blob: ab93ba7992a9a9539a567039b344a21091360c91 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Context.cpp: Implements the gl::Context class, managing all GL state and performing
// rendering operations. It is the GLES2 specific implementation of EGLContext.
#include "Context.h"
#include <algorithm>
#include "main.h"
#include "libEGL/Display.h"
#include "Buffer.h"
#include "Shader.h"
#include "Program.h"
#include "Texture.h"
#include "FrameBuffer.h"
#include "RenderBuffer.h"
#include "mathutil.h"
#include "utilities.h"
#include "geometry/backend.h"
#include "geometry/VertexDataManager.h"
#include "geometry/IndexDataManager.h"
#include "geometry/dx9.h"
#undef near
#undef far
namespace gl
{
Context::Context(const egl::Config *config)
: mConfig(config)
{
setClearColor(0.0f, 0.0f, 0.0f, 0.0f);
depthClearValue = 1.0f;
stencilClearValue = 0;
cullFace = false;
cullMode = GL_BACK;
frontFace = GL_CCW;
depthTest = false;
depthFunc = GL_LESS;
blend = false;
sourceBlendRGB = GL_ONE;
sourceBlendAlpha = GL_ONE;
destBlendRGB = GL_ZERO;
destBlendAlpha = GL_ZERO;
blendEquationRGB = GL_FUNC_ADD;
blendEquationAlpha = GL_FUNC_ADD;
blendColor.red = 0;
blendColor.green = 0;
blendColor.blue = 0;
blendColor.alpha = 0;
stencilTest = false;
stencilFunc = GL_ALWAYS;
stencilRef = 0;
stencilMask = -1;
stencilWritemask = -1;
stencilBackFunc = GL_ALWAYS;
stencilBackRef = 0;
stencilBackMask = - 1;
stencilBackWritemask = -1;
stencilFail = GL_KEEP;
stencilPassDepthFail = GL_KEEP;
stencilPassDepthPass = GL_KEEP;
stencilBackFail = GL_KEEP;
stencilBackPassDepthFail = GL_KEEP;
stencilBackPassDepthPass = GL_KEEP;
polygonOffsetFill = false;
polygonOffsetFactor = 0.0f;
polygonOffsetUnits = 0.0f;
sampleAlphaToCoverage = false;
sampleCoverage = false;
sampleCoverageValue = 1.0f;
sampleCoverageInvert = GL_FALSE;
scissorTest = false;
dither = true;
generateMipmapHint = GL_DONT_CARE;
lineWidth = 1.0f;
viewportX = 0;
viewportY = 0;
viewportWidth = config->mDisplayMode.Width;
viewportHeight = config->mDisplayMode.Height;
zNear = 0.0f;
zFar = 1.0f;
scissorX = 0;
scissorY = 0;
scissorWidth = config->mDisplayMode.Width;
scissorHeight = config->mDisplayMode.Height;
colorMaskRed = true;
colorMaskGreen = true;
colorMaskBlue = true;
colorMaskAlpha = true;
depthMask = true;
// [OpenGL ES 2.0.24] section 3.7 page 83:
// In the initial state, TEXTURE_2D and TEXTURE_CUBE_MAP have twodimensional
// and cube map texture state vectors respectively associated with them.
// In order that access to these initial textures not be lost, they are treated as texture
// objects all of whose names are 0.
mTexture2DZero = new Texture2D();
mTextureCubeMapZero = new TextureCubeMap();
mColorbufferZero = NULL;
mDepthbufferZero = NULL;
mStencilbufferZero = NULL;
activeSampler = 0;
arrayBuffer = 0;
elementArrayBuffer = 0;
bindTextureCubeMap(0);
bindTexture2D(0);
bindFramebuffer(0);
bindRenderbuffer(0);
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
samplerTexture[type][sampler] = 0;
}
}
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
mIncompleteTextures[type] = NULL;
}
currentProgram = 0;
packAlignment = 4;
unpackAlignment = 4;
mBufferBackEnd = NULL;
mVertexDataManager = NULL;
mIndexDataManager = NULL;
mInvalidEnum = false;
mInvalidValue = false;
mInvalidOperation = false;
mOutOfMemory = false;
mInvalidFramebufferOperation = false;
mHasBeenCurrent = false;
}
Context::~Context()
{
currentProgram = 0;
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
delete mIncompleteTextures[type];
}
delete mTexture2DZero;
delete mTextureCubeMapZero;
delete mColorbufferZero;
delete mDepthbufferZero;
delete mStencilbufferZero;
delete mBufferBackEnd;
delete mVertexDataManager;
delete mIndexDataManager;
while (!mBufferMap.empty())
{
deleteBuffer(mBufferMap.begin()->first);
}
while (!mProgramMap.empty())
{
deleteProgram(mProgramMap.begin()->first);
}
while (!mShaderMap.empty())
{
deleteShader(mShaderMap.begin()->first);
}
while (!mFramebufferMap.empty())
{
deleteFramebuffer(mFramebufferMap.begin()->first);
}
while (!mRenderbufferMap.empty())
{
deleteRenderbuffer(mRenderbufferMap.begin()->first);
}
while (!mTextureMap.empty())
{
deleteTexture(mTextureMap.begin()->first);
}
}
void Context::makeCurrent(egl::Display *display, egl::Surface *surface)
{
IDirect3DDevice9 *device = display->getDevice();
if (!mBufferBackEnd)
{
mBufferBackEnd = new Dx9BackEnd(device);
mVertexDataManager = new VertexDataManager(this, mBufferBackEnd);
mIndexDataManager = new IndexDataManager(this, mBufferBackEnd);
}
// Wrap the existing Direct3D 9 resources into GL objects and assign them to the '0' names
IDirect3DSurface9 *defaultRenderTarget = surface->getRenderTarget();
IDirect3DSurface9 *depthStencil = surface->getDepthStencil();
Framebuffer *framebufferZero = new Framebuffer();
Colorbuffer *colorbufferZero = new Colorbuffer(defaultRenderTarget);
Depthbuffer *depthbufferZero = new Depthbuffer(depthStencil);
Stencilbuffer *stencilbufferZero = new Stencilbuffer(depthStencil);
setFramebufferZero(framebufferZero);
setColorbufferZero(colorbufferZero);
setDepthbufferZero(depthbufferZero);
setStencilbufferZero(stencilbufferZero);
framebufferZero->setColorbuffer(GL_RENDERBUFFER, 0);
framebufferZero->setDepthbuffer(GL_RENDERBUFFER, 0);
framebufferZero->setStencilbuffer(GL_RENDERBUFFER, 0);
if(!mHasBeenCurrent)
{
viewportX = 0;
viewportY = 0;
viewportWidth = surface->getWidth();
viewportHeight = surface->getHeight();
scissorX = 0;
scissorY = 0;
scissorWidth = surface->getWidth();
scissorHeight = surface->getHeight();
mHasBeenCurrent = true;
}
defaultRenderTarget->Release();
if (depthStencil)
{
depthStencil->Release();
}
D3DCAPS9 capabilities;
device->GetDeviceCaps(&capabilities);
if (capabilities.PixelShaderVersion == D3DPS_VERSION(3, 0))
{
mPsProfile = "ps_3_0";
mVsProfile = "vs_3_0";
}
else // egl::Display guarantees support for at least 2.0
{
mPsProfile = "ps_2_0";
mVsProfile = "vs_2_0";
}
}
void Context::setClearColor(float red, float green, float blue, float alpha)
{
colorClearValue.red = red;
colorClearValue.green = green;
colorClearValue.blue = blue;
colorClearValue.alpha = alpha;
}
void Context::setClearDepth(float depth)
{
depthClearValue = depth;
}
void Context::setClearStencil(int stencil)
{
stencilClearValue = stencil;
}
// Returns an unused buffer name
GLuint Context::createBuffer()
{
unsigned int handle = 1;
while (mBufferMap.find(handle) != mBufferMap.end())
{
handle++;
}
mBufferMap[handle] = NULL;
return handle;
}
// Returns an unused shader/program name
GLuint Context::createShader(GLenum type)
{
unsigned int handle = 1;
