blob: ca33c57c86d8fc98a2be0cf1fdf3ceeea033e1b3 [file] [log] [blame]
//
// Copyright (c) 2002-2010 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libGLESv2/Program.h"
#include "common/debug.h"
#include "libGLESv2/main.h"
#include "libGLESv2/Shader.h"
#include "libGLESv2/utilities.h"
namespace gl
{
unsigned int Program::mCurrentSerial = 1;
Uniform::Uniform(GLenum type, const std::string &name, unsigned int arraySize) : type(type), name(name), arraySize(arraySize)
{
int bytes = UniformTypeSize(type) * arraySize;
data = new unsigned char[bytes];
memset(data, 0, bytes);
dirty = true;
}
Uniform::~Uniform()
{
delete[] data;
}
UniformLocation::UniformLocation(const std::string &name, unsigned int element, unsigned int index)
: name(name), element(element), index(index)
{
}
Program::Program()
{
mFragmentShader = NULL;
mVertexShader = NULL;
mPixelExecutable = NULL;
mVertexExecutable = NULL;
mConstantTablePS = NULL;
mConstantTableVS = NULL;
mPixelHLSL = NULL;
mVertexHLSL = NULL;
mInfoLog = NULL;
mValidated = false;
unlink();
mDeleteStatus = false;
mSerial = issueSerial();
}
Program::~Program()
{
unlink(true);
if (mVertexShader != NULL)
{
mVertexShader->detach();
}
if (mFragmentShader != NULL)
{
mFragmentShader->detach();
}
}
bool Program::attachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mVertexShader)
{
return false;
}
mVertexShader = (VertexShader*)shader;
mVertexShader->attach();
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mFragmentShader)
{
return false;
}
mFragmentShader = (FragmentShader*)shader;
mFragmentShader->attach();
}
else UNREACHABLE();
return true;
}
bool Program::detachShader(Shader *shader)
{
if (shader->getType() == GL_VERTEX_SHADER)
{
if (mVertexShader != shader)
{
return false;
}
mVertexShader->detach();
mVertexShader = NULL;
}
else if (shader->getType() == GL_FRAGMENT_SHADER)
{
if (mFragmentShader != shader)
{
return false;
}
mFragmentShader->detach();
mFragmentShader = NULL;
}
else UNREACHABLE();
unlink();
return true;
}
int Program::getAttachedShadersCount() const
{
return (mVertexShader ? 1 : 0) + (mFragmentShader ? 1 : 0);
}
IDirect3DPixelShader9 *Program::getPixelShader()
{
return mPixelExecutable;
}
IDirect3DVertexShader9 *Program::getVertexShader()
{
return mVertexExecutable;
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
if (index < MAX_VERTEX_ATTRIBS)
{
for (int i = 0; i < MAX_VERTEX_ATTRIBS; i++)
{
mAttributeBinding[i].erase(name);
}
mAttributeBinding[index].insert(name);
}
}
GLuint Program::getAttributeLocation(const char *name)
{
if (name)
{
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
if (mLinkedAttribute[index].name == std::string(name))
{
return index;
}
}
}
return -1;
}
int Program::getSemanticIndex(int attributeIndex)
{
if (attributeIndex >= 0 && attributeIndex < MAX_VERTEX_ATTRIBS)
{
return mSemanticIndex[attributeIndex];
}
return -1;
}
// Returns the index of the texture unit corresponding to a Direct3D 9 sampler
// index referenced in the compiled HLSL shader
GLint Program::getSamplerMapping(unsigned int samplerIndex)
{
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
GLint logicalTextureUnit = -1;
if (mSamplers[samplerIndex].active)
{
logicalTextureUnit = mSamplers[samplerIndex].logicalTextureUnit;
}
if (logicalTextureUnit < MAX_TEXTURE_IMAGE_UNITS)
{
return logicalTextureUnit;
}
return -1;
}
SamplerType Program::getSamplerType(unsigned int samplerIndex)
{
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
assert(mSamplers[samplerIndex].active);
return mSamplers[samplerIndex].type;
}
bool Program::isSamplerDirty(unsigned int samplerIndex) const
{
if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]))
{
return mSamplers[samplerIndex].dirty;
}
else UNREACHABLE();
return false;
}
void Program::setSamplerDirty(unsigned int samplerIndex, bool dirty)
{
if (samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]))
{
mSamplers[samplerIndex].dirty = dirty;
}
else UNREACHABLE();
}
GLint Program::getUniformLocation(const char *name)
{
std::string nameStr(name);
int subscript = 0;
size_t beginB = nameStr.find('[');
