blob: e0a90ecfd64ef004905b30a4af7bbaac3bdd0776 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
#include "compiler/translator/OutputHLSL.h"
#include "common/angleutils.h"
#include "common/utilities.h"
#include "common/blocklayout.h"
#include "compiler/translator/compilerdebug.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/DetectDiscontinuity.h"
#include "compiler/translator/SearchSymbol.h"
#include "compiler/translator/UnfoldShortCircuit.h"
#include "compiler/translator/FlagStd140Structs.h"
#include "compiler/translator/NodeSearch.h"
#include "compiler/translator/RewriteElseBlocks.h"
#include "compiler/translator/UtilsHLSL.h"
#include "compiler/translator/util.h"
#include "compiler/translator/UniformHLSL.h"
#include "compiler/translator/StructureHLSL.h"
#include <algorithm>
#include <cfloat>
#include <stdio.h>
namespace sh
{
static sh::Attribute MakeAttributeFromType(const TType &type, const TString &name)
{
sh::Attribute attributeVar;
attributeVar.type = GLVariableType(type);
attributeVar.precision = GLVariablePrecision(type);
attributeVar.name = name.c_str();
attributeVar.arraySize = static_cast<unsigned int>(type.getArraySize());
attributeVar.location = type.getLayoutQualifier().location;
return attributeVar;
}
TString OutputHLSL::TextureFunction::name() const
{
TString name = "gl_texture";
if (IsSampler2D(sampler))
{
name += "2D";
}
else if (IsSampler3D(sampler))
{
name += "3D";
}
else if (IsSamplerCube(sampler))
{
name += "Cube";
}
else UNREACHABLE();
if (proj)
{
name += "Proj";
}
if (offset)
{
name += "Offset";
}
switch(method)
{
case IMPLICIT: break;
case BIAS: break; // Extra parameter makes the signature unique
case LOD: name += "Lod"; break;
case LOD0: name += "Lod0"; break;
case LOD0BIAS: name += "Lod0"; break; // Extra parameter makes the signature unique
case SIZE: name += "Size"; break;
case FETCH: name += "Fetch"; break;
case GRAD: name += "Grad"; break;
default: UNREACHABLE();
}
return name + "(";
}
bool OutputHLSL::TextureFunction::operator<(const TextureFunction &rhs) const
{
if (sampler < rhs.sampler) return true;
if (sampler > rhs.sampler) return false;
if (coords < rhs.coords) return true;
if (coords > rhs.coords) return false;
if (!proj && rhs.proj) return true;
if (proj && !rhs.proj) return false;
if (!offset && rhs.offset) return true;
if (offset && !rhs.offset) return false;
if (method < rhs.method) return true;
if (method > rhs.method) return false;
return false;
}
OutputHLSL::OutputHLSL(TParseContext &context, const ShBuiltInResources& resources, ShShaderOutput outputType)
: TIntermTraverser(true, true, true), mContext(context), mOutputType(outputType)
{
mUnfoldShortCircuit = new UnfoldShortCircuit(context, this);
mInsideFunction = false;
mUsesFragColor = false;
mUsesFragData = false;
mUsesDepthRange = false;
mUsesFragCoord = false;
mUsesPointCoord = false;
mUsesFrontFacing = false;
mUsesPointSize = false;
mUsesFragDepth = false;
mUsesXor = false;
mUsesMod1 = false;
mUsesMod2v = false;
mUsesMod2f = false;
mUsesMod3v = false;
mUsesMod3f = false;
mUsesMod4v = false;
mUsesMod4f = false;
mUsesFaceforward1 = false;
mUsesFaceforward2 = false;
mUsesFaceforward3 = false;
mUsesFaceforward4 = false;
mUsesAtan2_1 = false;
mUsesAtan2_2 = false;
mUsesAtan2_3 = false;
mUsesAtan2_4 = false;
mUsesDiscardRewriting = false;
mUsesNestedBreak = false;
mNumRenderTargets = resources.EXT_draw_buffers ? resources.MaxDrawBuffers : 1;
mUniqueIndex = 0;
mContainsLoopDiscontinuity = false;
mOutputLod0Function = false;
mInsideDiscontinuousLoop = false;
mNestedLoopDepth = 0;
mExcessiveLoopIndex = NULL;
mStructureHLSL = new StructureHLSL;
mUniformHLSL = new UniformHLSL(mStructureHLSL, mOutputType);
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (mContext.shaderType == GL_FRAGMENT_SHADER)
{
// Reserve registers for dx_DepthRange, dx_ViewCoords and dx_DepthFront
mUniformHLSL->reserveUniformRegisters(3);
}
else
{
// Reserve registers for dx_DepthRange and dx_ViewAdjust
mUniformHLSL->reserveUniformRegisters(2);
}
}
// Reserve registers for the default uniform block and driver constants
mUniformHLSL->reserveInterfaceBlockRegisters(2);
}
OutputHLSL::~OutputHLSL()
{
SafeDelete(mUnfoldShortCircuit);
SafeDelete(mStructureHLSL);
SafeDelete(mUniformHLSL);
}
void OutputHLSL::output()
{
mContainsLoopDiscontinuity = mContext.shaderType == GL_FRAGMENT_SHADER && containsLoopDiscontinuity(mContext.treeRoot);
const std::vector<TIntermTyped*> &flaggedStructs = FlagStd140ValueStructs(mContext.treeRoot);
makeFlaggedStructMaps(flaggedStructs);
// Work around D3D9 bug that would manifest in vertex shaders with selection blocks which
// use a vertex attribute as a condition, and some related computation in the else block.
if (mOutputType == SH_HLSL9_OUTPUT && mContext.shaderType == GL_VERTEX_SHADER)
{
RewriteElseBlocks(mContext.treeRoot);
}
mContext.treeRoot->traverse(this); // Output the body first to determine what has to go in the header
header();
mContext.infoSink().obj << mHeader.c_str();
mContext.infoSink().obj << mBody.c_str();
}
void OutputHLSL::makeFlaggedStructMaps(const std::vector<TIntermTyped *> &flaggedStructs)
{
for (unsigned int structIndex = 0; structIndex < flaggedStructs.size(); structIndex++)
{
TIntermTyped *flaggedNode = flaggedStructs[structIndex];
// This will mark the necessary block elements as referenced
flaggedNode->traverse(this);
TString structName(mBody.c_str());
mBody.erase();
mFlaggedStructOriginalNames[flaggedNode] = structName;
for (size_t pos = structName.find('.'); pos != std::string::npos; pos = structName.find('.'))
{
structName.erase(pos, 1);
}
mFlaggedStructMappedNames[flaggedNode] = "map" + structName;
}
}
TInfoSinkBase &OutputHLSL::getBodyStream()
{
return mBody;
}
const std::vector<sh::Uniform> &OutputHLSL::getUniforms()
{
return mUniformHLSL->getUniforms();
}
const std::vector<sh::InterfaceBlock> &OutputHLSL::getInterfaceBlocks() const
{
return mUniformHLSL->getInterfaceBlocks();
}
const std::vector<sh::Attribute> &OutputHLSL::getOutputVariables() const
{
return mActiveOutputVariables;
}
const std::vector<sh::Attribute> &OutputHLSL::getAttributes() const
{
return mActiveAttributes;
}
const std::vector<sh::Varying> &OutputHLSL::getVaryings() const
{
return mActiveVaryings;
}
const std::map<std::string, unsigned int> &OutputHLSL::getInterfaceBlockRegisterMap() const
{
return mUniformHLSL->getInterfaceBlockRegisterMap();
}
const std::map<std::string, unsigned int> &OutputHLSL::getUniformRegisterMap() const
{
return mUniformHLSL->getUniformRegisterMap();
}
int OutputHLSL::vectorSize(const TType &type) const
{
int elementSize = type.isMatrix() ? type.getCols() : 1;
int arraySize = type.isArray() ? type.getArraySize() : 1;
return elementSize * arraySize;
}
TString OutputHLSL::structInitializerString(int indent, const TStructure &structure, const TString &rhsStructName)
{
TString init;
TString preIndentString;
TString fullIndentString;
for (int spaces = 0; spaces < (indent * 4); spaces++)
{
preIndentString += ' ';
}
for (int spaces = 0; spaces < ((indent+1) * 4); spaces++)
{
fullIndentString += ' ';
}
init += preIndentString + "{\n";
const TFieldList &fields = structure.fields();
for (unsigned int fieldIndex = 0; fieldIndex < fields.size(); fieldIndex++)
{
const TField &field = *fields[fieldIndex];
const TString &fieldName = rhsStructName + "." + Decorate(field.name());
const TType &fieldType = *field.type();
if (fieldType.getStruct())
{
init += structInitializerString(indent + 1, *fieldType.getStruct(), fieldName);
}
else
{
init += fullIndentString + fieldName + ",\n";
}
}
init += preIndentString + "}" + (indent == 0 ? ";" : ",") + "\n";
return init;
}
void OutputHLSL::header()
{
TInfoSinkBase &out = mHeader;
TString varyings;
TString attributes;
TString flaggedStructs;
for (std::map<TIntermTyped*, TString>::const_iterator flaggedStructIt = mFlaggedStructMappedNames.begin(); flaggedStructIt != mFlaggedStructMappedNames.end(); flaggedStructIt++)
{
TIntermTyped *structNode = flaggedStructIt->first;
const TString &mappedName = flaggedStructIt->second;
const TStructure &structure = *structNode->getType().getStruct();
const TString &originalName = mFlaggedStructOriginalNames[structNode];
flaggedStructs += "static " + Decorate(structure.name()) + " " + mappedName + " =\n";
flaggedStructs += structInitializerString(0, structure, originalName);
flaggedStructs += "\n";
}