while (mShaderMap.find(handle) != mShaderMap.end() || mProgramMap.find(handle) != mProgramMap.end()) // Shared name space
{
handle++;
}
if (type == GL_VERTEX_SHADER)
{
mShaderMap[handle] = new VertexShader(handle);
}
else if (type == GL_FRAGMENT_SHADER)
{
mShaderMap[handle] = new FragmentShader(handle);
}
else UNREACHABLE();
return handle;
}
// Returns an unused program/shader name
GLuint Context::createProgram()
{
unsigned int handle = 1;
while (mProgramMap.find(handle) != mProgramMap.end() || mShaderMap.find(handle) != mShaderMap.end()) // Shared name space
{
handle++;
}
mProgramMap[handle] = new Program();
return handle;
}
// Returns an unused texture name
GLuint Context::createTexture()
{
unsigned int handle = 1;
while (mTextureMap.find(handle) != mTextureMap.end())
{
handle++;
}
mTextureMap[handle] = NULL;
return handle;
}
// Returns an unused framebuffer name
GLuint Context::createFramebuffer()
{
unsigned int handle = 1;
while (mFramebufferMap.find(handle) != mFramebufferMap.end())
{
handle++;
}
mFramebufferMap[handle] = NULL;
return handle;
}
// Returns an unused renderbuffer name
GLuint Context::createRenderbuffer()
{
unsigned int handle = 1;
while (mRenderbufferMap.find(handle) != mRenderbufferMap.end())
{
handle++;
}
mRenderbufferMap[handle] = NULL;
return handle;
}
void Context::deleteBuffer(GLuint buffer)
{
BufferMap::iterator bufferObject = mBufferMap.find(buffer);
if (bufferObject != mBufferMap.end())
{
detachBuffer(buffer);
delete bufferObject->second;
mBufferMap.erase(bufferObject);
}
}
void Context::deleteShader(GLuint shader)
{
ShaderMap::iterator shaderObject = mShaderMap.find(shader);
if (shaderObject != mShaderMap.end())
{
if (!shaderObject->second->isAttached())
{
delete shaderObject->second;
mShaderMap.erase(shaderObject);
}
else
{
shaderObject->second->flagForDeletion();
}
}
}
void Context::deleteProgram(GLuint program)
{
ProgramMap::iterator programObject = mProgramMap.find(program);
if (programObject != mProgramMap.end())
{
if (program != currentProgram)
{
delete programObject->second;
mProgramMap.erase(programObject);
}
else
{
programObject->second->flagForDeletion();
}
}
}
void Context::deleteTexture(GLuint texture)
{
TextureMap::iterator textureObject = mTextureMap.find(texture);
if (textureObject != mTextureMap.end())
{
detachTexture(texture);
if (texture != 0)
{
delete textureObject->second;
}
mTextureMap.erase(textureObject);
}
}
void Context::deleteFramebuffer(GLuint framebuffer)
{
FramebufferMap::iterator framebufferObject = mFramebufferMap.find(framebuffer);
if (framebufferObject != mFramebufferMap.end())
{
detachFramebuffer(framebuffer);
delete framebufferObject->second;
mFramebufferMap.erase(framebufferObject);
}
}
void Context::deleteRenderbuffer(GLuint renderbuffer)
{
RenderbufferMap::iterator renderbufferObject = mRenderbufferMap.find(renderbuffer);
if (renderbufferObject != mRenderbufferMap.end())
{
detachRenderbuffer(renderbuffer);
delete renderbufferObject->second;
mRenderbufferMap.erase(renderbufferObject);
}
}
void Context::bindArrayBuffer(unsigned int buffer)
{
if (buffer != 0 && !getBuffer(buffer))
{
mBufferMap[buffer] = new Buffer(mBufferBackEnd);
}
arrayBuffer = buffer;
}
void Context::bindElementArrayBuffer(unsigned int buffer)
{
if (buffer != 0 && !getBuffer(buffer))
{
mBufferMap[buffer] = new Buffer(mBufferBackEnd);
}
elementArrayBuffer = buffer;
}
void Context::bindTexture2D(GLuint texture)
{
if (!getTexture(texture) && texture != 0)
{
mTextureMap[texture] = new Texture2D();
}
texture2D = texture;
samplerTexture[SAMPLER_2D][activeSampler] = texture;
}
void Context::bindTextureCubeMap(GLuint texture)
{
if (!getTexture(texture) && texture != 0)
{
mTextureMap[texture] = new TextureCubeMap();
}
textureCubeMap = texture;
samplerTexture[SAMPLER_CUBE][activeSampler] = texture;
}
void Context::bindFramebuffer(GLuint framebuffer)
{
if (!getFramebuffer(framebuffer))
{
mFramebufferMap[framebuffer] = new Framebuffer();
}
this->framebuffer = framebuffer;
}
void Context::bindRenderbuffer(GLuint renderbuffer)
{
if (renderbuffer != 0 && !getRenderbuffer(renderbuffer))
{
mRenderbufferMap[renderbuffer] = new Renderbuffer();
}
this->renderbuffer = renderbuffer;
}
void Context::useProgram(GLuint program)
{
Program *programObject = getCurrentProgram();
if (programObject && programObject->isFlaggedForDeletion())
{
deleteProgram(currentProgram);
}
currentProgram = program;
}
void Context::setFramebufferZero(Framebuffer *buffer)
{
delete mFramebufferMap[0];
mFramebufferMap[0] = buffer;
}
void Context::setColorbufferZero(Colorbuffer *buffer)
{
delete mColorbufferZero;
mColorbufferZero = buffer;
}
void Context::setDepthbufferZero(Depthbuffer *buffer)
{
delete mDepthbufferZero;
mDepthbufferZero = buffer;
}
void Context::setStencilbufferZero(Stencilbuffer *buffer)
{
delete mStencilbufferZero;
mStencilbufferZero = buffer;
}
void Context::setRenderbuffer(Renderbuffer *buffer)
{
delete mRenderbufferMap[renderbuffer];
mRenderbufferMap[renderbuffer] = buffer;
}
Buffer *Context::getBuffer(unsigned int handle)
{
BufferMap::iterator buffer = mBufferMap.find(handle);
if (buffer == mBufferMap.end())
{
return NULL;
}
else
{
return buffer->second;
}
}
Shader *Context::getShader(unsigned int handle)
{
ShaderMap::iterator shader = mShaderMap.find(handle);
if (shader == mShaderMap.end())
{
return NULL;
}
else
{
return shader->second;
}
}
Program *Context::getProgram(unsigned int handle)
{
ProgramMap::iterator program = mProgramMap.find(handle);
if (program == mProgramMap.end())
{
return NULL;
}
else
{
return program->second;
}
}
Texture *Context::getTexture(unsigned int handle)
{
if (handle == 0) return NULL;
TextureMap::iterator texture = mTextureMap.find(handle);
if (texture == mTextureMap.end())
{
return NULL;
}
else
{
return texture->second;
}
}
Framebuffer *Context::getFramebuffer(unsigned int handle)
{
FramebufferMap::iterator framebuffer = mFramebufferMap.find(handle);
if (framebuffer == mFramebufferMap.end())
{
return NULL;
}
else
{
return framebuffer->second;
}
}
Renderbuffer *Context::getRenderbuffer(unsigned int handle)
{
RenderbufferMap::iterator renderbuffer = mRenderbufferMap.find(handle);
if (renderbuffer == mRenderbufferMap.end())
{
return NULL;
}
else
{
return renderbuffer->second;
}
}
Colorbuffer *Context::getColorbuffer(GLuint handle)
{
if (handle != 0)
{
Renderbuffer *renderbuffer = getRenderbuffer(handle);
if (renderbuffer && renderbuffer->isColorbuffer())
{
return static_cast<Colorbuffer*>(renderbuffer);
}
}
else // Special case: 0 refers to different initial render targets based on the attachment type
{
return mColorbufferZero;
}
return NULL;
}
Depthbuffer *Context::getDepthbuffer(GLuint handle)