size_t endB = nameStr.find(']');
if (beginB != std::string::npos && endB != std::string::npos)
{
std::string subscrStr = nameStr.substr(beginB + 1, beginB - endB - 1);
nameStr.erase(beginB);
subscript = atoi(subscrStr.c_str());
}
nameStr = decorate(nameStr);
for (unsigned int location = 0; location < mUniformIndex.size(); location++)
{
if (mUniformIndex[location].name == nameStr &&
mUniformIndex[location].element == subscript)
{
return location;
}
}
return -1;
}
bool Program::setUniform1fv(GLint location, GLsizei count, const GLfloat* v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat),
v, sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for (int i = 0; i < count; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 2,
v, 2 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 3,
v, 3 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_FLOAT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
v, 4 * sizeof(GLfloat) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0.0f)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT2)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 4,
value, 4 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT3)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 9,
value, 9 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type != GL_FLOAT_MAT4)
{
return false;
}
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLfloat) * 16,
value, 16 * sizeof(GLfloat) * count);
return true;
}
bool Program::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint),
v, sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count];
for (int i = 0; i < count; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean),
boolParams, sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 2,
v, 2 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC2)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 2];
for (int i = 0; i < count * 2; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 2,
boolParams, 2 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 3,
v, 3 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC3)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 3];
for (int i = 0; i < count * 3; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 3,
boolParams, 3 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
targetUniform->dirty = true;
if (targetUniform->type == GL_INT_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLint) * 4,
v, 4 * sizeof(GLint) * count);
}
else if (targetUniform->type == GL_BOOL_VEC4)
{
int arraySize = targetUniform->arraySize;
if (arraySize == 1 && count > 1)
return false; // attempting to write an array to a non-array uniform is an INVALID_OPERATION
count = std::min(arraySize - (int)mUniformIndex[location].element, count);
GLboolean *boolParams = new GLboolean[count * 4];
for (int i = 0; i < count * 4; ++i)
{
if (v[i] == 0)
{
boolParams[i] = GL_FALSE;
}
else
{
boolParams[i] = GL_TRUE;
}
}
memcpy(targetUniform->data + mUniformIndex[location].element * sizeof(GLboolean) * 4,
boolParams, 4 * sizeof(GLboolean) * count);
delete [] boolParams;
}
else
{
return false;
}
return true;
}
bool Program::getUniformfv(GLint location, GLfloat *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = (GLboolean*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (boolParams[i] == GL_FALSE) ? 0.0f : 1.0f;
}
}
break;
case GL_FLOAT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLfloat),
count * sizeof(GLfloat));
break;
case GL_INT:
{
GLint *intParams = (GLint*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (float)intParams[i];
}
}
break;
default: UNREACHABLE();
}
return true;
}
bool Program::getUniformiv(GLint location, GLint *params)
{
if (location < 0 || location >= (int)mUniformIndex.size())
{
return false;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
unsigned int count = UniformComponentCount(targetUniform->type);
switch (UniformComponentType(targetUniform->type))
{
case GL_BOOL:
{
GLboolean *boolParams = targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)boolParams[i];
}
}
break;
case GL_FLOAT:
{
