blob: eb71e71c0d49cfb247057fabaa227634f1193210 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "libGLESv2/Context.h"
#include "libGLESv2/main.h"
#include "common/utilities.h"
#include "common/platform.h"
#include "libGLESv2/formatutils.h"
#include "libGLESv2/Buffer.h"
#include "libGLESv2/Fence.h"
#include "libGLESv2/Framebuffer.h"
#include "libGLESv2/FramebufferAttachment.h"
#include "libGLESv2/Renderbuffer.h"
#include "libGLESv2/Program.h"
#include "libGLESv2/ProgramBinary.h"
#include "libGLESv2/Query.h"
#include "libGLESv2/Texture.h"
#include "libGLESv2/ResourceManager.h"
#include "libGLESv2/renderer/d3d/IndexDataManager.h"
#include "libGLESv2/renderer/Renderer.h"
#include "libGLESv2/VertexArray.h"
#include "libGLESv2/Sampler.h"
#include "libGLESv2/validationES.h"
#include "libGLESv2/TransformFeedback.h"
#include "libEGL/Surface.h"
#include <sstream>
namespace gl
{
Context::Context(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess)
: mRenderer(renderer)
{
ASSERT(robustAccess == false); // Unimplemented
initCaps(clientVersion);
mClientVersion = clientVersion;
mFenceNVHandleAllocator.setBaseHandle(0);
if (shareContext != NULL)
{
mResourceManager = shareContext->mResourceManager;
mResourceManager->addRef();
}
else
{
mResourceManager = new ResourceManager(mRenderer);
}
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero.set(new Texture2D(mRenderer->createTexture(GL_TEXTURE_2D), 0));
mTextureCubeMapZero.set(new TextureCubeMap(mRenderer->createTexture(GL_TEXTURE_CUBE_MAP), 0));
mTexture3DZero.set(new Texture3D(mRenderer->createTexture(GL_TEXTURE_3D), 0));
mTexture2DArrayZero.set(new Texture2DArray(mRenderer->createTexture(GL_TEXTURE_2D_ARRAY), 0));
bindVertexArray(0);
bindArrayBuffer(0);
bindElementArrayBuffer(0);
bindTextureCubeMap(0);
bindTexture2D(0);
bindReadFramebuffer(0);
bindDrawFramebuffer(0);
bindRenderbuffer(0);
bindGenericUniformBuffer(0);
for (int i = 0; i < IMPLEMENTATION_MAX_COMBINED_SHADER_UNIFORM_BUFFERS; i++)
{
bindIndexedUniformBuffer(0, i, 0, -1);
}
bindGenericTransformFeedbackBuffer(0);
for (int i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
bindIndexedTransformFeedbackBuffer(0, i, 0, -1);
}
bindCopyReadBuffer(0);
bindCopyWriteBuffer(0);
bindPixelPackBuffer(0);
bindPixelUnpackBuffer(0);
// [OpenGL ES 3.0.2] section 2.14.1 pg 85:
// In the initial state, a default transform feedback object is bound and treated as
// a transform feedback object with a name of zero. That object is bound any time
// BindTransformFeedback is called with id of zero
mTransformFeedbackZero.set(new TransformFeedback(mRenderer->createTransformFeedback(), 0));
bindTransformFeedback(0);
mHasBeenCurrent = false;
mContextLost = false;
mResetStatus = GL_NO_ERROR;
mResetStrategy = (notifyResets ? GL_LOSE_CONTEXT_ON_RESET_EXT : GL_NO_RESET_NOTIFICATION_EXT);
mRobustAccess = robustAccess;
mState.setContext(this);
}
Context::~Context()
{
GLuint currentProgram = mState.getCurrentProgramId();
if (currentProgram != 0)
{
Program *programObject = mResourceManager->getProgram(currentProgram);
if (programObject)
{
programObject->release();
}
currentProgram = 0;
}
mState.setCurrentProgram(0, NULL);
while (!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
while (!mFenceNVMap.empty())
{
deleteFenceNV(mFenceNVMap.begin()->first);
}
while (!mQueryMap.empty())
{
deleteQuery(mQueryMap.begin()->first);
}
while (!mVertexArrayMap.empty())
{
deleteVertexArray(mVertexArrayMap.begin()->first);
}
mTransformFeedbackZero.set(NULL);
while (!mTransformFeedbackMap.empty())
{
deleteTransformFeedback(mTransformFeedbackMap.begin()->first);
}
for (int type = 0; type < TEXTURE_TYPE_COUNT; type++)
{
mIncompleteTextures[type].set(NULL);
}
mTexture2DZero.set(NULL);
mTextureCubeMapZero.set(NULL);
mTexture3DZero.set(NULL);
mTexture2DArrayZero.set(NULL);
mResourceManager->release();
}
void Context::makeCurrent(egl::Surface *surface)
{
if (!mHasBeenCurrent)
{
initRendererString();
initExtensionStrings();
mState.setViewportParams(0, 0, surface->getWidth(), surface->getHeight());
mState.setScissorParams(0, 0, surface->getWidth(), surface->getHeight());
mHasBeenCurrent = true;
}
// Wrap the existing swapchain resources into GL objects and assign them to the '0' names
rx::SwapChain *swapchain = surface->getSwapChain();
Colorbuffer *colorbufferZero = new Colorbuffer(mRenderer, swapchain);
DepthStencilbuffer *depthStencilbufferZero = new DepthStencilbuffer(mRenderer, swapchain);
Framebuffer *framebufferZero = new DefaultFramebuffer(mRenderer, colorbufferZero, depthStencilbufferZero);
setFramebufferZero(framebufferZero);
// Store the current client version in the renderer
mRenderer->setCurrentClientVersion(mClientVersion);
}
// NOTE: this function should not assume that this context is current!
void Context::markContextLost()
{
if (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT)
mResetStatus = GL_UNKNOWN_CONTEXT_RESET_EXT;
mContextLost = true;
}
bool Context::isContextLost()
{
return mContextLost;
}
GLuint Context::createBuffer()
{
return mResourceManager->createBuffer();
}
GLuint Context::createProgram()
{
return mResourceManager->createProgram();
}
GLuint Context::createShader(GLenum type)
{
return mResourceManager->createShader(type);
}
GLuint Context::createTexture()
{
return mResourceManager->createTexture();
}
GLuint Context::createRenderbuffer()
{
return mResourceManager->createRenderbuffer();
}
GLsync Context::createFenceSync(GLenum condition)
{
GLuint handle = mResourceManager->createFenceSync();
gl::FenceSync *fenceSync = mResourceManager->getFenceSync(handle);
ASSERT(fenceSync);
fenceSync->set(condition);
return reinterpret_cast<GLsync>(handle);
}
GLuint Context::createVertexArray()
{
GLuint handle = mVertexArrayHandleAllocator.allocate();
// Although the spec states VAO state is not initialized until the object is bound,
// we create it immediately. The resulting behaviour is transparent to the application,
// since it's not currently possible to access the state until the object is bound.