{
if (handle != 0)
{
Renderbuffer *renderbuffer = getRenderbuffer(handle);
if (renderbuffer && renderbuffer->isDepthbuffer())
{
return static_cast<Depthbuffer*>(renderbuffer);
}
}
else // Special case: 0 refers to different initial render targets based on the attachment type
{
return mDepthbufferZero;
}
return NULL;
}
Stencilbuffer *Context::getStencilbuffer(GLuint handle)
{
if (handle != 0)
{
Renderbuffer *renderbuffer = getRenderbuffer(handle);
if (renderbuffer && renderbuffer->isStencilbuffer())
{
return static_cast<Stencilbuffer*>(renderbuffer);
}
}
else
{
return mStencilbufferZero;
}
return NULL;
}
Buffer *Context::getArrayBuffer()
{
return getBuffer(arrayBuffer);
}
Buffer *Context::getElementArrayBuffer()
{
return getBuffer(elementArrayBuffer);
}
Program *Context::getCurrentProgram()
{
return getProgram(currentProgram);
}
Texture2D *Context::getTexture2D()
{
if (texture2D == 0) // Special case: 0 refers to different initial textures based on the target
{
return mTexture2DZero;
}
return (Texture2D*)getTexture(texture2D);
}
TextureCubeMap *Context::getTextureCubeMap()
{
if (textureCubeMap == 0) // Special case: 0 refers to different initial textures based on the target
{
return mTextureCubeMapZero;
}
return (TextureCubeMap*)getTexture(textureCubeMap);
}
Texture *Context::getSamplerTexture(unsigned int sampler, SamplerType type)
{
GLuint texid = samplerTexture[type][sampler];
if (texid == 0)
{
switch (type)
{
default: UNREACHABLE();
case SAMPLER_2D: return mTexture2DZero;
case SAMPLER_CUBE: return mTextureCubeMapZero;
}
}
return getTexture(texid);
}
Framebuffer *Context::getFramebuffer()
{
return getFramebuffer(framebuffer);
}
bool Context::getBooleanv(GLenum pname, GLboolean *params)
{
switch (pname)
{
case GL_SHADER_COMPILER: *params = GL_TRUE; break;
case GL_SAMPLE_COVERAGE_INVERT: *params = sampleCoverageInvert; break;
case GL_DEPTH_WRITEMASK: *params = depthMask; break;
case GL_COLOR_WRITEMASK:
params[0] = colorMaskRed;
params[1] = colorMaskGreen;
params[2] = colorMaskBlue;
params[3] = colorMaskAlpha;
break;
default:
return false;
}
return true;
}
bool Context::getFloatv(GLenum pname, GLfloat *params)
{
// Please note: DEPTH_CLEAR_VALUE is included in our internal getFloatv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application.
switch (pname)
{
case GL_LINE_WIDTH: *params = lineWidth; break;
case GL_SAMPLE_COVERAGE_VALUE: *params = sampleCoverageValue; break;
case GL_DEPTH_CLEAR_VALUE: *params = depthClearValue; break;
case GL_POLYGON_OFFSET_FACTOR: *params = polygonOffsetFactor; break;
case GL_POLYGON_OFFSET_UNITS: *params = polygonOffsetUnits; break;
case GL_ALIASED_LINE_WIDTH_RANGE:
params[0] = gl::ALIASED_LINE_WIDTH_RANGE_MIN;
params[1] = gl::ALIASED_LINE_WIDTH_RANGE_MAX;
break;
case GL_ALIASED_POINT_SIZE_RANGE:
params[0] = gl::ALIASED_POINT_SIZE_RANGE_MIN;
params[1] = gl::ALIASED_POINT_SIZE_RANGE_MAX;
break;
case GL_DEPTH_RANGE:
params[0] = zNear;
params[1] = zFar;
break;
case GL_COLOR_CLEAR_VALUE:
params[0] = colorClearValue.red;
params[1] = colorClearValue.green;
params[2] = colorClearValue.blue;
params[3] = colorClearValue.alpha;
break;
default:
return false;
}
return true;
}
bool Context::getIntegerv(GLenum pname, GLint *params)
{
// Please note: DEPTH_CLEAR_VALUE is not included in our internal getIntegerv implementation
// because it is stored as a float, despite the fact that the GL ES 2.0 spec names
// GetIntegerv as its native query function. As it would require conversion in any
// case, this should make no difference to the calling application. You may find it in
// Context::getFloatv.
switch (pname)
{
case GL_MAX_VERTEX_ATTRIBS: *params = gl::MAX_VERTEX_ATTRIBS; break;
case GL_MAX_VERTEX_UNIFORM_VECTORS: *params = gl::MAX_VERTEX_UNIFORM_VECTORS; break;
case GL_MAX_VARYING_VECTORS: *params = gl::MAX_VARYING_VECTORS; break;
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS: *params = gl::MAX_COMBINED_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_VERTEX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_TEXTURE_IMAGE_UNITS: *params = gl::MAX_TEXTURE_IMAGE_UNITS; break;
case GL_MAX_FRAGMENT_UNIFORM_VECTORS: *params = gl::MAX_FRAGMENT_UNIFORM_VECTORS; break;
case GL_MAX_RENDERBUFFER_SIZE: *params = gl::MAX_RENDERBUFFER_SIZE; break;
case GL_NUM_SHADER_BINARY_FORMATS: *params = 0; break;
case GL_NUM_COMPRESSED_TEXTURE_FORMATS: *params = 0; break;
case GL_COMPRESSED_TEXTURE_FORMATS: /* no compressed texture formats are supported */ break;
case GL_SHADER_BINARY_FORMATS: /* no shader binary formats are supported */ break;
case GL_ARRAY_BUFFER_BINDING: *params = arrayBuffer; break;
case GL_ELEMENT_ARRAY_BUFFER_BINDING: *params = elementArrayBuffer; break;
case GL_FRAMEBUFFER_BINDING: *params = framebuffer; break;
case GL_RENDERBUFFER_BINDING: *params = renderbuffer; break;
case GL_CURRENT_PROGRAM: *params = currentProgram; break;
case GL_PACK_ALIGNMENT: *params = packAlignment; break;
case GL_UNPACK_ALIGNMENT: *params = unpackAlignment; break;
case GL_GENERATE_MIPMAP_HINT: *params = generateMipmapHint; break;
case GL_ACTIVE_TEXTURE: *params = activeSampler; break;
case GL_STENCIL_FUNC: *params = stencilFunc; break;
case GL_STENCIL_REF: *params = stencilRef; break;
case GL_STENCIL_VALUE_MASK: *params = stencilMask; break;
case GL_STENCIL_BACK_FUNC: *params = stencilBackFunc; break;
case GL_STENCIL_BACK_REF: *params = stencilBackRef; break;
case GL_STENCIL_BACK_VALUE_MASK: *params = stencilBackMask; break;
case GL_STENCIL_FAIL: *params = stencilFail; break;
case GL_STENCIL_PASS_DEPTH_FAIL: *params = stencilPassDepthFail; break;
case GL_STENCIL_PASS_DEPTH_PASS: *params = stencilPassDepthPass; break;
case GL_STENCIL_BACK_FAIL: *params = stencilBackFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_FAIL: *params = stencilBackPassDepthFail; break;
case GL_STENCIL_BACK_PASS_DEPTH_PASS: *params = stencilBackPassDepthPass; break;
case GL_DEPTH_FUNC: *params = depthFunc; break;
case GL_BLEND_SRC_RGB: *params = sourceBlendRGB; break;
case GL_BLEND_SRC_ALPHA: *params = sourceBlendAlpha; break;
case GL_BLEND_DST_RGB: *params = destBlendRGB; break;
case GL_BLEND_DST_ALPHA: *params = destBlendAlpha; break;
case GL_BLEND_EQUATION_RGB: *params = blendEquationRGB; break;
case GL_BLEND_EQUATION_ALPHA: *params = blendEquationAlpha; break;
case GL_STENCIL_WRITEMASK: *params = stencilWritemask; break;
case GL_STENCIL_BACK_WRITEMASK: *params = stencilBackWritemask; break;
case GL_STENCIL_CLEAR_VALUE: *params = stencilClearValue; break;
case GL_SUBPIXEL_BITS: *params = 4; break;
case GL_MAX_TEXTURE_SIZE: *params = gl::MAX_TEXTURE_SIZE; break;
