantDescription, name);
if(!uniform)
{
return false;
}
// Check if already defined
GLint location = getUniformLocation(name.c_str(), true);
GLenum type = uniform->type;
if (location >= 0)
{
delete uniform;
if (mUniforms[mUniformIndex[location].index]->type != type)
{
return false;
}
else
{
return true;
}
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for (unsigned int i = 0; i < uniform->arraySize; ++i)
{
mUniformIndex.push_back(UniformLocation(name, i, uniformIndex));
}
return true;
}
Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name)
{
if (constantDescription.Rows == 1) // Vectors and scalars
{
switch (constantDescription.Type)
{
case D3DXPT_SAMPLER2D:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_SAMPLER_2D, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_SAMPLERCUBE:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_SAMPLER_CUBE, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_BOOL:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_BOOL, name, constantDescription.Elements);
case 2: return new Uniform(GL_BOOL_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_BOOL_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_BOOL_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_INT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_INT, name, constantDescription.Elements);
case 2: return new Uniform(GL_INT_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_INT_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_INT_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_FLOAT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_FLOAT, name, constantDescription.Elements);
case 2: return new Uniform(GL_FLOAT_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
else if (constantDescription.Rows == constantDescription.Columns) // Square matrices
{
switch (constantDescription.Type)
{
case D3DXPT_FLOAT:
switch (constantDescription.Rows)
{
case 2: return new Uniform(GL_FLOAT_MAT2, name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_MAT3, name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_MAT4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
return 0;
}
// This method needs to match OutputHLSL::decorate
std::string Program::decorate(const std::string &string)
{
if (string.substr(0, 3) != "gl_" && string.substr(0, 3) != "dx_")
{
return "_" + string;
}
else
{
return string;
}
}
std::string Program::undecorate(const std::string &string)
{
if (string.substr(0, 1) == "_")
{
return string.substr(1);
}
else
{
return string;
}
}
bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v)
{
BOOL *vector = new BOOL[count];
for (int i = 0; i < count; i++)
{
if (v[i] == GL_FALSE)
vector[i] = 0;
else
vector[i] = 1;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetBoolArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetBoolArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f), 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f),
(v[2] == GL_FALSE ? 0.0f : 1.0f), 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f),
(v[2] == GL_FALSE ? 0.0f : 1.0f),
(v[3] == GL_FALSE ? 0.0f : 1.0f));
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetFloatArray(device, constantPS, v, count);
}
if (constantVS)
{
mConstantTableVS->SetFloatArray(device, constantVS, v, count);
}
return true;
}
bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4(v[0], v[1], 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4(v[0], v[1], v[2], 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, (D3DXVECTOR4*)v, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, (D3DXVECTOR4*)v, count);
}
return true;
}
bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[2], 0, 0,
value[1], value[3], 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
value += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[3], value[6], 0,
value[1], value[4], value[7], 0,
value[2], value[5], value[8], 0,
0, 0, 0, 1);
value += 9;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[4], value[8], value[12],
value[1], value[5], value[9], value[13],
value[2], value[6], value[10], value[14],
value[3], value[7], value[11], value[15]);
value += 16;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
HRESULT result = mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
if (FAILED(result))
{
return false;
}
if (constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int firstIndex = mConstantTablePS->GetSamplerIndex(constantPS);
for (unsigned int samplerIndex = firstIndex; samplerIndex < firstIndex + count; samplerIndex++)
{
GLint mappedSampler = v[0];
if (samplerIndex >= 0 && samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplers[samplerIndex].active);
mSamplers[samplerIndex].logicalTextureUnit = mappedSampler;
mSamplers[samplerIndex].dirty = true;
}
}
return true;
}
}
if (constantPS)
{
mConstantTablePS->SetIntArray(device, constantPS, v, count);
}
if (constantVS)
{
mConstantTableVS->SetIntArray(device, constantVS, v, count);
}
return true;
}
bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]);
v += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS;
D3DXHANDLE constantVS;
getConstantHandles(targetUniform, &constantPS, &constantVS);
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
void Program::appendToInfoLog(const char *format, ...)