VertexArray *vertexArray = new VertexArray(mRenderer->createVertexArray(), handle, MAX_VERTEX_ATTRIBS);
mVertexArrayMap[handle] = vertexArray;
return handle;
}
GLuint Context::createSampler()
{
return mResourceManager->createSampler();
}
GLuint Context::createTransformFeedback()
{
GLuint handle = mTransformFeedbackAllocator.allocate();
TransformFeedback *transformFeedback = new TransformFeedback(mRenderer->createTransformFeedback(), handle);
transformFeedback->addRef();
mTransformFeedbackMap[handle] = transformFeedback;
return handle;
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
GLuint handle = mFramebufferHandleAllocator.allocate();
mFramebufferMap[handle] = NULL;
return handle;
}
GLuint Context::createFenceNV()
{
GLuint handle = mFenceNVHandleAllocator.allocate();
mFenceNVMap[handle] = new FenceNV(mRenderer);
return handle;
}
// Returns an unused query name
GLuint Context::createQuery()
{
GLuint handle = mQueryHandleAllocator.allocate();
mQueryMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
if (mResourceManager->getBuffer(buffer))
{
detachBuffer(buffer);
}
mResourceManager->deleteBuffer(buffer);
}
void Context::deleteShader(GLuint shader)
{
mResourceManager->deleteShader(shader);
}
void Context::deleteProgram(GLuint program)
{
mResourceManager->deleteProgram(program);
}
void Context::deleteTexture(GLuint texture)
{
if (mResourceManager->getTexture(texture))
{
detachTexture(texture);
}
mResourceManager->deleteTexture(texture);
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
if (mResourceManager->getRenderbuffer(renderbuffer))
{
detachRenderbuffer(renderbuffer);
}
mResourceManager->deleteRenderbuffer(renderbuffer);
}
void Context::deleteFenceSync(GLsync fenceSync)
{
// The spec specifies the underlying Fence object is not deleted until all current
// wait commands finish. However, since the name becomes invalid, we cannot query the fence,
// and since our API is currently designed for being called from a single thread, we can delete
// the fence immediately.
mResourceManager->deleteFenceSync(reinterpret_cast<GLuint>(fenceSync));
}
void Context::deleteVertexArray(GLuint vertexArray)
{
auto vertexArrayObject = mVertexArrayMap.find(vertexArray);
if (vertexArrayObject != mVertexArrayMap.end())
{
detachVertexArray(vertexArray);
mVertexArrayHandleAllocator.release(vertexArrayObject->first);
delete vertexArrayObject->second;
mVertexArrayMap.erase(vertexArrayObject);
}
}
void Context::deleteSampler(GLuint sampler)
{
if (mResourceManager->getSampler(sampler))
{
detachSampler(sampler);
}
mResourceManager->deleteSampler(sampler);
}
void Context::deleteTransformFeedback(GLuint transformFeedback)
{
TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(transformFeedback);
if (iter != mTransformFeedbackMap.end())
{
detachTransformFeedback(transformFeedback);
mTransformFeedbackAllocator.release(transformFeedback);
iter->second->release();
mTransformFeedbackMap.erase(iter);
}
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
mFramebufferHandleAllocator.release(framebufferObject->first);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteFenceNV(GLuint fence)
{
FenceNVMap::iterator fenceObject = mFenceNVMap.find(fence);
if (fenceObject != mFenceNVMap.end())
{
mFenceNVHandleAllocator.release(fenceObject->first);
delete fenceObject->second;
mFenceNVMap.erase(fenceObject);
}
}
void Context::deleteQuery(GLuint query)
{
QueryMap::iterator queryObject = mQueryMap.find(query);
if (queryObject != mQueryMap.end())
{
mQueryHandleAllocator.release(queryObject->first);
if (queryObject->second)
{
queryObject->second->release();
}
mQueryMap.erase(queryObject);
}
}
Buffer *Context::getBuffer(GLuint handle)
{
return mResourceManager->getBuffer(handle);
}
Shader *Context::getShader(GLuint handle) const
{
return mResourceManager->getShader(handle);
}
Program *Context::getProgram(GLuint handle) const
{
return mResourceManager->getProgram(handle);
}
Texture *Context::getTexture(GLuint handle) const
{
return mResourceManager->getTexture(handle);
}
Renderbuffer *Context::getRenderbuffer(GLuint handle)
{
return mResourceManager->getRenderbuffer(handle);
}
FenceSync *Context::getFenceSync(GLsync handle) const
{
return mResourceManager->getFenceSync(reinterpret_cast<GLuint>(handle));
}
VertexArray *Context::getVertexArray(GLuint handle) const
{
auto vertexArray = mVertexArrayMap.find(handle);
if (vertexArray == mVertexArrayMap.end())
{
return NULL;
}
else
{
return vertexArray->second;
}
}
Sampler *Context::getSampler(GLuint handle) const
{
return mResourceManager->getSampler(handle);
}
TransformFeedback *Context::getTransformFeedback(GLuint handle) const
{
if (handle == 0)
{
return mTransformFeedbackZero.get();
}
else
{
TransformFeedbackMap::const_iterator iter = mTransformFeedbackMap.find(handle);
return (iter != mTransformFeedbackMap.end()) ? iter->second : NULL;
}
}
bool Context::isSampler(GLuint samplerName) const
{
return mResourceManager->isSampler(samplerName);
}
void Context::bindArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setArrayBufferBinding(getBuffer(buffer));
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.getVertexArray()->setElementArrayBuffer(getBuffer(buffer));
}
void Context::bindTexture2D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D);
mState.setSamplerTexture(TEXTURE_2D, getTexture(texture));
}
void Context::bindTextureCubeMap(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_CUBE);
mState.setSamplerTexture(TEXTURE_CUBE, getTexture(texture));
}
void Context::bindTexture3D(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_3D);
mState.setSamplerTexture(TEXTURE_3D, getTexture(texture));
}
void Context::bindTexture2DArray(GLuint texture)
{
mResourceManager->checkTextureAllocation(texture, TEXTURE_2D_ARRAY);
mState.setSamplerTexture(TEXTURE_2D_ARRAY, getTexture(texture));
}
void Context::bindReadFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mRenderer, framebuffer);
}
mState.setReadFramebufferBinding(getFramebuffer(framebuffer));
}
void Context::bindDrawFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer(mRenderer, framebuffer);
}
mState.setDrawFramebufferBinding(getFramebuffer(framebuffer));
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
mResourceManager->checkRenderbufferAllocation(renderbuffer);
mState.setRenderbufferBinding(getRenderbuffer(renderbuffer));
}
void Context::bindVertexArray(GLuint vertexArray)
{
if (!getVertexArray(vertexArray))
{
VertexArray *vertexArrayObject = new VertexArray(mRenderer->createVertexArray(), vertexArray, MAX_VERTEX_ATTRIBS);
mVertexArrayMap[vertexArray] = vertexArrayObject;
}
mState.setVertexArrayBinding(getVertexArray(vertexArray));
}
void Context::bindSampler(GLuint textureUnit, GLuint sampler)
{
ASSERT(textureUnit < IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS); // TODO: Update for backend-determined array size
mResourceManager->checkSamplerAllocation(sampler);
mState.setSamplerBinding(textureUnit, getSampler(sampler));
}
void Context::bindGenericUniformBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setGenericUniformBufferBinding(getBuffer(buffer));
}
void Context::bindIndexedUniformBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setIndexedUniformBufferBinding(index, getBuffer(buffer), offset, size);
}
void Context::bindGenericTransformFeedbackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setGenericTransformFeedbackBufferBinding(getBuffer(buffer));
}
void Context::bindIndexedTransformFeedbackBuffer(GLuint buffer, GLuint index, GLintptr offset, GLsizeiptr size)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setIndexedTransformFeedbackBufferBinding(index, getBuffer(buffer), offset, size);
}
void Context::bindCopyReadBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setCopyReadBufferBinding(getBuffer(buffer));
}
void Context::bindCopyWriteBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setCopyWriteBufferBinding(getBuffer(buffer));
}
void Context::bindPixelPackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setPixelPackBufferBinding(getBuffer(buffer));
}
void Context::bindPixelUnpackBuffer(GLuint buffer)
{
mResourceManager->checkBufferAllocation(buffer);
mState.setPixelUnpackBufferBinding(getBuffer(buffer));
}
void Context::useProgram(GLuint program)
{
GLuint priorProgramId = mState.getCurrentProgramId();
Program *priorProgram = mResourceManager->getProgram(priorProgramId);
if (priorProgramId != program)
{
mState.setCurrentProgram(program, mResourceManager->getProgram(program));
if (priorProgram)
{
priorProgram->release();
}
}
}
void Context::linkProgram(GLuint program)
{
Program *programObject = mResourceManager->getProgram(program);
bool linked = programObject->link(getCaps());
// if the current program was relinked successfully we
// need to install the new executables
if (linked && program == mState.getCurrentProgramId())
{
mState.setCurrentProgramBinary(programObject->getProgramBinary());
}
}
void Context::setProgramBinary(GLuint program, GLenum binaryFormat, const void *binary, GLint length)
{
Program *programObject = mResourceManager->getProgram(program);
bool loaded = programObject->setProgramBinary(binaryFormat, binary, length);
// if the current program was reloaded successfully we
// need to install the new executables
if (loaded && program == mState.getCurrentProgramId())
{
mState.setCurrentProgramBinary(programObject->getProgramBinary());
}
}
void Context::bindTransformFeedback(GLuint transformFeedback)
{
mState.setTransformFeedbackBinding(getTransformFeedback(transformFeedback));
}
Error Context::beginQuery(GLenum target, GLuint query)
{
Query *queryObject = getQuery(query, true, target);
ASSERT(queryObject);
// begin query
Error error = queryObject->begin();
if (error.isError())
{
return error;
}
// set query as active for specified target only if begin succeeded
mState.setActiveQuery(target, queryObject);
return Error(GL_NO_ERROR);
}
Error Context::endQuery(GLenum target)
{
Query *queryObject = mState.getActiveQuery(target);
ASSERT(queryObject);
gl::Error error = queryObject->end();
// Always unbind the query, even if there was an error. This may delete the query object.