for (ReferencedSymbols::const_iterator varying = mReferencedVaryings.begin(); varying != mReferencedVaryings.end(); varying++)
{
const TType &type = varying->second->getType();
const TString &name = varying->second->getSymbol();
// Program linking depends on this exact format
varyings += "static " + InterpolationString(type.getQualifier()) + " " + TypeString(type) + " " +
Decorate(name) + ArrayString(type) + " = " + initializer(type) + ";\n";
declareVaryingToList(type, type.getQualifier(), name, mActiveVaryings);
}
for (ReferencedSymbols::const_iterator attribute = mReferencedAttributes.begin(); attribute != mReferencedAttributes.end(); attribute++)
{
const TType &type = attribute->second->getType();
const TString &name = attribute->second->getSymbol();
attributes += "static " + TypeString(type) + " " + Decorate(name) + ArrayString(type) + " = " + initializer(type) + ";\n";
sh::Attribute attributeVar = MakeAttributeFromType(type, name);
mActiveAttributes.push_back(attributeVar);
}
out << mStructureHLSL->structsHeader();
out << mUniformHLSL->uniformsHeader(mOutputType, mReferencedUniforms);
out << mUniformHLSL->interfaceBlocksHeader(mReferencedInterfaceBlocks);
if (mUsesDiscardRewriting)
{
out << "#define ANGLE_USES_DISCARD_REWRITING" << "\n";
}
if (mUsesNestedBreak)
{
out << "#define ANGLE_USES_NESTED_BREAK" << "\n";
}
if (mContext.shaderType == GL_FRAGMENT_SHADER)
{
TExtensionBehavior::const_iterator iter = mContext.extensionBehavior().find("GL_EXT_draw_buffers");
const bool usingMRTExtension = (iter != mContext.extensionBehavior().end() && (iter->second == EBhEnable || iter->second == EBhRequire));
out << "// Varyings\n";
out << varyings;
out << "\n";
if (mContext.getShaderVersion() >= 300)
{
for (ReferencedSymbols::const_iterator outputVariableIt = mReferencedOutputVariables.begin(); outputVariableIt != mReferencedOutputVariables.end(); outputVariableIt++)
{
const TString &variableName = outputVariableIt->first;
const TType &variableType = outputVariableIt->second->getType();
out << "static " + TypeString(variableType) + " out_" + variableName + ArrayString(variableType) +
" = " + initializer(variableType) + ";\n";
sh::Attribute outputVar = MakeAttributeFromType(variableType, variableName);
mActiveOutputVariables.push_back(outputVar);
}
}
else
{
const unsigned int numColorValues = usingMRTExtension ? mNumRenderTargets : 1;
out << "static float4 gl_Color[" << numColorValues << "] =\n"
"{\n";
for (unsigned int i = 0; i < numColorValues; i++)
{
out << " float4(0, 0, 0, 0)";
if (i + 1 != numColorValues)
{
out << ",";
}
out << "\n";
}
out << "};\n";
}
if (mUsesFragDepth)
{
out << "static float gl_Depth = 0.0;\n";
}
if (mUsesFragCoord)
{
out << "static float4 gl_FragCoord = float4(0, 0, 0, 0);\n";
}
if (mUsesPointCoord)
{
out << "static float2 gl_PointCoord = float2(0.5, 0.5);\n";
}
if (mUsesFrontFacing)
{
out << "static bool gl_FrontFacing = false;\n";
}
out << "\n";
if (mUsesDepthRange)
{
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n";
}
if (mOutputType == SH_HLSL11_OUTPUT)
{
out << "cbuffer DriverConstants : register(b1)\n"
"{\n";
if (mUsesDepthRange)
{
out << " float3 dx_DepthRange : packoffset(c0);\n";
}
if (mUsesFragCoord)
{
out << " float4 dx_ViewCoords : packoffset(c1);\n";
}
if (mUsesFragCoord || mUsesFrontFacing)
{
out << " float3 dx_DepthFront : packoffset(c2);\n";
}
out << "};\n";
}
else
{
if (mUsesDepthRange)
{
out << "uniform float3 dx_DepthRange : register(c0);";
}
if (mUsesFragCoord)
{
out << "uniform float4 dx_ViewCoords : register(c1);\n";
}
if (mUsesFragCoord || mUsesFrontFacing)
{
out << "uniform float3 dx_DepthFront : register(c2);\n";
}
}
out << "\n";
if (mUsesDepthRange)
{
out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
"\n";
}
if (!flaggedStructs.empty())
{
out << "// Std140 Structures accessed by value\n";
out << "\n";
out << flaggedStructs;
out << "\n";
}
if (usingMRTExtension && mNumRenderTargets > 1)
{
out << "#define GL_USES_MRT\n";
}
if (mUsesFragColor)
{
out << "#define GL_USES_FRAG_COLOR\n";
}
if (mUsesFragData)
{
out << "#define GL_USES_FRAG_DATA\n";
}
}
else // Vertex shader
{
out << "// Attributes\n";
out << attributes;
out << "\n"
"static float4 gl_Position = float4(0, 0, 0, 0);\n";
if (mUsesPointSize)
{
out << "static float gl_PointSize = float(1);\n";
}
out << "\n"
"// Varyings\n";
out << varyings;
out << "\n";
if (mUsesDepthRange)
{
out << "struct gl_DepthRangeParameters\n"
"{\n"
" float near;\n"
" float far;\n"
" float diff;\n"
"};\n"
"\n";
}
if (mOutputType == SH_HLSL11_OUTPUT)
{
if (mUsesDepthRange)
{
out << "cbuffer DriverConstants : register(b1)\n"
"{\n"
" float3 dx_DepthRange : packoffset(c0);\n"
"};\n"
"\n";
}
}
else
{
if (mUsesDepthRange)
{
out << "uniform float3 dx_DepthRange : register(c0);\n";
}
out << "uniform float4 dx_ViewAdjust : register(c1);\n"
"\n";
}
if (mUsesDepthRange)
{
out << "static gl_DepthRangeParameters gl_DepthRange = {dx_DepthRange.x, dx_DepthRange.y, dx_DepthRange.z};\n"
"\n";
}
if (!flaggedStructs.empty())
{
out << "// Std140 Structures accessed by value\n";
out << "\n";
out << flaggedStructs;
out << "\n";
}
}
for (TextureFunctionSet::const_iterator textureFunction = mUsesTexture.begin(); textureFunction != mUsesTexture.end(); textureFunction++)
{
// Return type
if (textureFunction->method == TextureFunction::SIZE)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "int2 "; break;
case EbtSampler3D: out << "int3 "; break;
case EbtSamplerCube: out << "int2 "; break;
case EbtSampler2DArray: out << "int3 "; break;
case EbtISampler2D: out << "int2 "; break;
case EbtISampler3D: out << "int3 "; break;
case EbtISamplerCube: out << "int2 "; break;
case EbtISampler2DArray: out << "int3 "; break;
case EbtUSampler2D: out << "int2 "; break;
case EbtUSampler3D: out << "int3 "; break;
case EbtUSamplerCube: out << "int2 "; break;
case EbtUSampler2DArray: out << "int3 "; break;
case EbtSampler2DShadow: out << "int2 "; break;
case EbtSamplerCubeShadow: out << "int2 "; break;
case EbtSampler2DArrayShadow: out << "int3 "; break;
default: UNREACHABLE();
}
}
else // Sampling function
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "float4 "; break;
case EbtSampler3D: out << "float4 "; break;
case EbtSamplerCube: out << "float4 "; break;
case EbtSampler2DArray: out << "float4 "; break;
case EbtISampler2D: out << "int4 "; break;
case EbtISampler3D: out << "int4 "; break;
case EbtISamplerCube: out << "int4 "; break;
case EbtISampler2DArray: out << "int4 "; break;
case EbtUSampler2D: out << "uint4 "; break;
case EbtUSampler3D: out << "uint4 "; break;
case EbtUSamplerCube: out << "uint4 "; break;
case EbtUSampler2DArray: out << "uint4 "; break;
case EbtSampler2DShadow: out << "float "; break;
case EbtSamplerCubeShadow: out << "float "; break;
case EbtSampler2DArrayShadow: out << "float "; break;
default: UNREACHABLE();
}
}
// Function name
out << textureFunction->name();
// Argument list
int hlslCoords = 4;
if (mOutputType == SH_HLSL9_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "sampler2D s"; hlslCoords = 2; break;
case EbtSamplerCube: out << "samplerCUBE s"; hlslCoords = 3; break;
default: UNREACHABLE();
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: break;
case TextureFunction::BIAS: hlslCoords = 4; break;
case TextureFunction::LOD: hlslCoords = 4; break;
case TextureFunction::LOD0: hlslCoords = 4; break;
case TextureFunction::LOD0BIAS: hlslCoords = 4; break;
default: UNREACHABLE();
}
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "Texture2D x, SamplerState s"; hlslCoords = 2; break;
case EbtSampler3D: out << "Texture3D x, SamplerState s"; hlslCoords = 3; break;
case EbtSamplerCube: out << "TextureCube x, SamplerState s"; hlslCoords = 3; break;
case EbtSampler2DArray: out << "Texture2DArray x, SamplerState s"; hlslCoords = 3; break;
case EbtISampler2D: out << "Texture2D<int4> x, SamplerState s"; hlslCoords = 2; break;
case EbtISampler3D: out << "Texture3D<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtISamplerCube: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtISampler2DArray: out << "Texture2DArray<int4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSampler2D: out << "Texture2D<uint4> x, SamplerState s"; hlslCoords = 2; break;
case EbtUSampler3D: out << "Texture3D<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSamplerCube: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtUSampler2DArray: out << "Texture2DArray<uint4> x, SamplerState s"; hlslCoords = 3; break;