GLfloat *floatParams = (GLfloat*)targetUniform->data + mUniformIndex[location].element * count;
for (unsigned int i = 0; i < count; ++i)
{
params[i] = (GLint)floatParams[i];
}
}
break;
case GL_INT:
memcpy(params, targetUniform->data + mUniformIndex[location].element * count * sizeof(GLint),
count * sizeof(GLint));
break;
default: UNREACHABLE();
}
return true;
}
void Program::dirtyAllUniforms()
{
for (unsigned int index = 0; index < mUniforms.size(); index++)
{
mUniforms[index]->dirty = true;
}
}
void Program::dirtyAllSamplers()
{
for (unsigned int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; ++index)
{
mSamplers[index].dirty = true;
}
}
// Applies all the uniforms set for this program object to the Direct3D 9 device
void Program::applyUniforms()
{
for (unsigned int location = 0; location < mUniformIndex.size(); location++)
{
if (mUniformIndex[location].element != 0)
{
continue;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
if (targetUniform->dirty)
{
int arraySize = targetUniform->arraySize;
GLfloat *f = (GLfloat*)targetUniform->data;
GLint *i = (GLint*)targetUniform->data;
GLboolean *b = (GLboolean*)targetUniform->data;
switch (targetUniform->type)
{
case GL_BOOL: applyUniform1bv(location, arraySize, b); break;
case GL_BOOL_VEC2: applyUniform2bv(location, arraySize, b); break;
case GL_BOOL_VEC3: applyUniform3bv(location, arraySize, b); break;
case GL_BOOL_VEC4: applyUniform4bv(location, arraySize, b); break;
case GL_FLOAT: applyUniform1fv(location, arraySize, f); break;
case GL_FLOAT_VEC2: applyUniform2fv(location, arraySize, f); break;
case GL_FLOAT_VEC3: applyUniform3fv(location, arraySize, f); break;
case GL_FLOAT_VEC4: applyUniform4fv(location, arraySize, f); break;
case GL_FLOAT_MAT2: applyUniformMatrix2fv(location, arraySize, f); break;
case GL_FLOAT_MAT3: applyUniformMatrix3fv(location, arraySize, f); break;
case GL_FLOAT_MAT4: applyUniformMatrix4fv(location, arraySize, f); break;
case GL_INT: applyUniform1iv(location, arraySize, i); break;
case GL_INT_VEC2: applyUniform2iv(location, arraySize, i); break;
case GL_INT_VEC3: applyUniform3iv(location, arraySize, i); break;
case GL_INT_VEC4: applyUniform4iv(location, arraySize, i); break;
default:
UNREACHABLE();
}
targetUniform->dirty = false;
}
}
}
// Compiles the HLSL code of the attached shaders into executable binaries
ID3DXBuffer *Program::compileToBinary(const char *hlsl, const char *profile, ID3DXConstantTable **constantTable)
{
if (!hlsl)
{
return NULL;
}
ID3DXBuffer *binary = NULL;
ID3DXBuffer *errorMessage = NULL;
HRESULT result = D3DXCompileShader(hlsl, (UINT)strlen(hlsl), NULL, NULL, "main", profile, 0, &binary, &errorMessage, constantTable);
if (SUCCEEDED(result))
{
return binary;
}
if (result == D3DERR_OUTOFVIDEOMEMORY || result == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY, (ID3DXBuffer*)NULL);
}
if (errorMessage)
{
const char *message = (const char*)errorMessage->GetBufferPointer();
appendToInfoLog("%s\n", message);
TRACE("\n%s", hlsl);
TRACE("\n%s", message);
}
return NULL;
}
void Program::parseVaryings(const char *structure, char *hlsl, VaryingArray &varyings)
{
char *input = strstr(hlsl, structure);
input += strlen(structure);
while (input && *input != '}')
{
char varyingType[256];
char varyingName[256];
unsigned int semanticIndex;
int matches = sscanf(input, " %s %s : TEXCOORD%d;", varyingType, varyingName, &semanticIndex);
if (matches == 3)
{
ASSERT(semanticIndex <= 9); // Single character
char *array = strstr(varyingName, "[");
if (array)
{
*array = '\0';
}
varyings.push_back(Varying(varyingName, input));
}
input = strstr(input, ";");
input += 2;
}
}
bool Program::linkVaryings()
{
if (!mPixelHLSL || !mVertexHLSL)
{
return false;
}
VaryingArray vertexVaryings;
VaryingArray pixelVaryings;
parseVaryings("struct VS_OUTPUT\n{\n", mVertexHLSL, vertexVaryings);
parseVaryings("struct PS_INPUT\n{\n", mPixelHLSL, pixelVaryings);
for (unsigned int out = 0; out < vertexVaryings.size(); out++)
{
unsigned int in;
for (in = 0; in < pixelVaryings.size(); in++)
{
if (vertexVaryings[out].name == pixelVaryings[in].name)