mState.setActiveQuery(target, NULL);
return error;
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
// First, check to see if the old default framebuffer
// was set for draw or read framebuffer, and change
// the bindings to point to the new one before deleting it.
if (mState.getDrawFramebuffer()->id() == 0)
{
mState.setDrawFramebufferBinding(buffer);
}
if (mState.getReadFramebuffer()->id() == 0)
{
mState.setReadFramebufferBinding(buffer);
}
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
}
void Context::setRenderbufferStorage(GLsizei width, GLsizei height, GLenum internalformat, GLsizei samples)
{
ASSERT(getTextureCaps().get(internalformat).renderable);
RenderbufferStorage *renderbuffer = NULL;
const InternalFormat &formatInfo = GetInternalFormatInfo(internalformat);
if (formatInfo.depthBits > 0 && formatInfo.stencilBits > 0)
{
renderbuffer = new gl::DepthStencilbuffer(mRenderer, width, height, samples);
}
else if (formatInfo.depthBits > 0)
{
renderbuffer = new gl::Depthbuffer(mRenderer, width, height, samples);
}
else if (formatInfo.stencilBits > 0)
{
renderbuffer = new gl::Stencilbuffer(mRenderer, width, height, samples);
}
else
{
renderbuffer = new gl::Colorbuffer(mRenderer, width, height, internalformat, samples);
}
mState.getCurrentRenderbuffer()->setStorage(renderbuffer);
}
Framebuffer *Context::getFramebuffer(unsigned int handle) const
{
FramebufferMap::const_iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
FenceNV *Context::getFenceNV(unsigned int handle)
{
FenceNVMap::iterator fence = mFenceNVMap.find(handle);
if (fence == mFenceNVMap.end())
{
return NULL;
}
else
{
return fence->second;
}
}
Query *Context::getQuery(unsigned int handle, bool create, GLenum type)
{
QueryMap::iterator query = mQueryMap.find(handle);
if (query == mQueryMap.end())
{
return NULL;
}
else
{
if (!query->second && create)
{
query->second = new Query(mRenderer->createQuery(type), handle);
query->second->addRef();
}
return query->second;
}
}
Texture *Context::getTargetTexture(GLenum target) const
{
if (!ValidTextureTarget(this, target))
{
return NULL;
}
switch (target)
{
case GL_TEXTURE_2D: return getTexture2D();
case GL_TEXTURE_CUBE_MAP: return getTextureCubeMap();
case GL_TEXTURE_3D: return getTexture3D();
case GL_TEXTURE_2D_ARRAY: return getTexture2DArray();
default: return NULL;
}
}
Texture2D *Context::getTexture2D() const
{
return static_cast<Texture2D*>(getSamplerTexture(mState.getActiveSampler(), TEXTURE_2D));
}
TextureCubeMap *Context::getTextureCubeMap() const
{
return static_cast<TextureCubeMap*>(getSamplerTexture(mState.getActiveSampler(), TEXTURE_CUBE));
}
Texture3D *Context::getTexture3D() const
{
return static_cast<Texture3D*>(getSamplerTexture(mState.getActiveSampler(), TEXTURE_3D));
}
Texture2DArray *Context::getTexture2DArray() const
{
return static_cast<Texture2DArray*>(getSamplerTexture(mState.getActiveSampler(), TEXTURE_2D_ARRAY));
}
Texture *Context::getSamplerTexture(unsigned int sampler, TextureType type) const
{
if (mState.getSamplerTextureId(sampler, type) == 0)
{
switch (type)
{
default: UNREACHABLE();
case TEXTURE_2D: return mTexture2DZero.get();
case TEXTURE_CUBE: return mTextureCubeMapZero.get();
case TEXTURE_3D: return mTexture3DZero.get();
case TEXTURE_2D_ARRAY: return mTexture2DArrayZero.get();
}
}
else
{
return mState.getSamplerTexture(sampler, type);
}
}
void Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_CONTEXT_ROBUST_ACCESS_EXT: *params = mRobustAccess ? GL_TRUE : GL_FALSE; break;
default:
mState.getBooleanv(pname, params);
break;
}
}
void Context::getFloatv(GLenum pname, GLfloat *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = mCaps.minAliasedLineWidth;
params[1] = mCaps.maxAliasedLineWidth;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = mCaps.minAliasedPointSize;
params[1] = mCaps.maxAliasedPointSize;
break;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
ASSERT(mExtensions.textureFilterAnisotropic);
*params = mExtensions.maxTextureAnisotropy;
break;
default:
mState.getFloatv(pname, params);
break;
}
}
void Context::getIntegerv(GLenum pname, GLint *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = mCaps.maxVertexAttributes; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = mCaps.maxVertexUniformVectors; break;
case GL_MAX_VERTEX_UNIFORM_COMPONENTS: *params = mCaps.maxVertexUniformComponents; break;
case GL_MAX_VARYING_VECTORS: *params = mCaps.maxVaryingVectors; break;
case GL_MAX_VARYING_COMPONENTS: *params = mCaps.maxVertexOutputComponents; break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = mCaps.maxCombinedTextureImageUnits; break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxVertexTextureImageUnits; break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = mCaps.maxTextureImageUnits; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = mCaps.maxFragmentUniformVectors; break;
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS: *params = mCaps.maxFragmentInputComponents; break;
case GL_MAX_RENDERBUFFER_SIZE: *params = mCaps.maxRenderbufferSize; break;
case GL_MAX_COLOR_ATTACHMENTS_EXT: *params = mCaps.maxColorAttachments; break;
case GL_MAX_DRAW_BUFFERS_EXT: *params = mCaps.maxDrawBuffers; break;
//case GL_FRAMEBUFFER_BINDING: // now equivalent to GL_DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = mCaps.max2DTextureSize; break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = mCaps.maxCubeMapTextureSize; break;
case GL_MAX_3D_TEXTURE_SIZE: *params = mCaps.max3DTextureSize; break;
case GL_MAX_ARRAY_TEXTURE_LAYERS: *params = mCaps.maxArrayTextureLayers; break;
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT: *params = mCaps.uniformBufferOffsetAlignment; break;
case GL_MAX_UNIFORM_BUFFER_BINDINGS: *params = mCaps.maxUniformBufferBindings; break;
case GL_MAX_VERTEX_UNIFORM_BLOCKS: *params = mCaps.maxVertexUniformBlocks; break;
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS: *params = mCaps.maxFragmentUniformBlocks; break;
case GL_MAX_COMBINED_UNIFORM_BLOCKS: *params = mCaps.maxCombinedTextureImageUnits; break;
case GL_MAJOR_VERSION: *params = mClientVersion; break;
case GL_MINOR_VERSION: *params = 0; break;
case GL_MAX_ELEMENTS_INDICES: *params = mCaps.maxElementsIndices; break;
case GL_MAX_ELEMENTS_VERTICES: *params = mCaps.maxElementsVertices; break;
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS: *params = mCaps.maxTransformFeedbackInterleavedComponents; break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS: *params = mCaps.maxTransformFeedbackSeparateAttributes; break;
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS: *params = mCaps.maxTransformFeedbackSeparateComponents; break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = mCaps.compressedTextureFormats.size(); break;
case GL_MAX_SAMPLES_ANGLE: *params = mExtensions.maxSamples; break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