case EbtSampler2DShadow: out << "Texture2D x, SamplerComparisonState s"; hlslCoords = 2; break;
case EbtSamplerCubeShadow: out << "TextureCube x, SamplerComparisonState s"; hlslCoords = 3; break;
case EbtSampler2DArrayShadow: out << "Texture2DArray x, SamplerComparisonState s"; hlslCoords = 3; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
if (textureFunction->method == TextureFunction::FETCH) // Integer coordinates
{
switch(textureFunction->coords)
{
case 2: out << ", int2 t"; break;
case 3: out << ", int3 t"; break;
default: UNREACHABLE();
}
}
else // Floating-point coordinates (except textureSize)
{
switch(textureFunction->coords)
{
case 1: out << ", int lod"; break; // textureSize()
case 2: out << ", float2 t"; break;
case 3: out << ", float3 t"; break;
case 4: out << ", float4 t"; break;
default: UNREACHABLE();
}
}
if (textureFunction->method == TextureFunction::GRAD)
{
switch(textureFunction->sampler)
{
case EbtSampler2D:
case EbtISampler2D:
case EbtUSampler2D:
case EbtSampler2DArray:
case EbtISampler2DArray:
case EbtUSampler2DArray:
case EbtSampler2DShadow:
case EbtSampler2DArrayShadow:
out << ", float2 ddx, float2 ddy";
break;
case EbtSampler3D:
case EbtISampler3D:
case EbtUSampler3D:
case EbtSamplerCube:
case EbtISamplerCube:
case EbtUSamplerCube:
case EbtSamplerCubeShadow:
out << ", float3 ddx, float3 ddy";
break;
default: UNREACHABLE();
}
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: break;
case TextureFunction::BIAS: break; // Comes after the offset parameter
case TextureFunction::LOD: out << ", float lod"; break;
case TextureFunction::LOD0: break;
case TextureFunction::LOD0BIAS: break; // Comes after the offset parameter
case TextureFunction::SIZE: break;
case TextureFunction::FETCH: out << ", int mip"; break;
case TextureFunction::GRAD: break;
default: UNREACHABLE();
}
if (textureFunction->offset)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << ", int2 offset"; break;
case EbtSampler3D: out << ", int3 offset"; break;
case EbtSampler2DArray: out << ", int2 offset"; break;
case EbtISampler2D: out << ", int2 offset"; break;
case EbtISampler3D: out << ", int3 offset"; break;
case EbtISampler2DArray: out << ", int2 offset"; break;
case EbtUSampler2D: out << ", int2 offset"; break;
case EbtUSampler3D: out << ", int3 offset"; break;
case EbtUSampler2DArray: out << ", int2 offset"; break;
case EbtSampler2DShadow: out << ", int2 offset"; break;
case EbtSampler2DArrayShadow: out << ", int2 offset"; break;
default: UNREACHABLE();
}
}
if (textureFunction->method == TextureFunction::BIAS ||
textureFunction->method == TextureFunction::LOD0BIAS)
{
out << ", float bias";
}
out << ")\n"
"{\n";
if (textureFunction->method == TextureFunction::SIZE)
{
if (IsSampler2D(textureFunction->sampler) || IsSamplerCube(textureFunction->sampler))
{
if (IsSamplerArray(textureFunction->sampler))
{
out << " uint width; uint height; uint layers; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, layers, numberOfLevels);\n";
}
else
{
out << " uint width; uint height; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, numberOfLevels);\n";
}
}
else if (IsSampler3D(textureFunction->sampler))
{
out << " uint width; uint height; uint depth; uint numberOfLevels;\n"
" x.GetDimensions(lod, width, height, depth, numberOfLevels);\n";
}
else UNREACHABLE();
switch(textureFunction->sampler)
{
case EbtSampler2D: out << " return int2(width, height);"; break;
case EbtSampler3D: out << " return int3(width, height, depth);"; break;
case EbtSamplerCube: out << " return int2(width, height);"; break;
case EbtSampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtISampler2D: out << " return int2(width, height);"; break;
case EbtISampler3D: out << " return int3(width, height, depth);"; break;
case EbtISamplerCube: out << " return int2(width, height);"; break;
case EbtISampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtUSampler2D: out << " return int2(width, height);"; break;
case EbtUSampler3D: out << " return int3(width, height, depth);"; break;
case EbtUSamplerCube: out << " return int2(width, height);"; break;
case EbtUSampler2DArray: out << " return int3(width, height, layers);"; break;
case EbtSampler2DShadow: out << " return int2(width, height);"; break;
case EbtSamplerCubeShadow: out << " return int2(width, height);"; break;
case EbtSampler2DArrayShadow: out << " return int3(width, height, layers);"; break;
default: UNREACHABLE();
}
}
else
{
if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
{
out << " float width; float height; float layers; float levels;\n";
out << " uint mip = 0;\n";
out << " x.GetDimensions(mip, width, height, layers, levels);\n";
out << " bool xMajor = abs(t.x) > abs(t.y) && abs(t.x) > abs(t.z);\n";
out << " bool yMajor = abs(t.y) > abs(t.z) && abs(t.y) > abs(t.x);\n";
out << " bool zMajor = abs(t.z) > abs(t.x) && abs(t.z) > abs(t.y);\n";
out << " bool negative = (xMajor && t.x < 0.0f) || (yMajor && t.y < 0.0f) || (zMajor && t.z < 0.0f);\n";
// FACE_POSITIVE_X = 000b
// FACE_NEGATIVE_X = 001b
// FACE_POSITIVE_Y = 010b
// FACE_NEGATIVE_Y = 011b
// FACE_POSITIVE_Z = 100b
// FACE_NEGATIVE_Z = 101b
out << " int face = (int)negative + (int)yMajor * 2 + (int)zMajor * 4;\n";
out << " float u = xMajor ? -t.z : (yMajor && t.y < 0.0f ? -t.x : t.x);\n";
out << " float v = yMajor ? t.z : (negative ? t.y : -t.y);\n";
out << " float m = xMajor ? t.x : (yMajor ? t.y : t.z);\n";
out << " t.x = (u * 0.5f / m) + 0.5f;\n";
out << " t.y = (v * 0.5f / m) + 0.5f;\n";
}
else if (IsIntegerSampler(textureFunction->sampler) &&
textureFunction->method != TextureFunction::FETCH)
{
if (IsSampler2D(textureFunction->sampler))
{
if (IsSamplerArray(textureFunction->sampler))
{
out << " float width; float height; float layers; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, layers, levels);\n"
" float2 tSized = float2(t.x * width, t.y * height);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, layers, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, layers, levels);\n";
}
else
{
out << " float width; float height; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, levels);\n"
" float2 tSized = float2(t.x * width, t.y * height);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::LOD)
{
out << " x.GetDimensions(0, width, height, levels);\n";
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, levels);\n";
}
}
else if (IsSampler3D(textureFunction->sampler))
{
out << " float width; float height; float depth; float levels;\n";
if (textureFunction->method == TextureFunction::LOD0)
{
out << " uint mip = 0;\n";
}
else if (textureFunction->method == TextureFunction::LOD0BIAS)
{
out << " uint mip = bias;\n";
}
else
{
if (textureFunction->method == TextureFunction::IMPLICIT ||
textureFunction->method == TextureFunction::BIAS)
{
out << " x.GetDimensions(0, width, height, depth, levels);\n"
" float3 tSized = float3(t.x * width, t.y * height, t.z * depth);\n"
" float dx = length(ddx(tSized));\n"
" float dy = length(ddy(tSized));\n"
" float lod = log2(max(dx, dy));\n";
if (textureFunction->method == TextureFunction::BIAS)
{
out << " lod += bias;\n";
}
}
else if (textureFunction->method == TextureFunction::GRAD)
{
out << " x.GetDimensions(0, width, height, depth, levels);\n"
" float lod = log2(max(length(ddx), length(ddy)));\n";
}
out << " uint mip = uint(min(max(round(lod), 0), levels - 1));\n";
}
out << " x.GetDimensions(mip, width, height, depth, levels);\n";
}
else UNREACHABLE();
}
out << " return ";
// HLSL intrinsic
if (mOutputType == SH_HLSL9_OUTPUT)
{
switch(textureFunction->sampler)
{
case EbtSampler2D: out << "tex2D"; break;
case EbtSamplerCube: out << "texCUBE"; break;
default: UNREACHABLE();
}
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << "(s, "; break;
case TextureFunction::BIAS: out << "bias(s, "; break;
case TextureFunction::LOD: out << "lod(s, "; break;
case TextureFunction::LOD0: out << "lod(s, "; break;
case TextureFunction::LOD0BIAS: out << "lod(s, "; break;
default: UNREACHABLE();
}
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
if (textureFunction->method == TextureFunction::GRAD)
{
if (IsIntegerSampler(textureFunction->sampler))
{
out << "x.Load(";
}
else if (IsShadowSampler(textureFunction->sampler))
{
out << "x.SampleCmpLevelZero(s, ";
}
else
{
out << "x.SampleGrad(s, ";
}
}
else if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
out << "x.Load(";
}
else if (IsShadowSampler(textureFunction->sampler))
{
out << "x.SampleCmp(s, ";