case GL_MAX_CUBE_MAP_TEXTURE_SIZE: *params = gl::MAX_CUBE_MAP_TEXTURE_SIZE; break;
case GL_SAMPLE_BUFFERS: *params = 0; break;
case GL_SAMPLES: *params = 0; break;
case GL_IMPLEMENTATION_COLOR_READ_TYPE: *params = gl::IMPLEMENTATION_COLOR_READ_TYPE; break;
case GL_IMPLEMENTATION_COLOR_READ_FORMAT: *params = gl::IMPLEMENTATION_COLOR_READ_FORMAT; break;
case GL_MAX_VIEWPORT_DIMS:
{
int maxDimension = std::max((int)gl::MAX_RENDERBUFFER_SIZE, (int)gl::MAX_TEXTURE_SIZE);
params[0] = maxDimension;
params[1] = maxDimension;
}
break;
case GL_VIEWPORT:
params[0] = viewportX;
params[1] = viewportY;
params[2] = viewportWidth;
params[3] = viewportHeight;
break;
case GL_SCISSOR_BOX:
params[0] = scissorX;
params[1] = scissorY;
params[2] = scissorWidth;
params[3] = scissorHeight;
break;
case GL_CULL_FACE_MODE: *params = cullMode; break;
case GL_FRONT_FACE: *params = frontFace; break;
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
{
gl::Framebuffer *framebuffer = getFramebuffer();
gl::Colorbuffer *colorbuffer = framebuffer->getColorbuffer();
if (colorbuffer)
{
switch (pname)
{
case GL_RED_BITS: *params = colorbuffer->getRedSize(); break;
case GL_GREEN_BITS: *params = colorbuffer->getGreenSize(); break;
case GL_BLUE_BITS: *params = colorbuffer->getBlueSize(); break;
case GL_ALPHA_BITS: *params = colorbuffer->getAlphaSize(); break;
}
}
else
{
*params = 0;
}
}
break;
case GL_DEPTH_BITS:
{
gl::Framebuffer *framebuffer = getFramebuffer();
gl::Depthbuffer *depthbuffer = framebuffer->getDepthbuffer();
if (depthbuffer)
{
*params = depthbuffer->getDepthSize();
}
else
{
*params = 0;
}
}
break;
case GL_STENCIL_BITS:
{
gl::Framebuffer *framebuffer = getFramebuffer();
gl::Stencilbuffer *stencilbuffer = framebuffer->getStencilbuffer();
if (stencilbuffer)
{
*params = stencilbuffer->getStencilSize();
}
else
{
*params = 0;
}
}
break;
case GL_TEXTURE_BINDING_2D:
{
if (activeSampler < 0 || activeSampler > gl::MAX_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = samplerTexture[SAMPLER_2D][activeSampler];
}
break;
case GL_TEXTURE_BINDING_CUBE_MAP:
{
if (activeSampler < 0 || activeSampler > gl::MAX_TEXTURE_IMAGE_UNITS - 1)
{
error(GL_INVALID_OPERATION);
return false;
}
*params = samplerTexture[SAMPLER_CUBE][activeSampler];
}
break;
default:
return false;
}
return true;
}
bool Context::getQueryParameterInfo(GLenum pname, GLenum *type, unsigned int *numParams)
{
// Please note: the query type returned for DEPTH_CLEAR_VALUE in this implementation
// is FLOAT rather than INT, as would be suggested by the GL ES 2.0 spec. This is due
// to the fact that it is stored internally as a float, and so would require conversion
// if returned from Context::getIntegerv. Since this conversion is already implemented
// in the case that one calls glGetIntegerv to retrieve a float-typed state variable, we
// place DEPTH_CLEAR_VALUE with the floats. This should make no difference to the calling
// application.
switch (pname)
{
case GL_COMPRESSED_TEXTURE_FORMATS: /* no compressed texture formats are supported */
case GL_SHADER_BINARY_FORMATS:
{
*type = GL_INT;
*numParams = 0;
}
break;
case GL_MAX_VERTEX_ATTRIBS:
case GL_MAX_VERTEX_UNIFORM_VECTORS:
case GL_MAX_VARYING_VECTORS:
case GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS:
case GL_MAX_VERTEX_TEXTURE_IMAGE_UNITS:
case GL_MAX_TEXTURE_IMAGE_UNITS:
case GL_MAX_FRAGMENT_UNIFORM_VECTORS:
case GL_MAX_RENDERBUFFER_SIZE:
case GL_NUM_SHADER_BINARY_FORMATS:
case GL_NUM_COMPRESSED_TEXTURE_FORMATS:
case GL_ARRAY_BUFFER_BINDING:
case GL_FRAMEBUFFER_BINDING:
case GL_RENDERBUFFER_BINDING:
case GL_CURRENT_PROGRAM:
case GL_PACK_ALIGNMENT:
case GL_UNPACK_ALIGNMENT:
case GL_GENERATE_MIPMAP_HINT:
case GL_RED_BITS:
case GL_GREEN_BITS:
case GL_BLUE_BITS:
case GL_ALPHA_BITS:
case GL_DEPTH_BITS:
case GL_STENCIL_BITS:
case GL_ELEMENT_ARRAY_BUFFER_BINDING:
case GL_CULL_FACE_MODE:
case GL_FRONT_FACE:
case GL_ACTIVE_TEXTURE:
case GL_STENCIL_FUNC:
case GL_STENCIL_VALUE_MASK:
case GL_STENCIL_REF:
case GL_STENCIL_FAIL:
case GL_STENCIL_PASS_DEPTH_FAIL:
case GL_STENCIL_PASS_DEPTH_PASS:
case GL_STENCIL_BACK_FUNC:
case GL_STENCIL_BACK_VALUE_MASK:
case GL_STENCIL_BACK_REF:
case GL_STENCIL_BACK_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_FAIL:
case GL_STENCIL_BACK_PASS_DEPTH_PASS:
case GL_DEPTH_FUNC:
case GL_BLEND_SRC_RGB:
case GL_BLEND_SRC_ALPHA:
case GL_BLEND_DST_RGB:
case GL_BLEND_DST_ALPHA:
case GL_BLEND_EQUATION_RGB:
case GL_BLEND_EQUATION_ALPHA:
case GL_STENCIL_WRITEMASK:
case GL_STENCIL_BACK_WRITEMASK:
case GL_STENCIL_CLEAR_VALUE:
case GL_SUBPIXEL_BITS:
case GL_MAX_TEXTURE_SIZE:
case GL_MAX_CUBE_MAP_TEXTURE_SIZE:
case GL_SAMPLE_BUFFERS:
case GL_SAMPLES:
case GL_IMPLEMENTATION_COLOR_READ_TYPE:
case GL_IMPLEMENTATION_COLOR_READ_FORMAT:
case GL_TEXTURE_BINDING_2D:
case GL_TEXTURE_BINDING_CUBE_MAP:
{
*type = GL_INT;
*numParams = 1;
}
break;
case GL_MAX_VIEWPORT_DIMS:
{
*type = GL_INT;
*numParams = 2;
}
break;
case GL_VIEWPORT:
case GL_SCISSOR_BOX:
{
*type = GL_INT;
*numParams = 4;
}
break;
case GL_SHADER_COMPILER:
case GL_SAMPLE_COVERAGE_INVERT:
case GL_DEPTH_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 1;
}
break;
case GL_COLOR_WRITEMASK:
{
*type = GL_BOOL;
*numParams = 4;
}
break;
case GL_POLYGON_OFFSET_FACTOR:
case GL_POLYGON_OFFSET_UNITS:
case GL_SAMPLE_COVERAGE_VALUE:
case GL_DEPTH_CLEAR_VALUE:
case GL_LINE_WIDTH:
{
*type = GL_FLOAT;
*numParams = 1;
}
break;
case GL_ALIASED_LINE_WIDTH_RANGE:
case GL_ALIASED_POINT_SIZE_RANGE:
case GL_DEPTH_RANGE:
{
*type = GL_FLOAT;
*numParams = 2;
}
break;
case GL_COLOR_CLEAR_VALUE:
{
*type = GL_FLOAT;
*numParams = 4;
}
break;
default:
return false;
}
return true;
}
// Applies the render target surface, depth stencil surface, viewport rectangle and
// scissor rectangle to the Direct3D 9 device
bool Context::applyRenderTarget(bool ignoreViewport)
{
IDirect3DDevice9 *device = getDevice();
Framebuffer *framebufferObject = getFramebuffer();
if (!framebufferObject || framebufferObject->completeness() != GL_FRAMEBUFFER_COMPLETE)
{
return false;
}
IDirect3DSurface9 *renderTarget = framebufferObject->getRenderTarget();
IDirect3DSurface9 *depthStencil = framebufferObject->getDepthStencil();
device->SetRenderTarget(0, renderTarget);
device->SetDepthStencilSurface(depthStencil);
D3DVIEWPORT9 viewport;
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
if (ignoreViewport)
{
viewport.X = 0;
viewport.Y = 0;
viewport.Width = desc.Width;
viewport.Height = desc.Height;
viewport.MinZ = 0.0f;
viewport.MaxZ = 1.0f;
}
else
{
viewport.X = std::max(viewportX, 0);
viewport.Y = std::max(viewportY, 0);
viewport.Width = std::min(viewportWidth, (int)desc.Width - (int)viewport.X);