{
GLenum internalFormat, format, type;
getCurrentReadFormatType(&internalFormat, &format, &type);
if (pname == GL_IMPLEMENTATION_COLOR_READ_FORMAT)
*params = format;
else
*params = type;
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
params[0] = mCaps.maxViewportWidth;
params[1] = mCaps.maxViewportHeight;
}
break;
case GL_COMPRESSED_TEXTURE_FORMATS:
std::copy(mCaps.compressedTextureFormats.begin(), mCaps.compressedTextureFormats.end(), params);
break;
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
*params = mResetStrategy;
break;
case GL_NUM_SHADER_BINARY_FORMATS:
*params = mCaps.shaderBinaryFormats.size();
break;
case GL_SHADER_BINARY_FORMATS:
std::copy(mCaps.shaderBinaryFormats.begin(), mCaps.shaderBinaryFormats.end(), params);
break;
case GL_NUM_PROGRAM_BINARY_FORMATS:
*params = mCaps.programBinaryFormats.size();
break;
case GL_PROGRAM_BINARY_FORMATS:
std::copy(mCaps.programBinaryFormats.begin(), mCaps.programBinaryFormats.end(), params);
break;
case GL_NUM_EXTENSIONS:
*params = static_cast<GLint>(mExtensionStrings.size());
break;
default:
mState.getIntegerv(pname, params);
break;
}
}
void Context::getInteger64v(GLenum pname, GLint64 *params)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
switch (pname)
{
case GL_MAX_ELEMENT_INDEX:
*params = mCaps.maxElementIndex;
break;
case GL_MAX_UNIFORM_BLOCK_SIZE:
*params = mCaps.maxUniformBlockSize;
break;
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
*params = mCaps.maxCombinedVertexUniformComponents;
break;
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
*params = mCaps.maxCombinedFragmentUniformComponents;
break;
case GL_MAX_SERVER_WAIT_TIMEOUT:
*params = mCaps.maxServerWaitTimeout;
break;
default:
UNREACHABLE();
break;
}
}
bool Context::getIndexedIntegerv(GLenum target, GLuint index, GLint *data)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
// Indexed integer queries all refer to current state, so this function is a
// mere passthrough.
return mState.getIndexedIntegerv(target, index, data);
}
bool Context::getIndexedInteger64v(GLenum target, GLuint index, GLint64 *data)
{
// Queries about context capabilities and maximums are answered by Context.
// Queries about current GL state values are answered by State.
// Indexed integer queries all refer to current state, so this function is a
// mere passthrough.
return mState.getIndexedInteger64v(target, index, data);
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
if (pname >= GL_DRAW_BUFFER0_EXT && pname <= GL_DRAW_BUFFER15_EXT)
{
*type = GL_INT;
*numParams = 1;
return true;
}
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS:
{
*type = GL_INT;
*numParams = mCaps.compressedTextureFormats.size();
}
return true;
case GL_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = mCaps.programBinaryFormats.size();
}
return true;
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = mCaps.shaderBinaryFormats.size();
}
return true;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_MAX_COLOR_ATTACHMENTS_EXT:
case GL_MAX_DRAW_BUFFERS_EXT:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
//case GL_FRAMEBUFFER_BINDING: // equivalent to DRAW_FRAMEBUFFER_BINDING_ANGLE
case GL_DRAW_FRAMEBUFFER_BINDING_ANGLE:
case GL_READ_FRAMEBUFFER_BINDING_ANGLE:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_PACK_REVERSE_ROW_ORDER_ANGLE:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_FRAGMENT_SHADER_DERIVATIVE_HINT_OES:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
case GL_RESET_NOTIFICATION_STRATEGY_EXT:
case GL_NUM_PROGRAM_BINARY_FORMATS_OES:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_SAMPLES_ANGLE:
{
if (mExtensions.framebufferMultisample)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_PIXEL_PACK_BUFFER_BINDING:
case GL_PIXEL_UNPACK_BUFFER_BINDING:
{
if (mExtensions.pixelBufferObject)
{
*type = GL_INT;
*numParams = 1;
}
else
{
return false;
}
}
return true;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
return true;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
return true;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
case GL_CULL_FACE: // CULL_FACE through DITHER are natural to IsEnabled,
case GL_POLYGON_OFFSET_FILL: // but can be retrieved through the Get{Type}v queries.
case GL_SAMPLE_ALPHA_TO_COVERAGE: // For this purpose, they are treated here as bool-natural
case GL_SAMPLE_COVERAGE:
case GL_SCISSOR_TEST:
case GL_STENCIL_TEST:
case GL_DEPTH_TEST:
case GL_BLEND:
case GL_DITHER:
case GL_CONTEXT_ROBUST_ACCESS_EXT:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
return true;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
return true;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
return true;
case GL_COLOR_CLEAR_VALUE:
case GL_BLEND_COLOR:
{
*type = GL_FLOAT;
*numParams = 4;
}
return true;
case GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT:
if (!mExtensions.maxTextureAnisotropy)
{
return false;
}
*type = GL_FLOAT;
*numParams = 1;
return true;
}
if (mClientVersion < 3)
{
return false;
}
// Check for ES3.0+ parameter names
switch (pname)
{
case GL_MAX_UNIFORM_BUFFER_BINDINGS:
case GL_UNIFORM_BUFFER_OFFSET_ALIGNMENT:
case GL_UNIFORM_BUFFER_BINDING:
case GL_TRANSFORM_FEEDBACK_BINDING:
case GL_COPY_READ_BUFFER_BINDING:
case GL_COPY_WRITE_BUFFER_BINDING:
case GL_TEXTURE_BINDING_3D:
case GL_TEXTURE_BINDING_2D_ARRAY:
case GL_MAX_3D_TEXTURE_SIZE:
case GL_MAX_ARRAY_TEXTURE_LAYERS:
case GL_MAX_VERTEX_UNIFORM_BLOCKS:
case GL_MAX_FRAGMENT_UNIFORM_BLOCKS:
case GL_MAX_COMBINED_UNIFORM_BLOCKS:
case GL_MAX_VARYING_COMPONENTS:
case GL_VERTEX_ARRAY_BINDING:
case GL_MAX_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_FRAGMENT_UNIFORM_COMPONENTS:
case GL_NUM_EXTENSIONS:
case GL_MAJOR_VERSION:
case GL_MINOR_VERSION:
case GL_MAX_ELEMENTS_INDICES:
case GL_MAX_ELEMENTS_VERTICES:
case GL_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS:
case GL_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_MAX_ELEMENT_INDEX:
case GL_MAX_UNIFORM_BLOCK_SIZE:
case GL_MAX_COMBINED_VERTEX_UNIFORM_COMPONENTS:
case GL_MAX_COMBINED_FRAGMENT_UNIFORM_COMPONENTS:
case GL_MAX_SERVER_WAIT_TIMEOUT:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_ACTIVE:
case GL_TRANSFORM_FEEDBACK_PAUSED:
{
*type = GL_BOOL;
*numParams = 1;
}
return true;
}
return false;
}
bool Context::getIndexedQueryParameterInfo(GLenum target, GLenum *type, unsigned int *numParams)
{
if (mClientVersion < 3)
{
return false;
}
switch (target)
{
case GL_TRANSFORM_FEEDBACK_BUFFER_BINDING:
case GL_UNIFORM_BUFFER_BINDING:
{
*type = GL_INT;
*numParams = 1;
}
return true;
case GL_TRANSFORM_FEEDBACK_BUFFER_START:
case GL_TRANSFORM_FEEDBACK_BUFFER_SIZE:
case GL_UNIFORM_BUFFER_START:
case GL_UNIFORM_BUFFER_SIZE:
{
*type = GL_INT_64_ANGLEX;
*numParams = 1;
}
}
return false;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the renderer