}
else
{
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << "x.Sample(s, "; break;
case TextureFunction::BIAS: out << "x.SampleBias(s, "; break;
case TextureFunction::LOD: out << "x.SampleLevel(s, "; break;
case TextureFunction::LOD0: out << "x.SampleLevel(s, "; break;
case TextureFunction::LOD0BIAS: out << "x.SampleLevel(s, "; break;
default: UNREACHABLE();
}
}
}
else UNREACHABLE();
// Integer sampling requires integer addresses
TString addressx = "";
TString addressy = "";
TString addressz = "";
TString close = "";
if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
switch(hlslCoords)
{
case 2: out << "int3("; break;
case 3: out << "int4("; break;
default: UNREACHABLE();
}
// Convert from normalized floating-point to integer
if (textureFunction->method != TextureFunction::FETCH)
{
addressx = "int(floor(width * frac((";
addressy = "int(floor(height * frac((";
if (IsSamplerArray(textureFunction->sampler))
{
addressz = "int(max(0, min(layers - 1, floor(0.5 + ";
}
else if (IsSamplerCube(textureFunction->sampler))
{
addressz = "((((";
}
else
{
addressz = "int(floor(depth * frac((";
}
close = "))))";
}
}
else
{
switch(hlslCoords)
{
case 2: out << "float2("; break;
case 3: out << "float3("; break;
case 4: out << "float4("; break;
default: UNREACHABLE();
}
}
TString proj = ""; // Only used for projected textures
if (textureFunction->proj)
{
switch(textureFunction->coords)
{
case 3: proj = " / t.z"; break;
case 4: proj = " / t.w"; break;
default: UNREACHABLE();
}
}
out << addressx + ("t.x" + proj) + close + ", " + addressy + ("t.y" + proj) + close;
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (hlslCoords >= 3)
{
if (textureFunction->coords < 3)
{
out << ", 0";
}
else
{
out << ", t.z" + proj;
}
}
if (hlslCoords == 4)
{
switch(textureFunction->method)
{
case TextureFunction::BIAS: out << ", bias"; break;
case TextureFunction::LOD: out << ", lod"; break;
case TextureFunction::LOD0: out << ", 0"; break;
case TextureFunction::LOD0BIAS: out << ", bias"; break;
default: UNREACHABLE();
}
}
out << "));\n";
}
else if (mOutputType == SH_HLSL11_OUTPUT)
{
if (hlslCoords >= 3)
{
if (IsIntegerSampler(textureFunction->sampler) && IsSamplerCube(textureFunction->sampler))
{
out << ", face";
}
else
{
out << ", " + addressz + ("t.z" + proj) + close;
}
}
if (textureFunction->method == TextureFunction::GRAD)
{
if (IsIntegerSampler(textureFunction->sampler))
{
out << ", mip)";
}
else if (IsShadowSampler(textureFunction->sampler))
{
// Compare value
switch(textureFunction->coords)
{
case 3: out << "), t.z"; break;
case 4: out << "), t.w"; break;
default: UNREACHABLE();
}
}
else
{
out << "), ddx, ddy";
}
}
else if (IsIntegerSampler(textureFunction->sampler) ||
textureFunction->method == TextureFunction::FETCH)
{
out << ", mip)";
}
else if (IsShadowSampler(textureFunction->sampler))
{
// Compare value
switch(textureFunction->coords)
{
case 3: out << "), t.z"; break;
case 4: out << "), t.w"; break;
default: UNREACHABLE();
}
}
else
{
switch(textureFunction->method)
{
case TextureFunction::IMPLICIT: out << ")"; break;
case TextureFunction::BIAS: out << "), bias"; break;
case TextureFunction::LOD: out << "), lod"; break;
case TextureFunction::LOD0: out << "), 0"; break;
case TextureFunction::LOD0BIAS: out << "), bias"; break;
default: UNREACHABLE();
}
}
if (textureFunction->offset)
{
out << ", offset";
}
out << ");";
}
else UNREACHABLE();
}
out << "\n"
"}\n"
"\n";
}
if (mUsesFragCoord)
{
out << "#define GL_USES_FRAG_COORD\n";
}
if (mUsesPointCoord)
{
out << "#define GL_USES_POINT_COORD\n";
}
if (mUsesFrontFacing)
{
out << "#define GL_USES_FRONT_FACING\n";
}
if (mUsesPointSize)
{
out << "#define GL_USES_POINT_SIZE\n";
}
if (mUsesFragDepth)
{
out << "#define GL_USES_FRAG_DEPTH\n";
}
if (mUsesDepthRange)
{
out << "#define GL_USES_DEPTH_RANGE\n";
}
if (mUsesXor)
{
out << "bool xor(bool p, bool q)\n"
"{\n"
" return (p || q) && !(p && q);\n"
"}\n"
"\n";
}
if (mUsesMod1)
{
out << "float mod(float x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod2v)
{
out << "float2 mod(float2 x, float2 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod2f)
{
out << "float2 mod(float2 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod3v)
{
out << "float3 mod(float3 x, float3 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod3f)
{
out << "float3 mod(float3 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod4v)
{
out << "float4 mod(float4 x, float4 y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesMod4f)
{
out << "float4 mod(float4 x, float y)\n"
"{\n"
" return x - y * floor(x / y);\n"
"}\n"
"\n";
}
if (mUsesFaceforward1)
{
out << "float faceforward(float N, float I, float Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward2)
{
out << "float2 faceforward(float2 N, float2 I, float2 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward3)
{
out << "float3 faceforward(float3 N, float3 I, float3 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesFaceforward4)
{
out << "float4 faceforward(float4 N, float4 I, float4 Nref)\n"
"{\n"
" if(dot(Nref, I) >= 0)\n"
" {\n"
" return -N;\n"
" }\n"
" else\n"
" {\n"
" return N;\n"
" }\n"
"}\n"
"\n";
}
if (mUsesAtan2_1)
{
out << "float atanyx(float y, float x)\n"
"{\n"
" if(x == 0 && y == 0) x = 1;\n" // Avoid producing a NaN
" return atan2(y, x);\n"
"}\n";
}
if (mUsesAtan2_2)
{
out << "float2 atanyx(float2 y, float2 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" return float2(atan2(y[0], x[0]), atan2(y[1], x[1]));\n"
"}\n";
}
if (mUsesAtan2_3)
{
out << "float3 atanyx(float3 y, float3 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
" return float3(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]));\n"
"}\n";
}
if (mUsesAtan2_4)
{
out << "float4 atanyx(float4 y, float4 x)\n"
"{\n"
" if(x[0] == 0 && y[0] == 0) x[0] = 1;\n"
" if(x[1] == 0 && y[1] == 0) x[1] = 1;\n"
" if(x[2] == 0 && y[2] == 0) x[2] = 1;\n"
" if(x[3] == 0 && y[3] == 0) x[3] = 1;\n"
" return float4(atan2(y[0], x[0]), atan2(y[1], x[1]), atan2(y[2], x[2]), atan2(y[3], x[3]));\n"
"}\n";
}
}
void OutputHLSL::visitSymbol(TIntermSymbol *node)
{
TInfoSinkBase &out = mBody;
// Handle accessing std140 structs by value
if (mFlaggedStructMappedNames.count(node) > 0)
{
out << mFlaggedStructMappedNames[node];
return;
}
TString name = node->getSymbol();
if (name == "gl_DepthRange")
{
mUsesDepthRange = true;
out << name;
}
else
{
TQualifier qualifier = node->getQualifier();
if (qualifier == EvqUniform)
{
const TType& nodeType = node->getType();
const TInterfaceBlock* interfaceBlock = nodeType.getInterfaceBlock();
if (interfaceBlock)
{
mReferencedInterfaceBlocks[interfaceBlock->name()] = node;
}
else
{
mReferencedUniforms[name] = node;
}
out << DecorateUniform(name, nodeType);
}
else if (qualifier == EvqAttribute || qualifier == EvqVertexIn)
{
mReferencedAttributes[name] = node;
out << Decorate(name);
}
else if (IsVarying(qualifier))
{
mReferencedVaryings[name] = node;
out << Decorate(name);
}
else if (qualifier == EvqFragmentOut)
{
mReferencedOutputVariables[name] = node;
out << "out_" << name;
}
else if (qualifier == EvqFragColor)
{
out << "gl_Color[0]";
mUsesFragColor = true;
}
else if (qualifier == EvqFragData)
{
out << "gl_Color";
mUsesFragData = true;
}
else if (qualifier == EvqFragCoord)
{
mUsesFragCoord = true;
out << name;
}
else if (qualifier == EvqPointCoord)
{
mUsesPointCoord = true;
out << name;
}
else if (qualifier == EvqFrontFacing)
{
mUsesFrontFacing = true;
out << name;
}
else if (qualifier == EvqPointSize)
{
mUsesPointSize = true;
out << name;
}
else if (name == "gl_FragDepthEXT")
{
mUsesFragDepth = true;
out << "gl_Depth";
}
else if (qualifier == EvqInternal)
{
out << name;
}
else
{
out << Decorate(name);
}
}
}
void OutputHLSL::visitRaw(TIntermRaw *node)
{
mBody << node->getRawText();
}
bool OutputHLSL::visitBinary(Visit visit, TIntermBinary *node)
{
TInfoSinkBase &out = mBody;
// Handle accessing std140 structs by value
if (mFlaggedStructMappedNames.count(node) > 0)
{
out << mFlaggedStructMappedNames[node];
return false;
}
switch (node->getOp())
{
case EOpAssign: outputTriplet(visit, "(", " = ", ")"); break;
case EOpInitialize:
if (visit == PreVisit)
{
// GLSL allows to write things like "float x = x;" where a new variable x is defined
// and the value of an existing variable x is assigned. HLSL uses C semantics (the
// new variable is created before the assignment is evaluated), so we need to convert
// this to "float t = x, x = t;".