viewport.Height = std::min(viewportHeight, (int)desc.Height - (int)viewport.Y);
viewport.MinZ = clamp01(zNear);
viewport.MaxZ = clamp01(zFar);
}
device->SetViewport(&viewport);
if (scissorTest)
{
RECT rect = {scissorX,
scissorY,
scissorX + scissorWidth,
scissorY + scissorHeight};
device->SetScissorRect(&rect);
device->SetRenderState(D3DRS_SCISSORTESTENABLE, TRUE);
}
else
{
device->SetRenderState(D3DRS_SCISSORTESTENABLE, FALSE);
}
if (currentProgram)
{
D3DSURFACE_DESC description;
renderTarget->GetDesc(&description);
Program *programObject = getCurrentProgram();
GLint halfPixelSize = programObject->getUniformLocation("gl_HalfPixelSize");
GLfloat xy[2] = {1.0f / description.Width, 1.0f / description.Height};
programObject->setUniform2fv(halfPixelSize, 1, (GLfloat*)&xy);
GLint window = programObject->getUniformLocation("gl_Window");
GLfloat whxy[4] = {viewportWidth / 2.0f, viewportHeight / 2.0f, (float)viewportX + viewportWidth / 2.0f, (float)viewportY + viewportHeight / 2.0f};
programObject->setUniform4fv(window, 1, (GLfloat*)&whxy);
GLint depth = programObject->getUniformLocation("gl_Depth");
GLfloat dz[2] = {(zFar - zNear) / 2.0f, (zNear + zFar) / 2.0f};
programObject->setUniform2fv(depth, 1, (GLfloat*)&dz);
GLint near = programObject->getUniformLocation("gl_DepthRange.near");
programObject->setUniform1fv(near, 1, &zNear);
GLint far = programObject->getUniformLocation("gl_DepthRange.far");
programObject->setUniform1fv(far, 1, &zFar);
GLint diff = programObject->getUniformLocation("gl_DepthRange.diff");
GLfloat zDiff = zFar - zNear;
programObject->setUniform1fv(diff, 1, &zDiff);
}
return true;
}
// Applies the fixed-function state (culling, depth test, alpha blending, stenciling, etc) to the Direct3D 9 device
void Context::applyState()
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
GLint frontCCW = programObject->getUniformLocation("__frontCCW");
GLint ccw = (frontFace == GL_CCW);
programObject->setUniform1iv(frontCCW, 1, &ccw);
if (cullFace)
{
device->SetRenderState(D3DRS_CULLMODE, es2dx::ConvertCullMode(cullMode, frontFace));
}
else
{
device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
}
if (depthTest)
{
device->SetRenderState(D3DRS_ZENABLE, D3DZB_TRUE);
device->SetRenderState(D3DRS_ZFUNC, es2dx::ConvertComparison(depthFunc));
}
else
{
device->SetRenderState(D3DRS_ZENABLE, D3DZB_FALSE);
}
if (blend)
{
device->SetRenderState(D3DRS_ALPHABLENDENABLE, TRUE);
if (sourceBlendRGB != GL_CONSTANT_ALPHA && sourceBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA &&
destBlendRGB != GL_CONSTANT_ALPHA && destBlendRGB != GL_ONE_MINUS_CONSTANT_ALPHA)
{
device->SetRenderState(D3DRS_BLENDFACTOR, es2dx::ConvertColor(blendColor));
}
else
{
device->SetRenderState(D3DRS_BLENDFACTOR, D3DCOLOR_RGBA(unorm<8>(blendColor.alpha),
unorm<8>(blendColor.alpha),
unorm<8>(blendColor.alpha),
unorm<8>(blendColor.alpha)));
}
device->SetRenderState(D3DRS_SRCBLEND, es2dx::ConvertBlendFunc(sourceBlendRGB));
device->SetRenderState(D3DRS_DESTBLEND, es2dx::ConvertBlendFunc(destBlendRGB));
device->SetRenderState(D3DRS_BLENDOP, es2dx::ConvertBlendOp(blendEquationRGB));
if (sourceBlendRGB != sourceBlendAlpha || destBlendRGB != destBlendAlpha || blendEquationRGB != blendEquationAlpha)
{
device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, TRUE);
device->SetRenderState(D3DRS_SRCBLENDALPHA, es2dx::ConvertBlendFunc(sourceBlendAlpha));
device->SetRenderState(D3DRS_DESTBLENDALPHA, es2dx::ConvertBlendFunc(destBlendAlpha));
device->SetRenderState(D3DRS_BLENDOPALPHA, es2dx::ConvertBlendOp(blendEquationAlpha));
}
else
{
device->SetRenderState(D3DRS_SEPARATEALPHABLENDENABLE, FALSE);
}
}
else
{
device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
}
if (stencilTest)
{
device->SetRenderState(D3DRS_STENCILENABLE, TRUE);
device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, TRUE);
// FIXME: Unsupported by D3D9
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILREF = D3DRS_STENCILREF;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILMASK = D3DRS_STENCILMASK;
const D3DRENDERSTATETYPE D3DRS_CCW_STENCILWRITEMASK = D3DRS_STENCILWRITEMASK;
if(stencilWritemask != stencilBackWritemask || stencilRef != stencilBackRef || stencilMask != stencilBackMask)
{
ERR("Separate front/back stencil writemasks, reference values, or stencil mask values are invalid under WebGL.");
return error(GL_INVALID_OPERATION);
}
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, stencilWritemask);
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC, es2dx::ConvertComparison(stencilFunc));
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, stencilRef); // FIXME: Clamp to range
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, stencilMask);
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL, es2dx::ConvertStencilOp(stencilFail));
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL, es2dx::ConvertStencilOp(stencilPassDepthFail));
device->SetRenderState(frontFace == GL_CCW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS, es2dx::ConvertStencilOp(stencilPassDepthPass));
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILWRITEMASK : D3DRS_CCW_STENCILWRITEMASK, stencilBackWritemask);
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILFUNC : D3DRS_CCW_STENCILFUNC, es2dx::ConvertComparison(stencilBackFunc));
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILREF : D3DRS_CCW_STENCILREF, stencilBackRef); // FIXME: Clamp to range
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILMASK : D3DRS_CCW_STENCILMASK, stencilBackMask);
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILFAIL : D3DRS_CCW_STENCILFAIL, es2dx::ConvertStencilOp(stencilBackFail));
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILZFAIL : D3DRS_CCW_STENCILZFAIL, es2dx::ConvertStencilOp(stencilBackPassDepthFail));
device->SetRenderState(frontFace == GL_CW ? D3DRS_STENCILPASS : D3DRS_CCW_STENCILPASS, es2dx::ConvertStencilOp(stencilBackPassDepthPass));
}
else
{
device->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
device->SetRenderState(D3DRS_COLORWRITEENABLE, es2dx::ConvertColorMask(colorMaskRed, colorMaskGreen, colorMaskBlue, colorMaskAlpha));
device->SetRenderState(D3DRS_ZWRITEENABLE, depthMask ? TRUE : FALSE);
if (polygonOffsetFill)
{
UNIMPLEMENTED(); // FIXME
}
if (sampleAlphaToCoverage)
{
UNIMPLEMENTED(); // FIXME
}
if (sampleCoverage)
{
UNIMPLEMENTED(); // FIXME: Ignore when SAMPLE_BUFFERS is not one
}
device->SetRenderState(D3DRS_DITHERENABLE, dither ? TRUE : FALSE);
}
// Fill in the programAttribute field of the array of TranslatedAttributes based on the active GLSL program.