{
pixelVaryings[in].link = out;
vertexVaryings[out].link = in;
break;
}
}
if (in != pixelVaryings.size())
{
// FIXME: Verify matching type and qualifiers
char *outputSemantic = strstr(vertexVaryings[out].declaration, " : TEXCOORD");
char *inputSemantic = strstr(pixelVaryings[in].declaration, " : TEXCOORD");
outputSemantic[11] = inputSemantic[11];
}
else
{
// Comment out the declaration and output assignment
vertexVaryings[out].declaration[0] = '/';
vertexVaryings[out].declaration[1] = '/';
char outputString[256];
sprintf(outputString, " output.%s = ", vertexVaryings[out].name.c_str());
char *varyingOutput = strstr(mVertexHLSL, outputString);
varyingOutput[0] = '/';
varyingOutput[1] = '/';
}
}
// Verify that each pixel varying has been linked to a vertex varying
for (unsigned int in = 0; in < pixelVaryings.size(); in++)
{
if (pixelVaryings[in].link < 0)
{
appendToInfoLog("Fragment varying (%s) does not match any vertex varying", pixelVaryings[in].name.c_str());
return false;
}
}
return true;
}
// Links the HLSL code of the vertex and pixel shader by matching up their varyings,
// compiling them into binaries, determining the attribute mappings, and collecting
// a list of uniforms
void Program::link()
{
unlink();
if (!mFragmentShader || !mFragmentShader->isCompiled())
{
return;
}
if (!mVertexShader || !mVertexShader->isCompiled())
{
return;
}
Context *context = getContext();
const char *vertexProfile = context->getVertexShaderProfile();
const char *pixelProfile = context->getPixelShaderProfile();
const char *ps = mFragmentShader->getHLSL();
const char *vs = mVertexShader->getHLSL();
mPixelHLSL = new char[strlen(ps) + 1];
strcpy(mPixelHLSL, ps);
mVertexHLSL = new char[strlen(vs) + 1];
strcpy(mVertexHLSL, vs);
if (!linkVaryings())
{
return;
}
ID3DXBuffer *vertexBinary = compileToBinary(mVertexHLSL, vertexProfile, &mConstantTableVS);
ID3DXBuffer *pixelBinary = compileToBinary(mPixelHLSL, pixelProfile, &mConstantTablePS);
if (vertexBinary && pixelBinary)
{
IDirect3DDevice9 *device = getDevice();
HRESULT vertexResult = device->CreateVertexShader((DWORD*)vertexBinary->GetBufferPointer(), &mVertexExecutable);
HRESULT pixelResult = device->CreatePixelShader((DWORD*)pixelBinary->GetBufferPointer(), &mPixelExecutable);
if (vertexResult == D3DERR_OUTOFVIDEOMEMORY || vertexResult == E_OUTOFMEMORY || pixelResult == D3DERR_OUTOFVIDEOMEMORY || pixelResult == E_OUTOFMEMORY)
{
return error(GL_OUT_OF_MEMORY);
}
ASSERT(SUCCEEDED(vertexResult) && SUCCEEDED(pixelResult));
vertexBinary->Release();
pixelBinary->Release();
vertexBinary = NULL;
pixelBinary = NULL;
if (mVertexExecutable && mPixelExecutable)
{
if (!linkAttributes())
{
return;
}
if (!linkUniforms(mConstantTablePS))
{
return;
}
if (!linkUniforms(mConstantTableVS))
{
return;
}
mLinked = true; // Success
}
}
}
// Determines the mapping between GL attributes and Direct3D 9 vertex stream usage indices
bool Program::linkAttributes()
{
unsigned int usedLocations = 0;
// Link attributes that have a binding location
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
const Attribute &attribute = mVertexShader->getAttribute(attributeIndex);
int location = getAttributeBinding(attribute.name);
if (location != -1) // Set by glBindAttribLocation
{
if (!mLinkedAttribute[location].name.empty())
{
// Multiple active attributes bound to the same location; not an error
}
mLinkedAttribute[location] = attribute;
int size = AttributeVectorCount(attribute.type);
if (size + location > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Active attribute (%s) at location %d is too big to fit", attribute.name.c_str(), location);
return false;
}
for (int i = 0; i < size; i++)
{
usedLocations |= 1 << (location + i);
}
}
}
// Link attributes that don't have a binding location
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS + 1; attributeIndex++)
{
const Attribute &attribute = mVertexShader->getAttribute(attributeIndex);
int location = getAttributeBinding(attribute.name);
if (!attribute.name.empty() && location == -1) // Not set by glBindAttribLocation
{