bool Context::applyRenderTarget(GLenum drawMode, bool ignoreViewport)
{
Framebuffer *framebufferObject = mState.getDrawFramebuffer();
ASSERT(framebufferObject && framebufferObject->completeness() == GL_FRAMEBUFFER_COMPLETE);
mRenderer->applyRenderTarget(framebufferObject);
float nearZ, farZ;
mState.getDepthRange(&nearZ, &farZ);
if (!mRenderer->setViewport(mState.getViewport(), nearZ, farZ, drawMode, mState.getRasterizerState().frontFace,
ignoreViewport))
{
return false;
}
mRenderer->setScissorRectangle(mState.getScissor(), mState.isScissorTestEnabled());
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device
void Context::applyState(GLenum drawMode)
{
Framebuffer *framebufferObject = mState.getDrawFramebuffer();
int samples = framebufferObject->getSamples();
RasterizerState rasterizer = mState.getRasterizerState();
rasterizer.pointDrawMode = (drawMode == GL_POINTS);
rasterizer.multiSample = (samples != 0);
mRenderer->setRasterizerState(rasterizer);
unsigned int mask = 0;
if (mState.isSampleCoverageEnabled())
{
GLclampf coverageValue;
bool coverageInvert = false;
mState.getSampleCoverageParams(&coverageValue, &coverageInvert);
if (coverageValue != 0)
{
float threshold = 0.5f;
for (int i = 0; i < samples; ++i)
{
mask <<= 1;
if ((i + 1) * coverageValue >= threshold)
{
threshold += 1.0f;
mask |= 1;
}
}
}
if (coverageInvert)
{
mask = ~mask;
}
}
else
{
mask = 0xFFFFFFFF;
}
mRenderer->setBlendState(framebufferObject, mState.getBlendState(), mState.getBlendColor(), mask);
mRenderer->setDepthStencilState(mState.getDepthStencilState(), mState.getStencilRef(), mState.getStencilBackRef(),
rasterizer.frontFace == GL_CCW);
}
// Applies the shaders and shader constants to the Direct3D 9 device
void Context::applyShaders(ProgramBinary *programBinary, bool transformFeedbackActive)
{
const VertexAttribute *vertexAttributes = mState.getVertexArray()->getVertexAttributes();
VertexFormat inputLayout[MAX_VERTEX_ATTRIBS];
VertexFormat::GetInputLayout(inputLayout, programBinary, vertexAttributes, mState.getVertexAttribCurrentValues());
const Framebuffer *fbo = mState.getDrawFramebuffer();
mRenderer->applyShaders(programBinary, inputLayout, fbo, mState.getRasterizerState().rasterizerDiscard, transformFeedbackActive);
programBinary->applyUniforms();
}
size_t Context::getCurrentTexturesAndSamplerStates(ProgramBinary *programBinary, SamplerType type, Texture **outTextures,
TextureType *outTextureTypes, SamplerState *outSamplers)
{
size_t samplerRange = programBinary->getUsedSamplerRange(type);
for (size_t i = 0; i < samplerRange; i++)
{
outTextureTypes[i] = programBinary->getSamplerTextureType(type, i);
GLint textureUnit = programBinary->getSamplerMapping(type, i, getCaps()); // OpenGL texture image unit index
if (textureUnit != -1)
{
outTextures[i] = getSamplerTexture(textureUnit, outTextureTypes[i]);
outTextures[i]->getSamplerStateWithNativeOffset(&outSamplers[i]);
Sampler *samplerObject = mState.getSampler(textureUnit);
if (samplerObject)
{
samplerObject->getState(&outSamplers[i]);
}
}
else
{
outTextures[i] = NULL;
}
}
return samplerRange;
}
void Context::generateSwizzles(Texture *textures[], size_t count)
{
for (size_t i = 0; i < count; i++)
{
if (textures[i] && textures[i]->getSamplerState().swizzleRequired())
{
mRenderer->generateSwizzle(textures[i]);
}
}
}
// For each Direct3D sampler of either the pixel or vertex stage,
// looks up the corresponding OpenGL texture image unit and texture type,
// and sets the texture and its addressing/filtering state (or NULL when inactive).
void Context::applyTextures(SamplerType shaderType, Texture *textures[], TextureType *textureTypes, SamplerState *samplers,
size_t textureCount, const FramebufferTextureSerialArray& framebufferSerials,
size_t framebufferSerialCount)
{
// Range of Direct3D samplers of given sampler type
size_t samplerCount = (shaderType == SAMPLER_PIXEL) ? mCaps.maxTextureImageUnits
: mCaps.maxVertexTextureImageUnits;
for (size_t samplerIndex = 0; samplerIndex < textureCount; samplerIndex++)
{
Texture *texture = textures[samplerIndex];
const SamplerState &sampler = samplers[samplerIndex];
TextureType textureType = textureTypes[samplerIndex];
if (texture)
{
// TODO: std::binary_search may become unavailable using older versions of GCC
if (texture->isSamplerComplete(sampler, mTextureCaps, mExtensions, mClientVersion) &&
!std::binary_search(framebufferSerials.begin(), framebufferSerials.begin() + framebufferSerialCount, texture->getTextureSerial()))
{
mRenderer->setSamplerState(shaderType, samplerIndex, sampler);
mRenderer->setTexture(shaderType, samplerIndex, texture);
}
else
{
Texture *incompleteTexture = getIncompleteTexture(textureType);
mRenderer->setTexture(shaderType, samplerIndex, incompleteTexture);
}
}
else
{
mRenderer->setTexture(shaderType, samplerIndex, NULL);
}
}
for (size_t samplerIndex = textureCount; samplerIndex < samplerCount; samplerIndex++)
{
mRenderer->setTexture(shaderType, samplerIndex, NULL);
}
}
bool Context::applyUniformBuffers()
{
Program *programObject = getProgram(mState.getCurrentProgramId());
ProgramBinary *programBinary = programObject->getProgramBinary();
std::vector<Buffer*> boundBuffers;
for (unsigned int uniformBlockIndex = 0; uniformBlockIndex < programBinary->getActiveUniformBlockCount(); uniformBlockIndex++)
{
GLuint blockBinding = programObject->getUniformBlockBinding(uniformBlockIndex);
if (mState.getIndexedUniformBuffer(blockBinding)->id() == 0)
{
// undefined behaviour
return false;
}
else
{
Buffer *uniformBuffer = mState.getIndexedUniformBuffer(blockBinding);
ASSERT(uniformBuffer);
boundBuffers.push_back(uniformBuffer);
}
}
return programBinary->applyUniformBuffers(boundBuffers, getCaps());
}
bool Context::applyTransformFeedbackBuffers()
{
TransformFeedback *curTransformFeedback = mState.getCurrentTransformFeedback();
if (curTransformFeedback && curTransformFeedback->isStarted() && !curTransformFeedback->isPaused())
{
Buffer *transformFeedbackBuffers[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS];
GLintptr transformFeedbackOffsets[IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS];
for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
transformFeedbackBuffers[i] = mState.getIndexedTransformFeedbackBuffer(i);
transformFeedbackOffsets[i] = mState.getIndexedTransformFeedbackBufferOffset(i);
}
mRenderer->applyTransformFeedbackBuffers(transformFeedbackBuffers, transformFeedbackOffsets);
return true;
}
else
{
return false;
}
}
void Context::markTransformFeedbackUsage()
{
for (size_t i = 0; i < IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS; i++)
{
Buffer *buffer = mState.getIndexedTransformFeedbackBuffer(i);
if (buffer)
{
buffer->markTransformFeedbackUsage();
}
}
}
Error Context::clear(GLbitfield mask)
{
if (mState.isRasterizerDiscardEnabled())
{
return Error(GL_NO_ERROR);
}
ClearParameters clearParams = mState.getClearParameters(mask);