TIntermSymbol *symbolNode = node->getLeft()->getAsSymbolNode();
TIntermTyped *expression = node->getRight();
sh::SearchSymbol searchSymbol(symbolNode->getSymbol());
expression->traverse(&searchSymbol);
bool sameSymbol = searchSymbol.foundMatch();
if (sameSymbol)
{
// Type already printed
out << "t" + str(mUniqueIndex) + " = ";
expression->traverse(this);
out << ", ";
symbolNode->traverse(this);
out << " = t" + str(mUniqueIndex);
mUniqueIndex++;
return false;
}
}
else if (visit == InVisit)
{
out << " = ";
}
break;
case EOpAddAssign: outputTriplet(visit, "(", " += ", ")"); break;
case EOpSubAssign: outputTriplet(visit, "(", " -= ", ")"); break;
case EOpMulAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpMatrixTimesScalarAssign: outputTriplet(visit, "(", " *= ", ")"); break;
case EOpVectorTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", transpose(";
}
else
{
out << ")))";
}
break;
case EOpMatrixTimesMatrixAssign:
if (visit == PreVisit)
{
out << "(";
}
else if (visit == InVisit)
{
out << " = mul(";
node->getLeft()->traverse(this);
out << ", ";
}
else
{
out << "))";
}
break;
case EOpDivAssign: outputTriplet(visit, "(", " /= ", ")"); break;
case EOpIndexDirect:
{
const TType& leftType = node->getLeft()->getType();
if (leftType.isInterfaceBlock())
{
if (visit == PreVisit)
{
TInterfaceBlock* interfaceBlock = leftType.getInterfaceBlock();
const int arrayIndex = node->getRight()->getAsConstantUnion()->getIConst(0);
mReferencedInterfaceBlocks[interfaceBlock->instanceName()] = node->getLeft()->getAsSymbolNode();
out << mUniformHLSL->interfaceBlockInstanceString(*interfaceBlock, arrayIndex);
return false;
}
}
else
{
outputTriplet(visit, "", "[", "]");
}
}
break;
case EOpIndexIndirect:
// We do not currently support indirect references to interface blocks
ASSERT(node->getLeft()->getBasicType() != EbtInterfaceBlock);
outputTriplet(visit, "", "[", "]");
break;
case EOpIndexDirectStruct:
if (visit == InVisit)
{
const TStructure* structure = node->getLeft()->getType().getStruct();
const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
const TField* field = structure->fields()[index->getIConst(0)];
out << "." + DecorateField(field->name(), *structure);
return false;
}
break;
case EOpIndexDirectInterfaceBlock:
if (visit == InVisit)
{
const TInterfaceBlock* interfaceBlock = node->getLeft()->getType().getInterfaceBlock();
const TIntermConstantUnion* index = node->getRight()->getAsConstantUnion();
const TField* field = interfaceBlock->fields()[index->getIConst(0)];
out << "." + Decorate(field->name());
return false;
}
break;
case EOpVectorSwizzle:
if (visit == InVisit)
{
out << ".";
TIntermAggregate *swizzle = node->getRight()->getAsAggregate();
if (swizzle)
{
TIntermSequence *sequence = swizzle->getSequence();
for (TIntermSequence::iterator sit = sequence->begin(); sit != sequence->end(); sit++)
{
TIntermConstantUnion *element = (*sit)->getAsConstantUnion();
if (element)
{
int i = element->getIConst(0);
switch (i)
{
case 0: out << "x"; break;
case 1: out << "y"; break;
case 2: out << "z"; break;
case 3: out << "w"; break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
}
}
else UNREACHABLE();
return false; // Fully processed
}
break;
case EOpAdd: outputTriplet(visit, "(", " + ", ")"); break;
case EOpSub: outputTriplet(visit, "(", " - ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
case EOpDiv: outputTriplet(visit, "(", " / ", ")"); break;
case EOpEqual:
case EOpNotEqual:
if (node->getLeft()->isScalar())
{
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "(", " == ", ")");
}
else
{
outputTriplet(visit, "(", " != ", ")");
}
}
else if (node->getLeft()->getBasicType() == EbtStruct)
{
if (node->getOp() == EOpEqual)
{
out << "(";
}
else
{
out << "!(";
}
const TStructure &structure = *node->getLeft()->getType().getStruct();
const TFieldList &fields = structure.fields();
for (size_t i = 0; i < fields.size(); i++)
{
const TField *field = fields[i];
node->getLeft()->traverse(this);
out << "." + DecorateField(field->name(), structure) + " == ";
node->getRight()->traverse(this);
out << "." + DecorateField(field->name(), structure);
if (i < fields.size() - 1)
{
out << " && ";
}
}
out << ")";
return false;
}
else
{
ASSERT(node->getLeft()->isMatrix() || node->getLeft()->isVector());
if (node->getOp() == EOpEqual)
{
outputTriplet(visit, "all(", " == ", ")");
}
else
{
outputTriplet(visit, "!all(", " == ", ")");
}
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpMatrixTimesScalar: outputTriplet(visit, "(", " * ", ")"); break;
case EOpVectorTimesMatrix: outputTriplet(visit, "mul(", ", transpose(", "))"); break;
case EOpMatrixTimesVector: outputTriplet(visit, "mul(transpose(", "), ", ")"); break;
case EOpMatrixTimesMatrix: outputTriplet(visit, "transpose(mul(transpose(", "), transpose(", ")))"); break;
case EOpLogicalOr:
if (node->getRight()->hasSideEffects())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
return false;
}
else
{
outputTriplet(visit, "(", " || ", ")");
return true;
}
case EOpLogicalXor:
mUsesXor = true;
outputTriplet(visit, "xor(", ", ", ")");
break;
case EOpLogicalAnd:
if (node->getRight()->hasSideEffects())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
return false;
}
else
{
outputTriplet(visit, "(", " && ", ")");
return true;
}
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitUnary(Visit visit, TIntermUnary *node)
{
switch (node->getOp())
{
case EOpNegative: outputTriplet(visit, "(-", "", ")"); break;
case EOpVectorLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpLogicalNot: outputTriplet(visit, "(!", "", ")"); break;
case EOpPostIncrement: outputTriplet(visit, "(", "", "++)"); break;
case EOpPostDecrement: outputTriplet(visit, "(", "", "--)"); break;
case EOpPreIncrement: outputTriplet(visit, "(++", "", ")"); break;
case EOpPreDecrement: outputTriplet(visit, "(--", "", ")"); break;
case EOpRadians: outputTriplet(visit, "radians(", "", ")"); break;
case EOpDegrees: outputTriplet(visit, "degrees(", "", ")"); break;
case EOpSin: outputTriplet(visit, "sin(", "", ")"); break;
case EOpCos: outputTriplet(visit, "cos(", "", ")"); break;
case EOpTan: outputTriplet(visit, "tan(", "", ")"); break;
case EOpAsin: outputTriplet(visit, "asin(", "", ")"); break;
case EOpAcos: outputTriplet(visit, "acos(", "", ")"); break;
case EOpAtan: outputTriplet(visit, "atan(", "", ")"); break;
case EOpExp: outputTriplet(visit, "exp(", "", ")"); break;
case EOpLog: outputTriplet(visit, "log(", "", ")"); break;
case EOpExp2: outputTriplet(visit, "exp2(", "", ")"); break;
case EOpLog2: outputTriplet(visit, "log2(", "", ")"); break;
case EOpSqrt: outputTriplet(visit, "sqrt(", "", ")"); break;
case EOpInverseSqrt: outputTriplet(visit, "rsqrt(", "", ")"); break;
case EOpAbs: outputTriplet(visit, "abs(", "", ")"); break;
case EOpSign: outputTriplet(visit, "sign(", "", ")"); break;
case EOpFloor: outputTriplet(visit, "floor(", "", ")"); break;
case EOpCeil: outputTriplet(visit, "ceil(", "", ")"); break;
case EOpFract: outputTriplet(visit, "frac(", "", ")"); break;
case EOpLength: outputTriplet(visit, "length(", "", ")"); break;
case EOpNormalize: outputTriplet(visit, "normalize(", "", ")"); break;
case EOpDFdx:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "ddx(", "", ")");
}
break;
case EOpDFdy:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "ddy(", "", ")");
}
break;
case EOpFwidth:
if(mInsideDiscontinuousLoop || mOutputLod0Function)
{
outputTriplet(visit, "(", "", ", 0.0)");
}
else
{
outputTriplet(visit, "fwidth(", "", ")");
}
break;
case EOpAny: outputTriplet(visit, "any(", "", ")"); break;
case EOpAll: outputTriplet(visit, "all(", "", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitAggregate(Visit visit, TIntermAggregate *node)
{
TInfoSinkBase &out = mBody;
switch (node->getOp())
{
case EOpSequence:
{
if (mInsideFunction)
{
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
for (TIntermSequence::iterator sit = node->getSequence()->begin(); sit != node->getSequence()->end(); sit++)
{
outputLineDirective((*sit)->getLine().first_line);
traverseStatements(*sit);
out << ";\n";
}
if (mInsideFunction)