void Context::lookupAttributeMapping(TranslatedAttribute *attributes)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
if (attributes[i].enabled)
{
attributes[i].programAttribute = getCurrentProgram()->getInputMapping(i);
}
}
}
// The indices parameter to glDrawElements can have two interpretations:
// - as a pointer into client memory
// - as an offset into the current GL_ELEMENT_ARRAY_BUFFER buffer
// Handle these cases here and return a pointer to the index data.
const Index *Context::adjustIndexPointer(const void *indices)
{
if (elementArrayBuffer)
{
Buffer *buffer = getBuffer(elementArrayBuffer);
return reinterpret_cast<const Index*>(static_cast<unsigned char*>(buffer->data()) + reinterpret_cast<GLsizei>(indices));
}
else
{
return static_cast<const Index*>(indices);
}
}
void Context::applyVertexBuffer(GLint first, GLsizei count)
{
TranslatedAttribute translated[MAX_VERTEX_ATTRIBS];
mVertexDataManager->preRenderValidate(first, count, translated);
lookupAttributeMapping(translated);
mBufferBackEnd->setupAttributesPreDraw(translated);
}
void Context::applyVertexBuffer(const TranslatedIndexData &indexInfo)
{
TranslatedAttribute translated[MAX_VERTEX_ATTRIBS];
mVertexDataManager->preRenderValidate(indexInfo, translated);
lookupAttributeMapping(translated);
mBufferBackEnd->setupAttributesPreDraw(translated);
}
// Applies the indices and element array bindings to the Direct3D 9 device
TranslatedIndexData Context::applyIndexBuffer(const void *indices, GLsizei count, GLenum mode, GLenum type)
{
TranslatedIndexData indexInfo = mIndexDataManager->preRenderValidate(mode, type, count, getBuffer(elementArrayBuffer), indices);
mBufferBackEnd->setupIndicesPreDraw(indexInfo);
return indexInfo;
}
// Applies the shaders and shader constants to the Direct3D 9 device
void Context::applyShaders()
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
IDirect3DVertexShader9 *vertexShader = programObject->getVertexShader();
IDirect3DPixelShader9 *pixelShader = programObject->getPixelShader();
device->SetVertexShader(vertexShader);
device->SetPixelShader(pixelShader);
programObject->applyUniforms();
}
// Applies the textures and sampler states to the Direct3D 9 device
void Context::applyTextures()
{
IDirect3DDevice9 *device = getDevice();
Program *programObject = getCurrentProgram();
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
int textureUnit = programObject->getSamplerMapping(sampler);
if (textureUnit != -1)
{
SamplerType textureType = programObject->getSamplerType(sampler);
Texture *texture = getSamplerTexture(textureUnit, textureType);
if (texture->isComplete())
{
GLenum wrapS = texture->getWrapS();
GLenum wrapT = texture->getWrapT();
GLenum minFilter = texture->getMinFilter();
GLenum magFilter = texture->getMagFilter();
device->SetSamplerState(sampler, D3DSAMP_ADDRESSU, es2dx::ConvertTextureWrap(wrapS));
device->SetSamplerState(sampler, D3DSAMP_ADDRESSV, es2dx::ConvertTextureWrap(wrapT));
device->SetSamplerState(sampler, D3DSAMP_MAGFILTER, es2dx::ConvertMagFilter(magFilter));
D3DTEXTUREFILTERTYPE d3dMinFilter, d3dMipFilter;
es2dx::ConvertMinFilter(minFilter, &d3dMinFilter, &d3dMipFilter);
device->SetSamplerState(sampler, D3DSAMP_MINFILTER, d3dMinFilter);
device->SetSamplerState(sampler, D3DSAMP_MIPFILTER, d3dMipFilter);
device->SetTexture(sampler, texture->getTexture());
}
else
{
device->SetTexture(sampler, getIncompleteTexture(textureType)->getTexture());
}
}
else
{
device->SetTexture(sampler, NULL);
}
}
}
void Context::readPixels(GLint x, GLint y, GLsizei width, GLsizei height, GLenum format, GLenum type, void* pixels)
{
Framebuffer *framebuffer = getFramebuffer();
IDirect3DSurface9 *renderTarget = framebuffer->getRenderTarget();
IDirect3DDevice9 *device = getDevice();
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
IDirect3DSurface9 *systemSurface;
HRESULT result = device->CreateOffscreenPlainSurface(desc.Width, desc.Height, desc.Format, D3DPOOL_SYSTEMMEM, &systemSurface, NULL);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (desc.MultiSampleType != D3DMULTISAMPLE_NONE)
{
UNIMPLEMENTED(); // FIXME: Requires resolve using StretchRect into non-multisampled render target
}
result = device->GetRenderTargetData(renderTarget, systemSurface);
if (result == D3DERR_DRIVERINTERNALERROR)
{
systemSurface->Release();
return error(GL_OUT_OF_MEMORY);
}
if (FAILED(result))
{
UNREACHABLE();
systemSurface->Release();
return; // No sensible error to generate
}
D3DLOCKED_RECT lock;
RECT rect = {std::max(x, 0),
std::max(y, 0),
std::min(x + width, (int)desc.Width),
std::min(y + height, (int)desc.Height)};
result = systemSurface->LockRect(&lock, &rect, D3DLOCK_READONLY);
if (FAILED(result))
{
UNREACHABLE();
systemSurface->Release();
return; // No sensible error to generate
}
unsigned char *source = (unsigned char*)lock.pBits;
unsigned char *dest = (unsigned char*)pixels;
for (int j = 0; j < rect.bottom - rect.top; j++)
{
for (int i = 0; i < rect.right - rect.left; i++)
{
float r;
float g;
float b;
float a;
switch (desc.Format)
{
case D3DFMT_R5G6B5:
{
unsigned short rgb = *(unsigned short*)(source + 2 * i + j * lock.Pitch);
a = 1.0f;
b = (rgb & 0x001F) * (1.0f / 0x001F);
g = (rgb & 0x07E0) * (1.0f / 0x07E0);
r = (rgb & 0xF800) * (1.0f / 0xF800);
}
break;
case D3DFMT_X1R5G5B5:
{
unsigned short xrgb = *(unsigned short*)(source + 2 * i + j * lock.Pitch);
a = 1.0f;
b = (xrgb & 0x001F) * (1.0f / 0x001F);
g = (xrgb & 0x03E0) * (1.0f / 0x03E0);
r = (xrgb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case D3DFMT_A1R5G5B5:
{
unsigned short argb = *(unsigned short*)(source + 2 * i + j * lock.Pitch);
a = (argb & 0x8000) ? 1.0f : 0.0f;
b = (argb & 0x001F) * (1.0f / 0x001F);
g = (argb & 0x03E0) * (1.0f / 0x03E0);
r = (argb & 0x7C00) * (1.0f / 0x7C00);
}
break;
case D3DFMT_A8R8G8B8:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = (argb & 0xFF000000) * (1.0f / 0xFF000000);
b = (argb & 0x000000FF) * (1.0f / 0x000000FF);
g = (argb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (argb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_X8R8G8B8:
{
unsigned int xrgb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = 1.0f;
b = (xrgb & 0x000000FF) * (1.0f / 0x000000FF);
g = (xrgb & 0x0000FF00) * (1.0f / 0x0000FF00);
r = (xrgb & 0x00FF0000) * (1.0f / 0x00FF0000);
}
break;
case D3DFMT_A2R10G10B10:
{
unsigned int argb = *(unsigned int*)(source + 4 * i + j * lock.Pitch);