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return Error(GL_NO_ERROR);
}
return mRenderer->clear(clearParams, mState.getDrawFramebuffer());
}
Error Context::clearBufferfv(GLenum buffer, int drawbuffer, const float *values)
{
if (mState.isRasterizerDiscardEnabled())
{
return Error(GL_NO_ERROR);
}
// glClearBufferfv can be called to clear the color buffer or depth buffer
ClearParameters clearParams = mState.getClearParameters(0);
if (buffer == GL_COLOR)
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorFClearValue = ColorF(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_FLOAT;
}
if (buffer == GL_DEPTH)
{
clearParams.clearDepth = true;
clearParams.depthClearValue = values[0];
}
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return Error(GL_NO_ERROR);
}
return mRenderer->clear(clearParams, mState.getDrawFramebuffer());
}
Error Context::clearBufferuiv(GLenum buffer, int drawbuffer, const unsigned int *values)
{
if (mState.isRasterizerDiscardEnabled())
{
return Error(GL_NO_ERROR);
}
// glClearBufferuv can only be called to clear a color buffer
ClearParameters clearParams = mState.getClearParameters(0);
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorUIClearValue = ColorUI(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_UNSIGNED_INT;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return Error(GL_NO_ERROR);
}
return mRenderer->clear(clearParams, mState.getDrawFramebuffer());
}
Error Context::clearBufferiv(GLenum buffer, int drawbuffer, const int *values)
{
if (mState.isRasterizerDiscardEnabled())
{
return Error(GL_NO_ERROR);
}
// glClearBufferfv can be called to clear the color buffer or stencil buffer
ClearParameters clearParams = mState.getClearParameters(0);
if (buffer == GL_COLOR)
{
for (unsigned int i = 0; i < ArraySize(clearParams.clearColor); i++)
{
clearParams.clearColor[i] = (drawbuffer == static_cast<int>(i));
}
clearParams.colorIClearValue = ColorI(values[0], values[1], values[2], values[3]);
clearParams.colorClearType = GL_INT;
}
if (buffer == GL_STENCIL)
{
clearParams.clearStencil = true;
clearParams.stencilClearValue = values[1];
}
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return Error(GL_NO_ERROR);
}
return mRenderer->clear(clearParams, mState.getDrawFramebuffer());
}
Error Context::clearBufferfi(GLenum buffer, int drawbuffer, float depth, int stencil)
{
if (mState.isRasterizerDiscardEnabled())
{
return Error(GL_NO_ERROR);
}
// glClearBufferfi can only be called to clear a depth stencil buffer
ClearParameters clearParams = mState.getClearParameters(0);
clearParams.clearDepth = true;
clearParams.depthClearValue = depth;
clearParams.clearStencil = true;
clearParams.stencilClearValue = stencil;
if (!applyRenderTarget(GL_TRIANGLES, true)) // Clips the clear to the scissor rectangle but not the viewport
{
return Error(GL_NO_ERROR);
}
return mRenderer->clear(clearParams, mState.getDrawFramebuffer());
}
Error Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height,
GLenum format, GLenum type, GLsizei *bufSize, void* pixels)
{
Framebuffer *framebuffer = mState.getReadFramebuffer();
GLenum sizedInternalFormat = GetSizedInternalFormat(format, type);
const InternalFormat &sizedFormatInfo = GetInternalFormatInfo(sizedInternalFormat);
GLuint outputPitch = sizedFormatInfo.computeRowPitch(type, width, mState.getPackAlignment());
return mRenderer->readPixels(framebuffer, x, y, width, height, format, type, outputPitch, mState.getPackState(),
reinterpret_cast<uint8_t*>(pixels));
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count, GLsizei instances)
{
ASSERT(mState.getCurrentProgramId() != 0);
ProgramBinary *programBinary = mState.getCurrentProgramBinary();
programBinary->updateSamplerMapping();
Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers);
Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS];
TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS];
SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS];
size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers);
generateSwizzles(vsTextures, vsTextureCount);
generateSwizzles(psTextures, psTextureCount);
if (!mRenderer->applyPrimitiveType(mode, count))
{
return;
}
if (!applyRenderTarget(mode, false))
{
return;
}
applyState(mode);
GLenum err = mRenderer->applyVertexBuffer(programBinary, mState.getVertexArray()->getVertexAttributes(), mState.getVertexAttribCurrentValues(), first, count, instances);
if (err != GL_NO_ERROR)
{
return gl::error(err);
}
bool transformFeedbackActive = applyTransformFeedbackBuffers();
applyShaders(programBinary, transformFeedbackActive);
FramebufferTextureSerialArray frameBufferSerials;
size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials);
applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount);
applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount);
if (!applyUniformBuffers())
{
return;
}
if (!skipDraw(mode))
{
mRenderer->drawArrays(mode, count, instances, transformFeedbackActive);
if (transformFeedbackActive)
{
markTransformFeedbackUsage();
}
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices, GLsizei instances,
const rx::RangeUI &indexRange)
{
ASSERT(mState.getCurrentProgramId() != 0);
ProgramBinary *programBinary = mState.getCurrentProgramBinary();
programBinary->updateSamplerMapping();
Texture *vsTextures[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
TextureType vsTextureTypes[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
SamplerState vsSamplers[IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS];
size_t vsTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers);
Texture *psTextures[MAX_TEXTURE_IMAGE_UNITS];
TextureType psTextureTypes[MAX_TEXTURE_IMAGE_UNITS];
SamplerState psSamplers[MAX_TEXTURE_IMAGE_UNITS];
size_t psTextureCount = getCurrentTexturesAndSamplerStates(programBinary, SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers);
generateSwizzles(vsTextures, vsTextureCount);
generateSwizzles(psTextures, psTextureCount);
if (!mRenderer->applyPrimitiveType(mode, count))
{
return;
}
if (!applyRenderTarget(mode, false))
{
return;
}
applyState(mode);
VertexArray *vao = mState.getVertexArray();
rx::TranslatedIndexData indexInfo;
indexInfo.indexRange = indexRange;
Error error = mRenderer->applyIndexBuffer(indices, vao->getElementArrayBuffer(), count, mode, type, &indexInfo);
if (error.isError())
{
return gl::error(error.getCode());
}
GLsizei vertexCount = indexInfo.indexRange.length() + 1;
GLenum err = mRenderer->applyVertexBuffer(programBinary, vao->getVertexAttributes(),
mState.getVertexAttribCurrentValues(),
indexInfo.indexRange.start, vertexCount, instances);
if (err != GL_NO_ERROR)
{
return gl::error(err);
}
bool transformFeedbackActive = applyTransformFeedbackBuffers();
// Transform feedback is not allowed for DrawElements, this error should have been caught at the API validation
// layer.