int size = AttributeVectorCount(attribute.type);
int availableIndex = AllocateFirstFreeBits(&usedLocations, size, MAX_VERTEX_ATTRIBS);
if (availableIndex == -1 || availableIndex + size > MAX_VERTEX_ATTRIBS)
{
appendToInfoLog("Too many active attributes (%s)", attribute.name.c_str());
return false; // Fail to link
}
mLinkedAttribute[availableIndex] = attribute;
}
}
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; )
{
int index = mVertexShader->getSemanticIndex(mLinkedAttribute[attributeIndex].name);
if (index == -1)
{
mSemanticIndex[attributeIndex++] = -1;
}
else
{
int size = AttributeVectorCount(mVertexShader->getAttribute(index).type);
for (int i = 0; i < size; i++)
{
mSemanticIndex[attributeIndex++] = index++;
}
}
}
return true;
}
int Program::getAttributeBinding(const std::string &name)
{
for (int location = 0; location < MAX_VERTEX_ATTRIBS; location++)
{
if (mAttributeBinding[location].find(name) != mAttributeBinding[location].end())
{
return location;
}
}
return -1;
}
bool Program::linkUniforms(ID3DXConstantTable *constantTable)
{
D3DXCONSTANTTABLE_DESC constantTableDescription;
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
constantTable->GetDesc(&constantTableDescription);
for (unsigned int constantIndex = 0; constantIndex < constantTableDescription.Constants; constantIndex++)
{
D3DXHANDLE constantHandle = constantTable->GetConstant(0, constantIndex);
constantTable->GetConstantDesc(constantHandle, &constantDescription, &descriptionCount);
if (!defineUniform(constantHandle, constantDescription))
{
return false;
}
}
return true;
}
// Adds the description of a constant found in the binary shader to the list of uniforms
// Returns true if succesful (uniform not already defined)
bool Program::defineUniform(const D3DXHANDLE &constantHandle, const D3DXCONSTANT_DESC &constantDescription, std::string name)
{
if (constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int samplerIndex = constantDescription.RegisterIndex;
assert(samplerIndex < sizeof(mSamplers)/sizeof(mSamplers[0]));
mSamplers[samplerIndex].active = true;
mSamplers[samplerIndex].type = (constantDescription.Type == D3DXPT_SAMPLERCUBE) ? SAMPLER_CUBE : SAMPLER_2D;
mSamplers[samplerIndex].logicalTextureUnit = 0;
mSamplers[samplerIndex].dirty = true;
}
switch(constantDescription.Class)
{
case D3DXPC_STRUCT:
{
for (unsigned int field = 0; field < constantDescription.StructMembers; field++)
{
D3DXHANDLE fieldHandle = mConstantTablePS->GetConstant(constantHandle, field);
D3DXCONSTANT_DESC fieldDescription;
UINT descriptionCount = 1;
mConstantTablePS->GetConstantDesc(fieldHandle, &fieldDescription, &descriptionCount);
if (!defineUniform(fieldHandle, fieldDescription, name + constantDescription.Name + "."))
{
return false;
}
}
return true;
}
case D3DXPC_SCALAR:
case D3DXPC_VECTOR:
case D3DXPC_MATRIX_COLUMNS:
case D3DXPC_OBJECT:
return defineUniform(constantDescription, name + constantDescription.Name);
default:
UNREACHABLE();
return false;
}
}
bool Program::defineUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name)
{
Uniform *uniform = createUniform(constantDescription, name);
if(!uniform)
{
return false;
}
// Check if already defined
GLint location = getUniformLocation(name.c_str());
GLenum type = uniform->type;
if (location >= 0)
{
delete uniform;
if (mUniforms[mUniformIndex[location].index]->type != type)
{
return false;
}
else
{
return true;
}
}
mUniforms.push_back(uniform);
unsigned int uniformIndex = mUniforms.size() - 1;
for (unsigned int i = 0; i < uniform->arraySize; ++i)
{
mUniformIndex.push_back(UniformLocation(name, i, uniformIndex));
}
return true;
}
Uniform *Program::createUniform(const D3DXCONSTANT_DESC &constantDescription, std::string &name)
{
if (constantDescription.Rows == 1) // Vectors and scalars
{
switch (constantDescription.Type)
{
case D3DXPT_SAMPLER2D:
case D3DXPT_SAMPLERCUBE:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_INT, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_BOOL:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_BOOL, name, constantDescription.Elements);