a = (argb & 0xC0000000) * (1.0f / 0xC0000000);
b = (argb & 0x000003FF) * (1.0f / 0x000003FF);
g = (argb & 0x000FFC00) * (1.0f / 0x000FFC00);
r = (argb & 0x3FF00000) * (1.0f / 0x3FF00000);
}
break;
default:
UNIMPLEMENTED(); // FIXME
UNREACHABLE();
}
switch (format)
{
case GL_RGBA:
switch (type)
{
case GL_UNSIGNED_BYTE:
dest[4 * (i + j * width) + 0] = (unsigned char)(255 * r + 0.5f);
dest[4 * (i + j * width) + 1] = (unsigned char)(255 * g + 0.5f);
dest[4 * (i + j * width) + 2] = (unsigned char)(255 * b + 0.5f);
dest[4 * (i + j * width) + 3] = (unsigned char)(255 * a + 0.5f);
break;
default: UNREACHABLE();
}
break;
case IMPLEMENTATION_COLOR_READ_FORMAT:
switch (type)
{
case IMPLEMENTATION_COLOR_READ_TYPE:
break;
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
}
systemSurface->UnlockRect();
systemSurface->Release();
}
void Context::clear(GLbitfield mask)
{
IDirect3DDevice9 *device = getDevice();
DWORD flags = 0;
if (mask & GL_COLOR_BUFFER_BIT)
{
mask &= ~GL_COLOR_BUFFER_BIT;
flags |= D3DCLEAR_TARGET;
}
if (mask & GL_DEPTH_BUFFER_BIT)
{
mask &= ~GL_DEPTH_BUFFER_BIT;
if (depthMask)
{
flags |= D3DCLEAR_ZBUFFER;
}
}
Framebuffer *framebufferObject = getFramebuffer();
IDirect3DSurface9 *depthStencil = framebufferObject->getDepthStencil();
GLuint stencilUnmasked = 0x0;
if ((mask & GL_STENCIL_BUFFER_BIT) && depthStencil)
{
D3DSURFACE_DESC desc;
depthStencil->GetDesc(&desc);
mask &= ~GL_STENCIL_BUFFER_BIT;
unsigned int stencilSize = es2dx::GetStencilSize(desc.Format);
stencilUnmasked = (0x1 << stencilSize) - 1;
if (stencilUnmasked != 0x0)
{
flags |= D3DCLEAR_STENCIL;
}
}
if (mask != 0)
{
return error(GL_INVALID_VALUE);
}
applyRenderTarget(true); // Clips the clear to the scissor rectangle but not the viewport
D3DCOLOR color = D3DCOLOR_ARGB(unorm<8>(colorClearValue.alpha), unorm<8>(colorClearValue.red), unorm<8>(colorClearValue.green), unorm<8>(colorClearValue.blue));
float depth = clamp01(depthClearValue);
int stencil = stencilClearValue & 0x000000FF;
IDirect3DSurface9 *renderTarget = framebufferObject->getRenderTarget();
D3DSURFACE_DESC desc;
renderTarget->GetDesc(&desc);
bool alphaUnmasked = (es2dx::GetAlphaSize(desc.Format) == 0) || colorMaskAlpha;
const bool needMaskedStencilClear = (flags & D3DCLEAR_STENCIL) &&
(stencilWritemask & stencilUnmasked) != stencilUnmasked;
const bool needMaskedColorClear = (flags & D3DCLEAR_TARGET) &&
!(colorMaskRed && colorMaskGreen &&
colorMaskBlue && alphaUnmasked);
if (needMaskedColorClear || needMaskedStencilClear)
{
device->SetRenderState(D3DRS_ZWRITEENABLE, FALSE);
device->SetRenderState(D3DRS_ZFUNC, D3DCMP_ALWAYS);
device->SetRenderState(D3DRS_ZENABLE, FALSE);
device->SetRenderState(D3DRS_CULLMODE, D3DCULL_NONE);
device->SetRenderState(D3DRS_FILLMODE, D3DFILL_SOLID);
device->SetRenderState(D3DRS_ALPHATESTENABLE, FALSE);
device->SetRenderState(D3DRS_ALPHABLENDENABLE, FALSE);
device->SetRenderState(D3DRS_CLIPPLANEENABLE, 0);
if (flags & D3DCLEAR_TARGET)
{
device->SetRenderState(D3DRS_COLORWRITEENABLE, (colorMaskRed ? D3DCOLORWRITEENABLE_RED : 0) |
(colorMaskGreen ? D3DCOLORWRITEENABLE_GREEN : 0) |
(colorMaskBlue ? D3DCOLORWRITEENABLE_BLUE : 0) |
(colorMaskAlpha ? D3DCOLORWRITEENABLE_ALPHA : 0));
}
else
{
device->SetRenderState(D3DRS_COLORWRITEENABLE, 0);
}
if (stencilUnmasked != 0x0 && (flags & D3DCLEAR_STENCIL))
{
device->SetRenderState(D3DRS_STENCILENABLE, TRUE);
device->SetRenderState(D3DRS_TWOSIDEDSTENCILMODE, FALSE);
device->SetRenderState(D3DRS_STENCILFUNC, D3DCMP_ALWAYS);
device->SetRenderState(D3DRS_STENCILREF, stencil);
device->SetRenderState(D3DRS_STENCILWRITEMASK, stencilWritemask);
device->SetRenderState(D3DRS_STENCILFAIL, D3DSTENCILOP_REPLACE);
device->SetRenderState(D3DRS_STENCILZFAIL, D3DSTENCILOP_REPLACE);
device->SetRenderState(D3DRS_STENCILPASS, D3DSTENCILOP_REPLACE);
}
else
{
device->SetRenderState(D3DRS_STENCILENABLE, FALSE);
}
device->SetPixelShader(NULL);
device->SetVertexShader(NULL);
device->SetFVF(D3DFVF_XYZRHW | D3DFVF_DIFFUSE);
struct Vertex
{
float x, y, z, w;
D3DCOLOR diffuse;
};
Vertex quad[4];
quad[0].x = 0.0f;
quad[0].y = (float)desc.Height;
quad[0].z = 0.0f;
quad[0].w = 1.0f;
quad[0].diffuse = color;
quad[1].x = (float)desc.Width;
quad[1].y = (float)desc.Height;
quad[1].z = 0.0f;
quad[1].w = 1.0f;
quad[1].diffuse = color;
quad[2].x = 0.0f;
quad[2].y = 0.0f;
quad[2].z = 0.0f;
quad[2].w = 1.0f;
quad[2].diffuse = color;
quad[3].x = (float)desc.Width;
quad[3].y = 0.0f;
quad[3].z = 0.0f;
quad[3].w = 1.0f;
quad[3].diffuse = color;
device->BeginScene();
device->DrawPrimitiveUP(D3DPT_TRIANGLESTRIP, 2, quad, sizeof(Vertex));
device->EndScene();
if (flags & D3DCLEAR_ZBUFFER)
{
device->SetRenderState(D3DRS_ZENABLE, TRUE);
device->SetRenderState(D3DRS_ZWRITEENABLE, TRUE);
device->Clear(0, NULL, D3DCLEAR_ZBUFFER, color, depth, stencil);
}
}
else
{
device->Clear(0, NULL, flags, color, depth, stencil);
}
}
void Context::drawArrays(GLenum mode, GLint first, GLsizei count)
{
if (!currentProgram)
{
return error(GL_INVALID_OPERATION);
}
IDirect3DDevice9 *device = getDevice();
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
applyState();
applyVertexBuffer(first, count);
applyShaders();
applyTextures();
if (!cullSkipsDraw(mode))
{
device->BeginScene();
device->DrawPrimitive(primitiveType, 0, primitiveCount);
device->EndScene();
}
}
void Context::drawElements(GLenum mode, GLsizei count, GLenum type, const void* indices)
{
if (!currentProgram)
{
return error(GL_INVALID_OPERATION);
}
if (!indices && !elementArrayBuffer)
{
return error(GL_INVALID_OPERATION);
}
IDirect3DDevice9 *device = getDevice();
D3DPRIMITIVETYPE primitiveType;
int primitiveCount;
if(!es2dx::ConvertPrimitiveType(mode, count, &primitiveType, &primitiveCount))
return error(GL_INVALID_ENUM);
if (primitiveCount <= 0)
{
return;
}
if (!applyRenderTarget(false))
{
return error(GL_INVALID_FRAMEBUFFER_OPERATION);
}
applyState();
TranslatedIndexData indexInfo = applyIndexBuffer(indices, count, mode, type);
applyVertexBuffer(indexInfo);
applyShaders();
applyTextures();
if (!cullSkipsDraw(mode))
{
device->BeginScene();
device->DrawIndexedPrimitive(primitiveType, -(INT)indexInfo.minIndex, indexInfo.minIndex, indexInfo.maxIndex-indexInfo.minIndex+1, indexInfo.offset/sizeof(Index), primitiveCount);
device->EndScene();
}
}
void Context::finish()
{
IDirect3DDevice9 *device = getDevice();
IDirect3DQuery9 *occlusionQuery = NULL;