ASSERT(!transformFeedbackActive);
applyShaders(programBinary, transformFeedbackActive);
FramebufferTextureSerialArray frameBufferSerials;
size_t framebufferSerialCount = getBoundFramebufferTextureSerials(&frameBufferSerials);
applyTextures(SAMPLER_VERTEX, vsTextures, vsTextureTypes, vsSamplers, vsTextureCount, frameBufferSerials, framebufferSerialCount);
applyTextures(SAMPLER_PIXEL, psTextures, psTextureTypes, psSamplers, psTextureCount, frameBufferSerials, framebufferSerialCount);
if (!applyUniformBuffers())
{
return;
}
if (!skipDraw(mode))
{
mRenderer->drawElements(mode, count, type, indices, vao->getElementArrayBuffer(), indexInfo, instances);
}
}
// Implements glFlush when block is false, glFinish when block is true
void Context::sync(bool block)
{
mRenderer->sync(block);
}
void Context::recordError(const Error &error)
{
if (error.isError())
{
mErrors.insert(error.getCode());
}
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mErrors.empty())
{
return GL_NO_ERROR;
}
else
{
GLenum error = *mErrors.begin();
mErrors.erase(mErrors.begin());
return error;
}
}
GLenum Context::getResetStatus()
{
if (mResetStatus == GL_NO_ERROR && !mContextLost)
{
// mResetStatus will be set by the markContextLost callback
// in the case a notification is sent
mRenderer->testDeviceLost(true);
}
GLenum status = mResetStatus;
if (mResetStatus != GL_NO_ERROR)
{
ASSERT(mContextLost);
if (mRenderer->testDeviceResettable())
{
mResetStatus = GL_NO_ERROR;
}
}
return status;
}
bool Context::isResetNotificationEnabled()
{
return (mResetStrategy == GL_LOSE_CONTEXT_ON_RESET_EXT);
}
int Context::getClientVersion() const
{
return mClientVersion;
}
const Caps &Context::getCaps() const
{
return mCaps;
}
const TextureCapsMap &Context::getTextureCaps() const
{
return mTextureCaps;
}
const Extensions &Context::getExtensions() const
{
return mExtensions;
}
void Context::getCurrentReadFormatType(GLenum *internalFormat, GLenum *format, GLenum *type)
{
Framebuffer *framebuffer = mState.getReadFramebuffer();
ASSERT(framebuffer && framebuffer->completeness() == GL_FRAMEBUFFER_COMPLETE);
FramebufferAttachment *attachment = framebuffer->getReadColorbuffer();
ASSERT(attachment);
GLenum actualFormat = attachment->getActualFormat();
const InternalFormat &actualFormatInfo = GetInternalFormatInfo(actualFormat);
*internalFormat = actualFormat;
*format = actualFormatInfo.format;
*type = actualFormatInfo.type;
}
void Context::detachTexture(GLuint texture)
{
// Simple pass-through to State's detachTexture method, as textures do not require
// allocation map management either here or in the resource manager at detach time.
// Zero textures are held by the Context, and we don't attempt to request them from
// the State.
mState.detachTexture(texture);
}
void Context::detachBuffer(GLuint buffer)
{
// Buffer detachment is handled by Context, because the buffer must also be
// attached from any VAOs in existence, and Context holds the VAO map.
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
mState.removeArrayBufferBinding(buffer);
// mark as freed among the vertex array objects
for (auto vaoIt = mVertexArrayMap.begin(); vaoIt != mVertexArrayMap.end(); vaoIt++)
{
vaoIt->second->detachBuffer(buffer);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// Framebuffer detachment is handled by Context, because 0 is a valid
// Framebuffer object, and a pointer to it must be passed from Context
// to State at binding time.
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (mState.removeReadFramebufferBinding(framebuffer))
{
bindReadFramebuffer(0);
}
if (mState.removeDrawFramebufferBinding(framebuffer))
{
bindDrawFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
mState.detachRenderbuffer(renderbuffer);
}
void Context::detachVertexArray(GLuint vertexArray)
{
// Vertex array detachment is handled by Context, because 0 is a valid
// VAO, and a pointer to it must be passed from Context to State at
// binding time.
// [OpenGL ES 3.0.2] section 2.10 page 43:
// If a vertex array object that is currently bound is deleted, the binding
// for that object reverts to zero and the default vertex array becomes current.
if (mState.removeVertexArrayBinding(vertexArray))
{
bindVertexArray(0);
}
}
void Context::detachTransformFeedback(GLuint transformFeedback)
{
mState.detachTransformFeedback(transformFeedback);
}
void Context::detachSampler(GLuint sampler)
{
mState.detachSampler(sampler);
}
Texture *Context::getIncompleteTexture(TextureType type)
{
Texture *t = mIncompleteTextures[type].get();
if (t == NULL)
{
const GLubyte color[] = { 0, 0, 0, 255 };
const PixelUnpackState incompleteUnpackState(1);
switch (type)
{
default:
UNREACHABLE();
// default falls through to TEXTURE_2D
case TEXTURE_2D:
{
Texture2D *incomplete2d = new Texture2D(mRenderer->createTexture(GL_TEXTURE_2D), Texture::INCOMPLETE_TEXTURE_ID);
incomplete2d->setImage(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete2d;
}
break;
case TEXTURE_CUBE:
{
TextureCubeMap *incompleteCube = new TextureCubeMap(mRenderer->createTexture(GL_TEXTURE_CUBE_MAP), Texture::INCOMPLETE_TEXTURE_ID);
incompleteCube->setImagePosX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegX(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImagePosY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegY(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImagePosZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
incompleteCube->setImageNegZ(0, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incompleteCube;
}
break;
case TEXTURE_3D:
{
Texture3D *incomplete3d = new Texture3D(mRenderer->createTexture(GL_TEXTURE_3D), Texture::INCOMPLETE_TEXTURE_ID);
incomplete3d->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete3d;
}
break;
case TEXTURE_2D_ARRAY:
{
Texture2DArray *incomplete2darray = new Texture2DArray(mRenderer->createTexture(GL_TEXTURE_2D_ARRAY), Texture::INCOMPLETE_TEXTURE_ID);
incomplete2darray->setImage(0, 1, 1, 1, GL_RGBA, GL_RGBA, GL_UNSIGNED_BYTE, incompleteUnpackState, color);
t = incomplete2darray;
}
break;
}
mIncompleteTextures[type].set(t);
}
return t;
}
bool Context::skipDraw(GLenum drawMode)
{
if (drawMode == GL_POINTS)
{
// ProgramBinary assumes non-point rendering if gl_PointSize isn't written,
// which affects varying interpolation. Since the value of gl_PointSize is
// undefined when not written, just skip drawing to avoid unexpected results.
if (!mState.getCurrentProgramBinary()->usesPointSize())
{
// This is stictly speaking not an error, but developers should be
// notified of risking undefined behavior.