{
outputLineDirective(node->getLine().last_line);
out << "}\n";
}
return false;
}
case EOpDeclaration:
if (visit == PreVisit)
{
TIntermSequence *sequence = node->getSequence();
TIntermTyped *variable = (*sequence)[0]->getAsTyped();
if (variable && (variable->getQualifier() == EvqTemporary || variable->getQualifier() == EvqGlobal))
{
TStructure *structure = variable->getType().getStruct();
if (structure)
{
mStructureHLSL->addConstructor(variable->getType(), StructNameString(*structure), NULL);
}
if (!variable->getAsSymbolNode() || variable->getAsSymbolNode()->getSymbol() != "") // Variable declaration
{
if (!mInsideFunction)
{
out << "static ";
}
out << TypeString(variable->getType()) + " ";
for (TIntermSequence::iterator sit = sequence->begin(); sit != sequence->end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
symbol->traverse(this);
out << ArrayString(symbol->getType());
out << " = " + initializer(symbol->getType());
}
else
{
(*sit)->traverse(this);
}
if (*sit != sequence->back())
{
out << ", ";
}
}
}
else if (variable->getAsSymbolNode() && variable->getAsSymbolNode()->getSymbol() == "") // Type (struct) declaration
{
// Already added to constructor map
}
else UNREACHABLE();
}
else if (variable && IsVaryingOut(variable->getQualifier()))
{
for (TIntermSequence::iterator sit = sequence->begin(); sit != sequence->end(); sit++)
{
TIntermSymbol *symbol = (*sit)->getAsSymbolNode();
if (symbol)
{
// Vertex (output) varyings which are declared but not written to should still be declared to allow successful linking
mReferencedVaryings[symbol->getSymbol()] = symbol;
}
else
{
(*sit)->traverse(this);
}
}
}
return false;
}
else if (visit == InVisit)
{
out << ", ";
}
break;
case EOpInvariantDeclaration:
// Do not do any translation
return false;
case EOpPrototype:
if (visit == PreVisit)
{
out << TypeString(node->getType()) << " " << Decorate(node->getName()) << (mOutputLod0Function ? "Lod0(" : "(");
TIntermSequence *arguments = node->getSequence();
for (unsigned int i = 0; i < arguments->size(); i++)
{
TIntermSymbol *symbol = (*arguments)[i]->getAsSymbolNode();
if (symbol)
{
out << argumentString(symbol);
if (i < arguments->size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ");\n";
// Also prototype the Lod0 variant if needed
if (mContainsLoopDiscontinuity && !mOutputLod0Function)
{
mOutputLod0Function = true;
node->traverse(this);
mOutputLod0Function = false;
}
return false;
}
break;
case EOpComma: outputTriplet(visit, "(", ", ", ")"); break;
case EOpFunction:
{
TString name = TFunction::unmangleName(node->getName());
out << TypeString(node->getType()) << " ";
if (name == "main")
{
out << "gl_main(";
}
else
{
out << Decorate(name) << (mOutputLod0Function ? "Lod0(" : "(");
}
TIntermSequence *sequence = node->getSequence();
TIntermSequence *arguments = (*sequence)[0]->getAsAggregate()->getSequence();
for (unsigned int i = 0; i < arguments->size(); i++)
{
TIntermSymbol *symbol = (*arguments)[i]->getAsSymbolNode();
if (symbol)
{
TStructure *structure = symbol->getType().getStruct();
if (structure)
{
mStructureHLSL->addConstructor(symbol->getType(), StructNameString(*structure), NULL);
}
out << argumentString(symbol);
if (i < arguments->size() - 1)
{
out << ", ";
}
}
else UNREACHABLE();
}
out << ")\n"
"{\n";
if (sequence->size() > 1)
{
mInsideFunction = true;
(*sequence)[1]->traverse(this);
mInsideFunction = false;
}
out << "}\n";
if (mContainsLoopDiscontinuity && !mOutputLod0Function)
{
if (name != "main")
{
mOutputLod0Function = true;
node->traverse(this);
mOutputLod0Function = false;
}
}
return false;
}
break;
case EOpFunctionCall:
{
TString name = TFunction::unmangleName(node->getName());
bool lod0 = mInsideDiscontinuousLoop || mOutputLod0Function;
TIntermSequence *arguments = node->getSequence();
if (node->isUserDefined())
{
out << Decorate(name) << (lod0 ? "Lod0(" : "(");
}
else
{
TBasicType samplerType = (*arguments)[0]->getAsTyped()->getType().getBasicType();
TextureFunction textureFunction;
textureFunction.sampler = samplerType;
textureFunction.coords = (*arguments)[1]->getAsTyped()->getNominalSize();
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.proj = false;
textureFunction.offset = false;
if (name == "texture2D" || name == "textureCube" || name == "texture")
{
textureFunction.method = TextureFunction::IMPLICIT;
}
else if (name == "texture2DProj" || name == "textureProj")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.proj = true;
}
else if (name == "texture2DLod" || name == "textureCubeLod" || name == "textureLod" ||
name == "texture2DLodEXT" || name == "textureCubeLodEXT")
{
textureFunction.method = TextureFunction::LOD;
}
else if (name == "texture2DProjLod" || name == "textureProjLod" || name == "texture2DProjLodEXT")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.proj = true;
}
else if (name == "textureSize")
{
textureFunction.method = TextureFunction::SIZE;
}
else if (name == "textureOffset")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.offset = true;
}
else if (name == "textureProjOffset")
{
textureFunction.method = TextureFunction::IMPLICIT;
textureFunction.offset = true;
textureFunction.proj = true;
}
else if (name == "textureLodOffset")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.offset = true;
}
else if (name == "textureProjLodOffset")
{
textureFunction.method = TextureFunction::LOD;
textureFunction.proj = true;
textureFunction.offset = true;
}
else if (name == "texelFetch")
{
textureFunction.method = TextureFunction::FETCH;
}
else if (name == "texelFetchOffset")
{
textureFunction.method = TextureFunction::FETCH;
textureFunction.offset = true;
}
else if (name == "textureGrad" || name == "texture2DGradEXT")
{
textureFunction.method = TextureFunction::GRAD;
}
else if (name == "textureGradOffset")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.offset = true;
}
else if (name == "textureProjGrad" || name == "texture2DProjGradEXT" || name == "textureCubeGradEXT")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.proj = true;
}
else if (name == "textureProjGradOffset")
{
textureFunction.method = TextureFunction::GRAD;
textureFunction.proj = true;
textureFunction.offset = true;
}
else UNREACHABLE();
if (textureFunction.method == TextureFunction::IMPLICIT) // Could require lod 0 or have a bias argument
{
unsigned int mandatoryArgumentCount = 2; // All functions have sampler and coordinate arguments
if (textureFunction.offset)
{
mandatoryArgumentCount++;
}
bool bias = (arguments->size() > mandatoryArgumentCount); // Bias argument is optional
if (lod0 || mContext.shaderType == GL_VERTEX_SHADER)
{
if (bias)
{
textureFunction.method = TextureFunction::LOD0BIAS;
}
else
{
textureFunction.method = TextureFunction::LOD0;
}
}
else if (bias)
{
textureFunction.method = TextureFunction::BIAS;
}
}
mUsesTexture.insert(textureFunction);
out << textureFunction.name();
}
for (TIntermSequence::iterator arg = arguments->begin(); arg != arguments->end(); arg++)
{
if (mOutputType == SH_HLSL11_OUTPUT && IsSampler((*arg)->getAsTyped()->getBasicType()))
{
out << "texture_";
(*arg)->traverse(this);
out << ", sampler_";
}
(*arg)->traverse(this);
if (arg < arguments->end() - 1)
{
out << ", ";
}
}
out << ")";
return false;
}
break;
case EOpParameters: outputTriplet(visit, "(", ", ", ")\n{\n"); break;
case EOpConstructFloat: outputConstructor(visit, node->getType(), "vec1", node->getSequence()); break;
case EOpConstructVec2: outputConstructor(visit, node->getType(), "vec2", node->getSequence()); break;
case EOpConstructVec3: outputConstructor(visit, node->getType(), "vec3", node->getSequence()); break;
case EOpConstructVec4: outputConstructor(visit, node->getType(), "vec4", node->getSequence()); break;
case EOpConstructBool: outputConstructor(visit, node->getType(), "bvec1", node->getSequence()); break;
case EOpConstructBVec2: outputConstructor(visit, node->getType(), "bvec2", node->getSequence()); break;
case EOpConstructBVec3: outputConstructor(visit, node->getType(), "bvec3", node->getSequence()); break;
case EOpConstructBVec4: outputConstructor(visit, node->getType(), "bvec4", node->getSequence()); break;