HRESULT result = device->CreateQuery(D3DQUERYTYPE_OCCLUSION, &occlusionQuery);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (occlusionQuery)
{
occlusionQuery->Issue(D3DISSUE_BEGIN);
// Render something outside the render target
device->SetPixelShader(NULL);
device->SetVertexShader(NULL);
device->SetFVF(D3DFVF_XYZRHW);
float data[4] = {-1.0f, -1.0f, -1.0f, 1.0f};
device->BeginScene();
device->DrawPrimitiveUP(D3DPT_POINTLIST, 1, data, sizeof(data));
device->EndScene();
occlusionQuery->Issue(D3DISSUE_END);
while (occlusionQuery->GetData(NULL, 0, D3DGETDATA_FLUSH) == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
Sleep(0);
}
occlusionQuery->Release();
}
}
void Context::flush()
{
IDirect3DDevice9 *device = getDevice();
IDirect3DQuery9 *eventQuery = NULL;
HRESULT result = device->CreateQuery(D3DQUERYTYPE_EVENT, &eventQuery);
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(result));
if (eventQuery)
{
eventQuery->Issue(D3DISSUE_END);
while (eventQuery->GetData(NULL, 0, D3DGETDATA_FLUSH) == S_FALSE)
{
// Keep polling, but allow other threads to do something useful first
Sleep(0);
}
eventQuery->Release();
}
}
void Context::recordInvalidEnum()
{
mInvalidEnum = true;
}
void Context::recordInvalidValue()
{
mInvalidValue = true;
}
void Context::recordInvalidOperation()
{
mInvalidOperation = true;
}
void Context::recordOutOfMemory()
{
mOutOfMemory = true;
}
void Context::recordInvalidFramebufferOperation()
{
mInvalidFramebufferOperation = true;
}
// Get one of the recorded errors and clear its flag, if any.
// [OpenGL ES 2.0.24] section 2.5 page 13.
GLenum Context::getError()
{
if (mInvalidEnum)
{
mInvalidEnum = false;
return GL_INVALID_ENUM;
}
if (mInvalidValue)
{
mInvalidValue = false;
return GL_INVALID_VALUE;
}
if (mInvalidOperation)
{
mInvalidOperation = false;
return GL_INVALID_OPERATION;
}
if (mOutOfMemory)
{
mOutOfMemory = false;
return GL_OUT_OF_MEMORY;
}
if (mInvalidFramebufferOperation)
{
mInvalidFramebufferOperation = false;
return GL_INVALID_FRAMEBUFFER_OPERATION;
}
return GL_NO_ERROR;
}
const char *Context::getPixelShaderProfile()
{
return mPsProfile;
}
const char *Context::getVertexShaderProfile()
{
return mVsProfile;
}
void Context::detachBuffer(GLuint buffer)
{
// [OpenGL ES 2.0.24] section 2.9 page 22:
// If a buffer object is deleted while it is bound, all bindings to that object in the current context
// (i.e. in the thread that called Delete-Buffers) are reset to zero.
if (arrayBuffer == buffer)
{
arrayBuffer = 0;
}
if (elementArrayBuffer == buffer)
{
elementArrayBuffer = 0;
}
for (int attribute = 0; attribute < MAX_VERTEX_ATTRIBS; attribute++)
{
if (vertexAttribute[attribute].mBoundBuffer == buffer)
{
vertexAttribute[attribute].mBoundBuffer = 0;
}
}
}
void Context::detachTexture(GLuint texture)
{
// [OpenGL ES 2.0.24] section 3.8 page 84:
// If a texture object is deleted, it is as if all texture units which are bound to that texture object are
// rebound to texture object zero
for (int type = 0; type < SAMPLER_TYPE_COUNT; type++)
{
for (int sampler = 0; sampler < MAX_TEXTURE_IMAGE_UNITS; sampler++)
{
if (samplerTexture[type][sampler] == texture)
{
samplerTexture[type][sampler] = 0;
}
}
}
// [OpenGL ES 2.0.24] section 4.4 page 112:
// If a texture object is deleted while its image is attached to the currently bound framebuffer, then it is
// as if FramebufferTexture2D had been called, with a texture of 0, for each attachment point to which this
// image was attached in the currently bound framebuffer.
Framebuffer *framebuffer = getFramebuffer();
if (framebuffer)
{
framebuffer->detachTexture(texture);
}
}
void Context::detachFramebuffer(GLuint framebuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 107:
// If a framebuffer that is currently bound to the target FRAMEBUFFER is deleted, it is as though
// BindFramebuffer had been executed with the target of FRAMEBUFFER and framebuffer of zero.
if (this->framebuffer == framebuffer)
{
bindFramebuffer(0);
}
}
void Context::detachRenderbuffer(GLuint renderbuffer)
{
// [OpenGL ES 2.0.24] section 4.4 page 109:
// If a renderbuffer that is currently bound to RENDERBUFFER is deleted, it is as though BindRenderbuffer
// had been executed with the target RENDERBUFFER and name of zero.
if (this->renderbuffer == renderbuffer)
{
bindRenderbuffer(0);
}
// [OpenGL ES 2.0.24] section 4.4 page 111:
// If a renderbuffer object is deleted while its image is attached to the currently bound framebuffer,
// then it is as if FramebufferRenderbuffer had been called, with a renderbuffer of 0, for each attachment
// point to which this image was attached in the currently bound framebuffer.
Framebuffer *framebuffer = getFramebuffer();
if (framebuffer)
{
framebuffer->detachRenderbuffer(renderbuffer);
}
}
Texture *Context::getIncompleteTexture(SamplerType type)
{
Texture *t = mIncompleteTextures[type];
if (t == NULL)
{
static const GLubyte color[] = { 0, 0, 0, 255 };
switch (type)
{
default:
UNREACHABLE();
// default falls through to SAMPLER_2D
case SAMPLER_2D:
{
Texture2D *incomplete2d = new Texture2D;
incomplete2d->setImage(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incomplete2d;
}
break;
case SAMPLER_CUBE:
{
TextureCubeMap *incompleteCube = new TextureCubeMap;
incompleteCube->setImagePosX(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegX(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosY(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegY(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImagePosZ(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
incompleteCube->setImageNegZ(0, GL_RGBA, 1, 1, GL_RGBA, GL_UNSIGNED_BYTE, 1, color);
t = incompleteCube;
}
break;
}
mIncompleteTextures[type] = t;
}
return t;
}
bool Context::cullSkipsDraw(GLenum primitiveType)
{
if (cullFace && cullMode == GL_FRONT_AND_BACK &&
(primitiveType == GL_TRIANGLES || primitiveType == GL_TRIANGLE_FAN || primitiveType == GL_TRIANGLE_STRIP))
{
return true;
}
else
{
return false;
}
}
}
extern "C"
{
gl::Context *glCreateContext(const egl::Config *config)
{
return new gl::Context(config);
}
void glDestroyContext(gl::Context *context)
{
delete context;
if (context == gl::getContext())
{
gl::makeCurrent(NULL, NULL, NULL);
}
}
void glMakeCurrent(gl::Context *context, egl::Display *display, egl::Surface *surface)
{
gl::makeCurrent(context, display, surface);
}
gl::Context *glGetCurrentContext()
{
return gl::getContext();
}
}