{
if (!format)
{
return;
}
char info[1024];
va_list vararg;
va_start(vararg, format);
vsnprintf(info, sizeof(info), format, vararg);
va_end(vararg);
size_t infoLength = strlen(info);
if (!mInfoLog)
{
mInfoLog = new char[infoLength + 1];
strcpy(mInfoLog, info);
}
else
{
size_t logLength = strlen(mInfoLog);
char *newLog = new char[logLength + infoLength + 1];
strcpy(newLog, mInfoLog);
strcpy(newLog + logLength, info);
delete[] mInfoLog;
mInfoLog = newLog;
}
}
void Program::resetInfoLog()
{
if (mInfoLog)
{
delete [] mInfoLog;
mInfoLog = NULL;
}
}
// Returns the program object to an unlinked state, after detaching a shader, before re-linking, or at destruction
void Program::unlink(bool destroy)
{
if (destroy) // Object being destructed
{
if (mFragmentShader)
{
mFragmentShader->release();
mFragmentShader = NULL;
}
if (mVertexShader)
{
mVertexShader->release();
mVertexShader = NULL;
}
}
if (mPixelExecutable)
{
mPixelExecutable->Release();
mPixelExecutable = NULL;
}
if (mVertexExecutable)
{
mVertexExecutable->Release();
mVertexExecutable = NULL;
}
if (mConstantTablePS)
{
mConstantTablePS->Release();
mConstantTablePS = NULL;
}
if (mConstantTableVS)
{
mConstantTableVS->Release();
mConstantTableVS = NULL;
}
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mLinkedAttribute[index].name.clear();
mSemanticIndex[index] = -1;
}
for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplers[index].active = false;
mSamplers[index].dirty = true;
}
while (!mUniforms.empty())
{
delete mUniforms.back();
mUniforms.pop_back();
}
mDepthRangeDiffLocation = -1;
mDepthRangeNearLocation = -1;
mDepthRangeFarLocation = -1;
mDxDepthLocation = -1;
mDxViewportLocation = -1;
mDxHalfPixelSizeLocation = -1;
mDxFrontCCWLocation = -1;
mDxPointsOrLinesLocation = -1;
mUniformIndex.clear();
mPixelHLSL.clear();
mVertexHLSL.clear();
delete[] mInfoLog;
mInfoLog = NULL;
mLinked = false;
}
bool Program::isLinked()
{
return mLinked;
}
bool Program::isValidated() const
{
return mValidated;
}
void Program::release()
{
mRefCount--;
if (mRefCount == 0 && mDeleteStatus)
{
mResourceManager->deleteProgram(mHandle);
}
}
void Program::addRef()
{
mRefCount++;
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
unsigned int Program::getSerial() const
{
return mSerial;
}
unsigned int Program::issueSerial()
{
return mCurrentSerial++;
}
int Program::getInfoLogLength() const
{
if (!mInfoLog)
{
return 0;
}
else
{
return strlen(mInfoLog) + 1;
}
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
int index = 0;
if (mInfoLog)
{
while (index < bufSize - 1 && index < (int)strlen(mInfoLog))
{
infoLog[index] = mInfoLog[index];
index++;
}
}
if (bufSize)
{
infoLog[index] = '\0';
}
if (length)
{
*length = index;
}
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
{
int total = 0;
if (mVertexShader)
{
if (total < maxCount)
{
shaders[total] = mVertexShader->getHandle();
}
total++;
}
if (mFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mFragmentShader->getHandle();
}
total++;
}
if (count)
{
*count = total;
}
}
void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
unsigned int attribute = 0;
for (unsigned int i = 0; i < index; i++)
{
do
{
attribute++;
ASSERT(attribute < MAX_VERTEX_ATTRIBS); // index must be smaller than getActiveAttributeCount()
}
while (mLinkedAttribute[attribute].name.empty());
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint Program::getActiveAttributeCount()
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint Program::getActiveAttributeMaxLength()
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
// Skip over internal uniforms
unsigned int activeUniform = 0;
unsigned int uniform;
for (uniform = 0; uniform < mUniforms.size(); uniform++)
{
while (mUniforms[uniform]->name.substr(0, 3) == "dx_")
{
uniform++;
}
if (activeUniform == index)
{
break;
}
activeUniform++;
}
ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount()
if (bufsize > 0)
{
std::string string = undecorate(mUniforms[uniform]->name);
if (mUniforms[uniform]->arraySize != 1)
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[uniform]->arraySize;
*type = mUniforms[uniform]->type;
}
GLint Program::getActiveUniformCount()
{
int count = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (mUniforms[uniformIndex]->name.substr(0, 3) != "dx_")
{
count++;
}
}
return count;
}
GLint Program::getActiveUniformMaxLength()
{
int maxLength = 0;
unsigned int numUniforms = mUniforms.size();
for (unsigned int uniformIndex = 0; uniformIndex < numUniforms; uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.substr(0, 3) != "dx_")
{
maxLength = std::max((int)(undecorate(mUniforms[uniformIndex]->name).length() + 1), maxLength);
}
}
return maxLength;
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate()
{
resetInfoLog();
if (!isLinked())
{
appendToInfoLog("Program has not been successfully linked.");
mValidated = false;
}
else
{
applyUniforms();
if (!validateSamplers())
{
appendToInfoLog("Samplers of conflicting types refer to the same texture image unit.");
mValidated = false;
}
else
{
mValidated = true;
}
}
}
bool Program::validateSamplers() const
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
std::map<int, SamplerType> samplerMap;
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
if (mSamplers[i].active)
{
if (samplerMap.find(mSamplers[i].logicalTextureUnit) != samplerMap.end())
{
if (mSamplers[i].type != samplerMap[mSamplers[i].logicalTextureUnit])
return false;
}
else
{
samplerMap[mSamplers[i].logicalTextureUnit] = mSamplers[i].type;
}
}
}
return true;
}
void Program::getConstantHandles(Uniform *targetUniform, D3DXHANDLE *constantPS, D3DXHANDLE *constantVS)
{
if (!targetUniform->handlesSet)
{
targetUniform->psHandle = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
targetUniform->vsHandle = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
targetUniform->handlesSet = true;
}
*constantPS = targetUniform->psHandle;
*constantVS = targetUniform->vsHandle;
}
GLint Program::getDepthRangeDiffLocation() const
{
return mDepthRangeDiffLocation;
}
GLint Program::getDepthRangeNearLocation() const
{
return mDepthRangeNearLocation;
}
GLint Program::getDepthRangeFarLocation() const
{
return mDepthRangeFarLocation;
}
GLint Program::getDxDepthLocation() const
{
return mDxDepthLocation;
}
GLint Program::getDxViewportLocation() const
{
return mDxViewportLocation;
}
GLint Program::getDxHalfPixelSizeLocation() const
{
return mDxHalfPixelSizeLocation;
}
GLint Program::getDxFrontCCWLocation() const
{
return mDxFrontCCWLocation;
}
GLint Program::getDxPointsOrLinesLocation() const
{
return mDxPointsOrLinesLocation;
}
}