case 2: return new Uniform(GL_BOOL_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_BOOL_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_BOOL_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_INT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_INT, name, constantDescription.Elements);
case 2: return new Uniform(GL_INT_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_INT_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_INT_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
case D3DXPT_FLOAT:
switch (constantDescription.Columns)
{
case 1: return new Uniform(GL_FLOAT, name, constantDescription.Elements);
case 2: return new Uniform(GL_FLOAT_VEC2, name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_VEC3, name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_VEC4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default:
UNREACHABLE();
}
}
else if (constantDescription.Rows == constantDescription.Columns) // Square matrices
{
switch (constantDescription.Type)
{
case D3DXPT_FLOAT:
switch (constantDescription.Rows)
{
case 2: return new Uniform(GL_FLOAT_MAT2, name, constantDescription.Elements);
case 3: return new Uniform(GL_FLOAT_MAT3, name, constantDescription.Elements);
case 4: return new Uniform(GL_FLOAT_MAT4, name, constantDescription.Elements);
default: UNREACHABLE();
}
break;
default: UNREACHABLE();
}
}
else UNREACHABLE();
return 0;
}
// This method needs to match OutputHLSL::decorate
std::string Program::decorate(const std::string &string)
{
if (string.substr(0, 3) != "gl_" && string.substr(0, 3) != "dx_")
{
return "_" + string;
}
else
{
return string;
}
}
std::string Program::undecorate(const std::string &string)
{
if (string.substr(0, 1) == "_")
{
return string.substr(1);
}
else
{
return string;
}
}
bool Program::applyUniform1bv(GLint location, GLsizei count, const GLboolean *v)
{
BOOL *vector = new BOOL[count];
for (int i = 0; i < count; i++)
{
if (v[i] == GL_FALSE)
vector[i] = 0;
else
vector[i] = 1;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetBoolArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetBoolArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
bool Program::applyUniform2bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f), 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f),
(v[2] == GL_FALSE ? 0.0f : 1.0f), 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4bv(GLint location, GLsizei count, const GLboolean *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((v[0] == GL_FALSE ? 0.0f : 1.0f),
(v[1] == GL_FALSE ? 0.0f : 1.0f),
(v[2] == GL_FALSE ? 0.0f : 1.0f),
(v[3] == GL_FALSE ? 0.0f : 1.0f));
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
bool Program::applyUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetFloatArray(device, constantPS, v, count);
}
if (constantVS)
{
mConstantTableVS->SetFloatArray(device, constantVS, v, count);
}
return true;
}
bool Program::applyUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4(v[0], v[1], 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4(v[0], v[1], v[2], 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, (D3DXVECTOR4*)v, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, (D3DXVECTOR4*)v, count);
}
return true;
}
bool Program::applyUniformMatrix2fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[2], 0, 0,
value[1], value[3], 0, 0,
0, 0, 1, 0,
0, 0, 0, 1);
value += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix3fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[3], value[6], 0,
value[1], value[4], value[7], 0,
value[2], value[5], value[8], 0,
0, 0, 0, 1);
value += 9;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniformMatrix4fv(GLint location, GLsizei count, const GLfloat *value)
{
D3DXMATRIX *matrix = new D3DXMATRIX[count];
for (int i = 0; i < count; i++)
{
matrix[i] = D3DXMATRIX(value[0], value[4], value[8], value[12],
value[1], value[5], value[9], value[13],
value[2], value[6], value[10], value[14],
value[3], value[7], value[11], value[15]);
value += 16;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetMatrixTransposeArray(device, constantPS, matrix, count);