case EOpConstructInt: outputConstructor(visit, node->getType(), "ivec1", node->getSequence()); break;
case EOpConstructIVec2: outputConstructor(visit, node->getType(), "ivec2", node->getSequence()); break;
case EOpConstructIVec3: outputConstructor(visit, node->getType(), "ivec3", node->getSequence()); break;
case EOpConstructIVec4: outputConstructor(visit, node->getType(), "ivec4", node->getSequence()); break;
case EOpConstructUInt: outputConstructor(visit, node->getType(), "uvec1", node->getSequence()); break;
case EOpConstructUVec2: outputConstructor(visit, node->getType(), "uvec2", node->getSequence()); break;
case EOpConstructUVec3: outputConstructor(visit, node->getType(), "uvec3", node->getSequence()); break;
case EOpConstructUVec4: outputConstructor(visit, node->getType(), "uvec4", node->getSequence()); break;
case EOpConstructMat2: outputConstructor(visit, node->getType(), "mat2", node->getSequence()); break;
case EOpConstructMat3: outputConstructor(visit, node->getType(), "mat3", node->getSequence()); break;
case EOpConstructMat4: outputConstructor(visit, node->getType(), "mat4", node->getSequence()); break;
case EOpConstructStruct:
{
const TString &structName = StructNameString(*node->getType().getStruct());
mStructureHLSL->addConstructor(node->getType(), structName, node->getSequence());
outputTriplet(visit, structName + "_ctor(", ", ", ")");
}
break;
case EOpLessThan: outputTriplet(visit, "(", " < ", ")"); break;
case EOpGreaterThan: outputTriplet(visit, "(", " > ", ")"); break;
case EOpLessThanEqual: outputTriplet(visit, "(", " <= ", ")"); break;
case EOpGreaterThanEqual: outputTriplet(visit, "(", " >= ", ")"); break;
case EOpVectorEqual: outputTriplet(visit, "(", " == ", ")"); break;
case EOpVectorNotEqual: outputTriplet(visit, "(", " != ", ")"); break;
case EOpMod:
{
// We need to look at the number of components in both arguments
const int modValue = (*node->getSequence())[0]->getAsTyped()->getNominalSize() * 10 +
(*node->getSequence())[1]->getAsTyped()->getNominalSize();
switch (modValue)
{
case 11: mUsesMod1 = true; break;
case 22: mUsesMod2v = true; break;
case 21: mUsesMod2f = true; break;
case 33: mUsesMod3v = true; break;
case 31: mUsesMod3f = true; break;
case 44: mUsesMod4v = true; break;
case 41: mUsesMod4f = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "mod(", ", ", ")");
}
break;
case EOpPow: outputTriplet(visit, "pow(", ", ", ")"); break;
case EOpAtan:
ASSERT(node->getSequence()->size() == 2); // atan(x) is a unary operator
switch ((*node->getSequence())[0]->getAsTyped()->getNominalSize())
{
case 1: mUsesAtan2_1 = true; break;
case 2: mUsesAtan2_2 = true; break;
case 3: mUsesAtan2_3 = true; break;
case 4: mUsesAtan2_4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "atanyx(", ", ", ")");
break;
case EOpMin: outputTriplet(visit, "min(", ", ", ")"); break;
case EOpMax: outputTriplet(visit, "max(", ", ", ")"); break;
case EOpClamp: outputTriplet(visit, "clamp(", ", ", ")"); break;
case EOpMix: outputTriplet(visit, "lerp(", ", ", ")"); break;
case EOpStep: outputTriplet(visit, "step(", ", ", ")"); break;
case EOpSmoothStep: outputTriplet(visit, "smoothstep(", ", ", ")"); break;
case EOpDistance: outputTriplet(visit, "distance(", ", ", ")"); break;
case EOpDot: outputTriplet(visit, "dot(", ", ", ")"); break;
case EOpCross: outputTriplet(visit, "cross(", ", ", ")"); break;
case EOpFaceForward:
{
switch ((*node->getSequence())[0]->getAsTyped()->getNominalSize()) // Number of components in the first argument
{
case 1: mUsesFaceforward1 = true; break;
case 2: mUsesFaceforward2 = true; break;
case 3: mUsesFaceforward3 = true; break;
case 4: mUsesFaceforward4 = true; break;
default: UNREACHABLE();
}
outputTriplet(visit, "faceforward(", ", ", ")");
}
break;
case EOpReflect: outputTriplet(visit, "reflect(", ", ", ")"); break;
case EOpRefract: outputTriplet(visit, "refract(", ", ", ")"); break;
case EOpMul: outputTriplet(visit, "(", " * ", ")"); break;
default: UNREACHABLE();
}
return true;
}
bool OutputHLSL::visitSelection(Visit visit, TIntermSelection *node)
{
TInfoSinkBase &out = mBody;
if (node->usesTernaryOperator())
{
out << "s" << mUnfoldShortCircuit->getNextTemporaryIndex();
}
else // if/else statement
{
mUnfoldShortCircuit->traverse(node->getCondition());
out << "if (";
node->getCondition()->traverse(this);
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
bool discard = false;
if (node->getTrueBlock())
{
traverseStatements(node->getTrueBlock());
// Detect true discard
discard = (discard || FindDiscard::search(node->getTrueBlock()));
}
outputLineDirective(node->getLine().first_line);
out << ";\n}\n";
if (node->getFalseBlock())
{
out << "else\n";
outputLineDirective(node->getFalseBlock()->getLine().first_line);
out << "{\n";
outputLineDirective(node->getFalseBlock()->getLine().first_line);
traverseStatements(node->getFalseBlock());
outputLineDirective(node->getFalseBlock()->getLine().first_line);
out << ";\n}\n";
// Detect false discard
discard = (discard || FindDiscard::search(node->getFalseBlock()));
}
// ANGLE issue 486: Detect problematic conditional discard
if (discard && FindSideEffectRewriting::search(node))
{
mUsesDiscardRewriting = true;
}
}
return false;
}
void OutputHLSL::visitConstantUnion(TIntermConstantUnion *node)
{
writeConstantUnion(node->getType(), node->getUnionArrayPointer());
}
bool OutputHLSL::visitLoop(Visit visit, TIntermLoop *node)
{
mNestedLoopDepth++;
bool wasDiscontinuous = mInsideDiscontinuousLoop;
if (mContainsLoopDiscontinuity && !mInsideDiscontinuousLoop)
{
mInsideDiscontinuousLoop = containsLoopDiscontinuity(node);
}
if (mOutputType == SH_HLSL9_OUTPUT)
{
if (handleExcessiveLoop(node))
{
mInsideDiscontinuousLoop = wasDiscontinuous;
mNestedLoopDepth--;
return false;
}
}
TInfoSinkBase &out = mBody;
if (node->getType() == ELoopDoWhile)
{
out << "{do\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
else
{
out << "{for(";
if (node->getInit())
{
node->getInit()->traverse(this);
}
out << "; ";
if (node->getCondition())
{
node->getCondition()->traverse(this);
}
out << "; ";
if (node->getExpression())
{
node->getExpression()->traverse(this);
}
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
}
if (node->getBody())
{
traverseStatements(node->getBody());
}
outputLineDirective(node->getLine().first_line);
out << ";}\n";
if (node->getType() == ELoopDoWhile)
{
outputLineDirective(node->getCondition()->getLine().first_line);
out << "while(\n";
node->getCondition()->traverse(this);
out << ");";
}
out << "}\n";
mInsideDiscontinuousLoop = wasDiscontinuous;
mNestedLoopDepth--;
return false;
}
bool OutputHLSL::visitBranch(Visit visit, TIntermBranch *node)
{
TInfoSinkBase &out = mBody;
switch (node->getFlowOp())
{
case EOpKill:
outputTriplet(visit, "discard;\n", "", "");
break;
case EOpBreak:
if (visit == PreVisit)
{
if (mNestedLoopDepth > 1)
{
mUsesNestedBreak = true;
}
if (mExcessiveLoopIndex)
{
out << "{Break";
mExcessiveLoopIndex->traverse(this);
out << " = true; break;}\n";
}
else
{
out << "break;\n";
}
}
break;
case EOpContinue: outputTriplet(visit, "continue;\n", "", ""); break;
case EOpReturn:
if (visit == PreVisit)
{
if (node->getExpression())
{
out << "return ";
}
else
{
out << "return;\n";
}
}
else if (visit == PostVisit)
{
if (node->getExpression())
{
out << ";\n";
}
}
break;
default: UNREACHABLE();
}
return true;
}
void OutputHLSL::traverseStatements(TIntermNode *node)
{
if (isSingleStatement(node))
{
mUnfoldShortCircuit->traverse(node);
}
node->traverse(this);
}
bool OutputHLSL::isSingleStatement(TIntermNode *node)
{
TIntermAggregate *aggregate = node->getAsAggregate();
if (aggregate)
{
if (aggregate->getOp() == EOpSequence)
{
return false;
}
else
{
for (TIntermSequence::iterator sit = aggregate->getSequence()->begin(); sit != aggregate->getSequence()->end(); sit++)
{
if (!isSingleStatement(*sit))
{
return false;
}
}
return true;
}
}
return true;
}
// Handle loops with more than 254 iterations (unsupported by D3D9) by splitting them
// (The D3D documentation says 255 iterations, but the compiler complains at anything more than 254).