ERR("Point rendering without writing to gl_PointSize.");
return true;
}
}
else if (IsTriangleMode(drawMode))
{
if (mState.getRasterizerState().cullFace && mState.getRasterizerState().cullMode == GL_FRONT_AND_BACK)
{
return true;
}
}
return false;
}
void Context::setVertexAttribDivisor(GLuint index, GLuint divisor)
{
mState.getVertexArray()->setVertexAttribDivisor(index, divisor);
}
void Context::samplerParameteri(GLuint sampler, GLenum pname, GLint param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(static_cast<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(static_cast<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(static_cast<GLfloat>(param)); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(static_cast<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(static_cast<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
void Context::samplerParameterf(GLuint sampler, GLenum pname, GLfloat param)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: samplerObject->setMinFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_MAG_FILTER: samplerObject->setMagFilter(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_S: samplerObject->setWrapS(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_T: samplerObject->setWrapT(uiround<GLenum>(param)); break;
case GL_TEXTURE_WRAP_R: samplerObject->setWrapR(uiround<GLenum>(param)); break;
case GL_TEXTURE_MIN_LOD: samplerObject->setMinLod(param); break;
case GL_TEXTURE_MAX_LOD: samplerObject->setMaxLod(param); break;
case GL_TEXTURE_COMPARE_MODE: samplerObject->setComparisonMode(uiround<GLenum>(param)); break;
case GL_TEXTURE_COMPARE_FUNC: samplerObject->setComparisonFunc(uiround<GLenum>(param)); break;
default: UNREACHABLE(); break;
}
}
GLint Context::getSamplerParameteri(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLint>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLint>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLint>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLint>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLint>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return uiround<GLint>(samplerObject->getMinLod());
case GL_TEXTURE_MAX_LOD: return uiround<GLint>(samplerObject->getMaxLod());
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLint>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLint>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
GLfloat Context::getSamplerParameterf(GLuint sampler, GLenum pname)
{
mResourceManager->checkSamplerAllocation(sampler);
Sampler *samplerObject = getSampler(sampler);
ASSERT(samplerObject);
switch (pname)
{
case GL_TEXTURE_MIN_FILTER: return static_cast<GLfloat>(samplerObject->getMinFilter());
case GL_TEXTURE_MAG_FILTER: return static_cast<GLfloat>(samplerObject->getMagFilter());
case GL_TEXTURE_WRAP_S: return static_cast<GLfloat>(samplerObject->getWrapS());
case GL_TEXTURE_WRAP_T: return static_cast<GLfloat>(samplerObject->getWrapT());
case GL_TEXTURE_WRAP_R: return static_cast<GLfloat>(samplerObject->getWrapR());
case GL_TEXTURE_MIN_LOD: return samplerObject->getMinLod();
case GL_TEXTURE_MAX_LOD: return samplerObject->getMaxLod();
case GL_TEXTURE_COMPARE_MODE: return static_cast<GLfloat>(samplerObject->getComparisonMode());
case GL_TEXTURE_COMPARE_FUNC: return static_cast<GLfloat>(samplerObject->getComparisonFunc());
default: UNREACHABLE(); return 0;
}
}
void Context::initRendererString()
{
std::ostringstream rendererString;
rendererString << "ANGLE (";
rendererString << mRenderer->getRendererDescription();
rendererString << ")";
mRendererString = MakeStaticString(rendererString.str());
}
const std::string &Context::getRendererString() const
{
return mRendererString;
}
void Context::initExtensionStrings()
{
mExtensionStrings = mExtensions.getStrings();
std::ostringstream combinedStringStream;
std::copy(mExtensionStrings.begin(), mExtensionStrings.end(), std::ostream_iterator<std::string>(combinedStringStream, " "));
mExtensionString = combinedStringStream.str();
}
const std::string &Context::getExtensionString() const
{
return mExtensionString;
}
const std::string &Context::getExtensionString(size_t idx) const
{
return mExtensionStrings[idx];
}
size_t Context::getExtensionStringCount() const
{
return mExtensionStrings.size();
}
size_t Context::getBoundFramebufferTextureSerials(FramebufferTextureSerialArray *outSerialArray)
{
size_t serialCount = 0;
Framebuffer *drawFramebuffer = mState.getDrawFramebuffer();
for (unsigned int i = 0; i < IMPLEMENTATION_MAX_DRAW_BUFFERS; i++)
{
FramebufferAttachment *attachment = drawFramebuffer->getColorbuffer(i);
if (attachment && attachment->isTexture())
{
Texture *texture = attachment->getTexture();
(*outSerialArray)[serialCount++] = texture->getTextureSerial();
}
}
FramebufferAttachment *depthStencilAttachment = drawFramebuffer->getDepthOrStencilbuffer();
if (depthStencilAttachment && depthStencilAttachment->isTexture())
{
Texture *depthStencilTexture = depthStencilAttachment->getTexture();
(*outSerialArray)[serialCount++] = depthStencilTexture->getTextureSerial();
}
std::sort(outSerialArray->begin(), outSerialArray->begin() + serialCount);
return serialCount;
}
void Context::blitFramebuffer(GLint srcX0, GLint srcY0, GLint srcX1, GLint srcY1, GLint dstX0, GLint dstY0, GLint dstX1, GLint dstY1,
GLbitfield mask, GLenum filter)
{
Framebuffer *readFramebuffer = mState.getReadFramebuffer();
Framebuffer *drawFramebuffer = mState.getDrawFramebuffer();
bool blitRenderTarget = false;
bool blitDepth = false;
bool blitStencil = false;
if ((mask & GL_COLOR_BUFFER_BIT) && readFramebuffer->getReadColorbuffer() && drawFramebuffer->getFirstColorbuffer())
{
blitRenderTarget = true;
}
if ((mask & GL_STENCIL_BUFFER_BIT) && readFramebuffer->getStencilbuffer() && drawFramebuffer->getStencilbuffer())
{
blitStencil = true;
}
if ((mask & GL_DEPTH_BUFFER_BIT) && readFramebuffer->getDepthbuffer() && drawFramebuffer->getDepthbuffer())
{
blitDepth = true;
}
Rectangle srcRect(srcX0, srcY0, srcX1 - srcX0, srcY1 - srcY0);
Rectangle dstRect(dstX0, dstY0, dstX1 - dstX0, dstY1 - dstY0);
if (blitRenderTarget || blitDepth || blitStencil)
{
const Rectangle *scissor = mState.isScissorTestEnabled() ? &mState.getScissor() : NULL;
mRenderer->blitRect(readFramebuffer, srcRect, drawFramebuffer, dstRect, scissor,
blitRenderTarget, blitDepth, blitStencil, filter);
}
}
void Context::releaseShaderCompiler()
{
mRenderer->releaseShaderCompiler();
}
void Context::initCaps(GLuint clientVersion)
{
mCaps = mRenderer->getRendererCaps();
mExtensions = mRenderer->getRendererExtensions();
if (clientVersion < 3)
{
// Disable ES3+ extensions
mExtensions.colorBufferFloat = false;
}
if (clientVersion > 2)
{
// FIXME(geofflang): Don't support EXT_sRGB in non-ES2 contexts
//mExtensions.sRGB = false;
}
// Apply implementation limits
mCaps.maxVertexAttributes = std::min<GLuint>(mCaps.maxVertexAttributes, MAX_VERTEX_ATTRIBS);
mCaps.maxVertexTextureImageUnits = std::min<GLuint>(mCaps.maxVertexTextureImageUnits, IMPLEMENTATION_MAX_VERTEX_TEXTURE_IMAGE_UNITS);
mCaps.maxVertexUniformBlocks = std::min<GLuint>(mCaps.maxVertexUniformBlocks, IMPLEMENTATION_MAX_VERTEX_SHADER_UNIFORM_BUFFERS);
mCaps.maxVertexOutputComponents = std::min<GLuint>(mCaps.maxVertexOutputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4);
mCaps.maxFragmentInputComponents = std::min<GLuint>(mCaps.maxFragmentInputComponents, IMPLEMENTATION_MAX_VARYING_VECTORS * 4);
mCaps.maxTextureImageUnits = std::min<GLuint>(mCaps.maxTextureImageUnits, MAX_TEXTURE_IMAGE_UNITS);
mCaps.maxCombinedTextureImageUnits = std::min<GLuint>(mCaps.maxCombinedTextureImageUnits, IMPLEMENTATION_MAX_COMBINED_TEXTURE_IMAGE_UNITS);
GLuint maxSamples = 0;
mCaps.compressedTextureFormats.clear();
const TextureCapsMap &rendererFormats = mRenderer->getRendererTextureCaps();
for (TextureCapsMap::const_iterator i = rendererFormats.begin(); i != rendererFormats.end(); i++)
{
GLenum format = i->first;
TextureCaps formatCaps = i->second;
const InternalFormat &formatInfo = GetInternalFormatInfo(format);
if (formatCaps.texturable && formatInfo.textureSupport(clientVersion, mExtensions))
{
// Update the format caps based on the client version and extensions
formatCaps.renderable = formatInfo.renderSupport(clientVersion, mExtensions);
formatCaps.filterable = formatInfo.filterSupport(clientVersion, mExtensions);
// OpenGL ES does not support multisampling with integer formats
if (formatInfo.componentType == GL_INT || formatInfo.componentType == GL_UNSIGNED_INT)
{
formatCaps.sampleCounts.clear();
}
maxSamples = std::max(maxSamples, formatCaps.getMaxSamples());
if (formatInfo.compressed)
{
mCaps.compressedTextureFormats.push_back(format);
}
mTextureCaps.insert(format, formatCaps);
}
}
mExtensions.maxSamples = maxSamples;
}
}
extern "C"
{
gl::Context *glCreateContext(int clientVersion, const gl::Context *shareContext, rx::Renderer *renderer, bool notifyResets, bool robustAccess)
{
return new gl::Context(clientVersion, shareContext, renderer, notifyResets, robustAccess);
}
void glDestroyContext(gl::Context *context)
{
delete context;
if (context == gl::getContext())
{
gl::makeCurrent(NULL, NULL, NULL);
}
}
void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface)
{
gl::makeCurrent(context, display, surface);
}
gl::Context *glGetCurrentContext()
{
return gl::getContext();
}
}