}
if (constantVS)
{
mConstantTableVS->SetMatrixTransposeArray(device, constantVS, matrix, count);
}
delete[] matrix;
return true;
}
bool Program::applyUniform1iv(GLint location, GLsizei count, const GLint *v)
{
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
D3DXCONSTANT_DESC constantDescription;
UINT descriptionCount = 1;
HRESULT result = mConstantTablePS->GetConstantDesc(constantPS, &constantDescription, &descriptionCount);
if (FAILED(result))
{
return false;
}
if (constantDescription.RegisterSet == D3DXRS_SAMPLER)
{
unsigned int firstIndex = mConstantTablePS->GetSamplerIndex(constantPS);
for (unsigned int samplerIndex = firstIndex; samplerIndex < firstIndex + count; samplerIndex++)
{
GLint mappedSampler = v[0];
if (samplerIndex >= 0 && samplerIndex < MAX_TEXTURE_IMAGE_UNITS)
{
ASSERT(mSamplers[samplerIndex].active);
mSamplers[samplerIndex].logicalTextureUnit = mappedSampler;
mSamplers[samplerIndex].dirty = true;
}
}
return true;
}
}
if (constantPS)
{
mConstantTablePS->SetIntArray(device, constantPS, v, count);
}
if (constantVS)
{
mConstantTableVS->SetIntArray(device, constantVS, v, count);
}
return true;
}
bool Program::applyUniform2iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], 0, 0);
v += 2;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform3iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], 0);
v += 3;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete[] vector;
return true;
}
bool Program::applyUniform4iv(GLint location, GLsizei count, const GLint *v)
{
D3DXVECTOR4 *vector = new D3DXVECTOR4[count];
for (int i = 0; i < count; i++)
{
vector[i] = D3DXVECTOR4((float)v[0], (float)v[1], (float)v[2], (float)v[3]);
v += 4;
}
Uniform *targetUniform = mUniforms[mUniformIndex[location].index];
D3DXHANDLE constantPS = mConstantTablePS->GetConstantByName(0, targetUniform->name.c_str());
D3DXHANDLE constantVS = mConstantTableVS->GetConstantByName(0, targetUniform->name.c_str());
IDirect3DDevice9 *device = getDevice();
if (constantPS)
{
mConstantTablePS->SetVectorArray(device, constantPS, vector, count);
}
if (constantVS)
{
mConstantTableVS->SetVectorArray(device, constantVS, vector, count);
}
delete [] vector;
return true;
}
void Program::appendToInfoLog(const char *format, ...)
{
if (!format)
{
return;
}
char info[1024];
va_list vararg;
va_start(vararg, format);
vsnprintf(info, sizeof(info), format, vararg);
va_end(vararg);
size_t infoLength = strlen(info);
if (!mInfoLog)
{
mInfoLog = new char[infoLength + 1];
strcpy(mInfoLog, info);
}
else
{
size_t logLength = strlen(mInfoLog);
char *newLog = new char[logLength + infoLength + 1];
strcpy(newLog, mInfoLog);
strcpy(newLog + logLength, info);
delete[] mInfoLog;
mInfoLog = newLog;
}
}
void Program::resetInfoLog()
{
if (mInfoLog)
{
delete [] mInfoLog;
}
}
// Returns the program object to an unlinked state, after detaching a shader, before re-linking, or at destruction
void Program::unlink(bool destroy)
{
if (destroy) // Object being destructed
{
if (mFragmentShader)
{
mFragmentShader->detach();
mFragmentShader = NULL;
}
if (mVertexShader)
{
mVertexShader->detach();
mVertexShader = NULL;
}
}
if (mPixelExecutable)
{
mPixelExecutable->Release();
mPixelExecutable = NULL;
}
if (mVertexExecutable)
{
mVertexExecutable->Release();
mVertexExecutable = NULL;
}
if (mConstantTablePS)
{
mConstantTablePS->Release();
mConstantTablePS = NULL;
}
if (mConstantTableVS)
{
mConstantTableVS->Release();
mConstantTableVS = NULL;
}
for (int index = 0; index < MAX_VERTEX_ATTRIBS; index++)
{
mLinkedAttribute[index].name.clear();
mSemanticIndex[index] = -1;
}
for (int index = 0; index < MAX_TEXTURE_IMAGE_UNITS; index++)
{
mSamplers[index].active = false;
mSamplers[index].dirty = true;
}
while (!mUniforms.empty())
{
delete mUniforms.back();
mUniforms.pop_back();
}
mUniformIndex.clear();
delete[] mPixelHLSL;
mPixelHLSL = NULL;
delete[] mVertexHLSL;
mVertexHLSL = NULL;
delete[] mInfoLog;
mInfoLog = NULL;
mLinked = false;
}
bool Program::isLinked()
{
return mLinked;
}
bool Program::isValidated() const
{