bool OutputHLSL::handleExcessiveLoop(TIntermLoop *node)
{
const int MAX_LOOP_ITERATIONS = 254;
TInfoSinkBase &out = mBody;
// Parse loops of the form:
// for(int index = initial; index [comparator] limit; index += increment)
TIntermSymbol *index = NULL;
TOperator comparator = EOpNull;
int initial = 0;
int limit = 0;
int increment = 0;
// Parse index name and intial value
if (node->getInit())
{
TIntermAggregate *init = node->getInit()->getAsAggregate();
if (init)
{
TIntermSequence *sequence = init->getSequence();
TIntermTyped *variable = (*sequence)[0]->getAsTyped();
if (variable && variable->getQualifier() == EvqTemporary)
{
TIntermBinary *assign = variable->getAsBinaryNode();
if (assign->getOp() == EOpInitialize)
{
TIntermSymbol *symbol = assign->getLeft()->getAsSymbolNode();
TIntermConstantUnion *constant = assign->getRight()->getAsConstantUnion();
if (symbol && constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
index = symbol;
initial = constant->getIConst(0);
}
}
}
}
}
}
// Parse comparator and limit value
if (index != NULL && node->getCondition())
{
TIntermBinary *test = node->getCondition()->getAsBinaryNode();
if (test && test->getLeft()->getAsSymbolNode()->getId() == index->getId())
{
TIntermConstantUnion *constant = test->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
comparator = test->getOp();
limit = constant->getIConst(0);
}
}
}
}
// Parse increment
if (index != NULL && comparator != EOpNull && node->getExpression())
{
TIntermBinary *binaryTerminal = node->getExpression()->getAsBinaryNode();
TIntermUnary *unaryTerminal = node->getExpression()->getAsUnaryNode();
if (binaryTerminal)
{
TOperator op = binaryTerminal->getOp();
TIntermConstantUnion *constant = binaryTerminal->getRight()->getAsConstantUnion();
if (constant)
{
if (constant->getBasicType() == EbtInt && constant->isScalar())
{
int value = constant->getIConst(0);
switch (op)
{
case EOpAddAssign: increment = value; break;
case EOpSubAssign: increment = -value; break;
default: UNIMPLEMENTED();
}
}
}
}
else if (unaryTerminal)
{
TOperator op = unaryTerminal->getOp();
switch (op)
{
case EOpPostIncrement: increment = 1; break;
case EOpPostDecrement: increment = -1; break;
case EOpPreIncrement: increment = 1; break;
case EOpPreDecrement: increment = -1; break;
default: UNIMPLEMENTED();
}
}
}
if (index != NULL && comparator != EOpNull && increment != 0)
{
if (comparator == EOpLessThanEqual)
{
comparator = EOpLessThan;
limit += 1;
}
if (comparator == EOpLessThan)
{
int iterations = (limit - initial) / increment;
if (iterations <= MAX_LOOP_ITERATIONS)
{
return false; // Not an excessive loop
}
TIntermSymbol *restoreIndex = mExcessiveLoopIndex;
mExcessiveLoopIndex = index;
out << "{int ";
index->traverse(this);
out << ";\n"
"bool Break";
index->traverse(this);
out << " = false;\n";
bool firstLoopFragment = true;
while (iterations > 0)
{
int clampedLimit = initial + increment * std::min(MAX_LOOP_ITERATIONS, iterations);
if (!firstLoopFragment)
{
out << "if (!Break";
index->traverse(this);
out << ") {\n";
}
if (iterations <= MAX_LOOP_ITERATIONS) // Last loop fragment
{
mExcessiveLoopIndex = NULL; // Stops setting the Break flag
}
// for(int index = initial; index < clampedLimit; index += increment)
out << "for(";
index->traverse(this);
out << " = ";
out << initial;
out << "; ";
index->traverse(this);
out << " < ";
out << clampedLimit;
out << "; ";
index->traverse(this);
out << " += ";
out << increment;
out << ")\n";
outputLineDirective(node->getLine().first_line);
out << "{\n";
if (node->getBody())
{
node->getBody()->traverse(this);
}
outputLineDirective(node->getLine().first_line);
out << ";}\n";
if (!firstLoopFragment)
{
out << "}\n";
}
firstLoopFragment = false;
initial += MAX_LOOP_ITERATIONS * increment;
iterations -= MAX_LOOP_ITERATIONS;
}
out << "}";
mExcessiveLoopIndex = restoreIndex;
return true;
}
else UNIMPLEMENTED();
}
return false; // Not handled as an excessive loop
}
void OutputHLSL::outputTriplet(Visit visit, const TString &preString, const TString &inString, const TString &postString)
{
TInfoSinkBase &out = mBody;
if (visit == PreVisit)
{
out << preString;
}
else if (visit == InVisit)
{
out << inString;
}
else if (visit == PostVisit)
{
out << postString;
}
}
void OutputHLSL::outputLineDirective(int line)
{
if ((mContext.compileOptions & SH_LINE_DIRECTIVES) && (line > 0))
{
mBody << "\n";
mBody << "#line " << line;
if (mContext.sourcePath)
{
mBody << " \"" << mContext.sourcePath << "\"";
}
mBody << "\n";
}
}
TString OutputHLSL::argumentString(const TIntermSymbol *symbol)
{
TQualifier qualifier = symbol->getQualifier();
const TType &type = symbol->getType();
TString name = symbol->getSymbol();
if (name.empty()) // HLSL demands named arguments, also for prototypes
{
name = "x" + str(mUniqueIndex++);
}
else
{
name = Decorate(name);
}
if (mOutputType == SH_HLSL11_OUTPUT && IsSampler(type.getBasicType()))
{
return QualifierString(qualifier) + " " + TextureString(type) + " texture_" + name + ArrayString(type) + ", " +
QualifierString(qualifier) + " " + SamplerString(type) + " sampler_" + name + ArrayString(type);
}
return QualifierString(qualifier) + " " + TypeString(type) + " " + name + ArrayString(type);
}
TString OutputHLSL::initializer(const TType &type)
{
TString string;
size_t size = type.getObjectSize();
for (size_t component = 0; component < size; component++)
{
string += "0";
if (component + 1 < size)
{
string += ", ";
}
}
return "{" + string + "}";
}
void OutputHLSL::outputConstructor(Visit visit, const TType &type, const TString &name, const TIntermSequence *parameters)
{
TInfoSinkBase &out = mBody;
if (visit == PreVisit)
{
mStructureHLSL->addConstructor(type, name, parameters);
out << name + "(";
}
else if (visit == InVisit)
{
out << ", ";
}
else if (visit == PostVisit)
{
out << ")";
}
}
const ConstantUnion *OutputHLSL::writeConstantUnion(const TType &type, const ConstantUnion *constUnion)
{
TInfoSinkBase &out = mBody;
const TStructure* structure = type.getStruct();
if (structure)
{
out << StructNameString(*structure) + "_ctor(";
const TFieldList& fields = structure->fields();
for (size_t i = 0; i < fields.size(); i++)
{
const TType *fieldType = fields[i]->type();
constUnion = writeConstantUnion(*fieldType, constUnion);
if (i != fields.size() - 1)
{
out << ", ";
}
}
out << ")";
}
else
{
size_t size = type.getObjectSize();
bool writeType = size > 1;
if (writeType)
{
out << TypeString(type) << "(";
}
for (size_t i = 0; i < size; i++, constUnion++)
{
switch (constUnion->getType())
{
case EbtFloat: out << std::min(FLT_MAX, std::max(-FLT_MAX, constUnion->getFConst())); break;
case EbtInt: out << constUnion->getIConst(); break;
case EbtUInt: out << constUnion->getUConst(); break;
case EbtBool: out << constUnion->getBConst(); break;
default: UNREACHABLE();
}
if (i != size - 1)
{
out << ", ";
}
}
if (writeType)
{
out << ")";
}
}
return constUnion;
}
class DeclareVaryingTraverser : public GetVariableTraverser<Varying>
{
public:
DeclareVaryingTraverser(std::vector<Varying> *output,
InterpolationType interpolation)
: GetVariableTraverser(output),
mInterpolation(interpolation)
{}
private:
void visitVariable(Varying *varying)
{
varying->interpolation = mInterpolation;
}
InterpolationType mInterpolation;
};
void OutputHLSL::declareVaryingToList(const TType &type, TQualifier baseTypeQualifier,
const TString &name, std::vector<Varying> &fieldsOut)
{
DeclareVaryingTraverser traverser(&fieldsOut, GetInterpolationType(baseTypeQualifier));
traverser.traverse(type, name);
}
}