return mValidated;
}
unsigned int Program::getSerial() const
{
return mSerial;
}
unsigned int Program::issueSerial()
{
return mCurrentSerial++;
}
int Program::getInfoLogLength() const
{
if (!mInfoLog)
{
return 0;
}
else
{
return strlen(mInfoLog) + 1;
}
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog)
{
int index = 0;
if (mInfoLog)
{
while (index < bufSize - 1 && index < (int)strlen(mInfoLog))
{
infoLog[index] = mInfoLog[index];
index++;
}
}
if (bufSize)
{
infoLog[index] = '\0';
}
if (length)
{
*length = index;
}
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders)
{
int total = 0;
if (mVertexShader)
{
if (total < maxCount)
{
shaders[total] = mVertexShader->getHandle();
}
total++;
}
if (mFragmentShader)
{
if (total < maxCount)
{
shaders[total] = mFragmentShader->getHandle();
}
total++;
}
if (count)
{
*count = total;
}
}
void Program::getActiveAttribute(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
unsigned int attribute = 0;
for (unsigned int i = 0; i < index; i++)
{
do
{
attribute++;
ASSERT(attribute < MAX_VERTEX_ATTRIBS); // index must be smaller than getActiveAttributeCount()
}
while (mLinkedAttribute[attribute].name.empty());
}
if (bufsize > 0)
{
const char *string = mLinkedAttribute[attribute].name.c_str();
strncpy(name, string, bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = 1; // Always a single 'type' instance
*type = mLinkedAttribute[attribute].type;
}
GLint Program::getActiveAttributeCount()
{
int count = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
count++;
}
}
return count;
}
GLint Program::getActiveAttributeMaxLength()
{
int maxLength = 0;
for (int attributeIndex = 0; attributeIndex < MAX_VERTEX_ATTRIBS; attributeIndex++)
{
if (!mLinkedAttribute[attributeIndex].name.empty())
{
maxLength = std::max((int)(mLinkedAttribute[attributeIndex].name.length() + 1), maxLength);
}
}
return maxLength;
}
void Program::getActiveUniform(GLuint index, GLsizei bufsize, GLsizei *length, GLint *size, GLenum *type, GLchar *name)
{
unsigned int uniform = 0;
for (unsigned int i = 0; i < index; i++)
{
do
{
uniform++;
ASSERT(uniform < mUniforms.size()); // index must be smaller than getActiveUniformCount()
}
while (mUniforms[uniform]->name.substr(0, 3) == "dx_");
}
if (bufsize > 0)
{
std::string string = undecorate(mUniforms[uniform]->name);
if (mUniforms[uniform]->arraySize != 1)
{
string += "[0]";
}
strncpy(name, string.c_str(), bufsize);
name[bufsize - 1] = '\0';
if (length)
{
*length = strlen(name);
}
}
*size = mUniforms[uniform]->arraySize;
*type = mUniforms[uniform]->type;
}
GLint Program::getActiveUniformCount()
{
int count = 0;
for (unsigned int uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
if (mUniforms[uniformIndex]->name.substr(0, 3) != "dx_")
{
count++;
}
}
return count;
}
GLint Program::getActiveUniformMaxLength()
{
int maxLength = 0;
for (unsigned int uniformIndex = 0; uniformIndex < mUniforms.size(); uniformIndex++)
{
if (!mUniforms[uniformIndex]->name.empty() && mUniforms[uniformIndex]->name.substr(0, 3) != "dx_")
{
maxLength = std::max((int)(undecorate(mUniforms[uniformIndex]->name).length() + 1), maxLength);
}
}
return maxLength;
}
void Program::flagForDeletion()
{
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
return mDeleteStatus;
}
void Program::validate()
{
resetInfoLog();
if (!isLinked())
{
appendToInfoLog("Program has not been successfully linked.");
mValidated = false;
}
else
{
applyUniforms();
if (!validateSamplers())
{
appendToInfoLog("Samplers of conflicting types refer to the same texture image unit.");
mValidated = false;
}
else
{
mValidated = true;
}
}
}
bool Program::validateSamplers() const
{
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
std::map<int, SamplerType> samplerMap;
for (unsigned int i = 0; i < MAX_TEXTURE_IMAGE_UNITS; ++i)
{
if (mSamplers[i].active)
{
if (samplerMap.find(mSamplers[i].logicalTextureUnit) != samplerMap.end())
{
if (mSamplers[i].type != samplerMap[mSamplers[i].logicalTextureUnit])
return false;
}
else
{
samplerMap[mSamplers[i].logicalTextureUnit] = mSamplers[i].type;
}
}
}
return true;
}
}