blob: 47e254c1191fe951b1b612ec9c874085b52da785 [file] [log] [blame]
/*
* Copyright (C) 2010, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef AudioContext_h
#define AudioContext_h
#include "bindings/v8/ScriptWrappable.h"
#include "core/dom/ActiveDOMObject.h"
#include "core/events/EventListener.h"
#include "core/events/EventTarget.h"
#include "platform/audio/AudioBus.h"
#include "platform/audio/HRTFDatabaseLoader.h"
#include "modules/webaudio/AsyncAudioDecoder.h"
#include "modules/webaudio/AudioDestinationNode.h"
#include "wtf/HashSet.h"
#include "wtf/MainThread.h"
#include "wtf/OwnPtr.h"
#include "wtf/PassRefPtr.h"
#include "wtf/RefCounted.h"
#include "wtf/RefPtr.h"
#include "wtf/ThreadSafeRefCounted.h"
#include "wtf/Threading.h"
#include "wtf/Vector.h"
#include "wtf/text/AtomicStringHash.h"
namespace WebCore {
class AnalyserNode;
class AudioBuffer;
class AudioBufferCallback;
class AudioBufferSourceNode;
class AudioListener;
class AudioSummingJunction;
class BiquadFilterNode;
class ChannelMergerNode;
class ChannelSplitterNode;
class ConvolverNode;
class DelayNode;
class Document;
class DynamicsCompressorNode;
class ExceptionState;
class GainNode;
class HTMLMediaElement;
class MediaElementAudioSourceNode;
class MediaStreamAudioDestinationNode;
class MediaStreamAudioSourceNode;
class OscillatorNode;
class PannerNode;
class PeriodicWave;
class ScriptProcessorNode;
class WaveShaperNode;
// AudioContext is the cornerstone of the web audio API and all AudioNodes are created from it.
// For thread safety between the audio thread and the main thread, it has a rendering graph locking mechanism.
class AudioContext : public ActiveDOMObject, public ScriptWrappable, public ThreadSafeRefCounted<AudioContext>, public EventTargetWithInlineData {
DEFINE_EVENT_TARGET_REFCOUNTING(ThreadSafeRefCounted<AudioContext>);
public:
// Create an AudioContext for rendering to the audio hardware.
static PassRefPtr<AudioContext> create(Document&, ExceptionState&);
// Deprecated: create an AudioContext for offline (non-realtime) rendering.
static PassRefPtr<AudioContext> create(Document&, unsigned numberOfChannels, size_t numberOfFrames, float sampleRate, ExceptionState&);
virtual ~AudioContext();
bool isInitialized() const;
bool isOfflineContext() { return m_isOfflineContext; }
// Returns true when initialize() was called AND all asynchronous initialization has completed.
bool isRunnable() const;
HRTFDatabaseLoader* hrtfDatabaseLoader() const { return m_hrtfDatabaseLoader.get(); }
// Document notification
virtual void stop();
Document* document() const; // ASSERTs if document no longer exists.
bool hasDocument();
AudioDestinationNode* destination() { return m_destinationNode.get(); }
size_t currentSampleFrame() const { return m_destinationNode->currentSampleFrame(); }
double currentTime() const { return m_destinationNode->currentTime(); }
float sampleRate() const { return m_destinationNode->sampleRate(); }
unsigned long activeSourceCount() const { return static_cast<unsigned long>(m_activeSourceCount); }
void incrementActiveSourceCount();
void decrementActiveSourceCount();
PassRefPtr<AudioBuffer> createBuffer(unsigned numberOfChannels, size_t numberOfFrames, float sampleRate, ExceptionState&);
PassRefPtr<AudioBuffer> createBuffer(ArrayBuffer*, bool mixToMono, ExceptionState&);
// Asynchronous audio file data decoding.
void decodeAudioData(ArrayBuffer*, PassRefPtr<AudioBufferCallback>, PassRefPtr<AudioBufferCallback>, ExceptionState&);
AudioListener* listener() { return m_listener.get(); }
// The AudioNode create methods are called on the main thread (from JavaScript).
PassRefPtr<AudioBufferSourceNode> createBufferSource();
PassRefPtr<MediaElementAudioSourceNode> createMediaElementSource(HTMLMediaElement*, ExceptionState&);
PassRefPtr<MediaStreamAudioSourceNode> createMediaStreamSource(MediaStream*, ExceptionState&);
PassRefPtr<MediaStreamAudioDestinationNode> createMediaStreamDestination();
PassRefPtr<GainNode> createGain();
PassRefPtr<BiquadFilterNode> createBiquadFilter();
PassRefPtr<WaveShaperNode> createWaveShaper();
PassRefPtr<DelayNode> createDelay(ExceptionState&);
PassRefPtr<DelayNode> createDelay(double maxDelayTime, ExceptionState&);
PassRefPtr<PannerNode> createPanner();
PassRefPtr<ConvolverNode> createConvolver();
PassRefPtr<DynamicsCompressorNode> createDynamicsCompressor();
PassRefPtr<AnalyserNode> createAnalyser();
PassRefPtr<ScriptProcessorNode> createScriptProcessor(ExceptionState&);
PassRefPtr<ScriptProcessorNode> createScriptProcessor(size_t bufferSize, ExceptionState&);
PassRefPtr<ScriptProcessorNode> createScriptProcessor(size_t bufferSize, size_t numberOfInputChannels, ExceptionState&);
PassRefPtr<ScriptProcessorNode> createScriptProcessor(size_t bufferSize, size_t numberOfInputChannels, size_t numberOfOutputChannels, ExceptionState&);
PassRefPtr<ChannelSplitterNode> createChannelSplitter(ExceptionState&);
PassRefPtr<ChannelSplitterNode> createChannelSplitter(size_t numberOfOutputs, ExceptionState&);
PassRefPtr<ChannelMergerNode> createChannelMerger(ExceptionState&);
PassRefPtr<ChannelMergerNode> createChannelMerger(size_t numberOfInputs, ExceptionState&);
PassRefPtr<OscillatorNode> createOscillator();
PassRefPtr<PeriodicWave> createPeriodicWave(Float32Array* real, Float32Array* imag, ExceptionState&);
// When a source node has no more processing to do (has finished playing), then it tells the context to dereference it.
void notifyNodeFinishedProcessing(AudioNode*);
// Called at the start of each render quantum.
void handlePreRenderTasks();
// Called at the end of each render quantum.
void handlePostRenderTasks();
// Called periodically at the end of each render quantum to dereference finished source nodes.
void derefFinishedSourceNodes();
// We schedule deletion of all marked nodes at the end of each realtime render quantum.
void markForDeletion(AudioNode*);
void deleteMarkedNodes();
// AudioContext can pull node(s) at the end of each render quantum even when they are not connected to any downstream nodes.
// These two methods are called by the nodes who want to add/remove themselves into/from the automatic pull lists.
void addAutomaticPullNode(AudioNode*);
void removeAutomaticPullNode(AudioNode*);
// Called right before handlePostRenderTasks() to handle nodes which need to be pulled even when they are not connected to anything.
void processAutomaticPullNodes(size_t framesToProcess);
// Keeps track of the number of connections made.
void incrementConnectionCount()
{
ASSERT(isMainThread());
m_connectionCount++;
}
unsigned connectionCount() const { return m_connectionCount; }
//
// Thread Safety and Graph Locking:
//
void setAudioThread(ThreadIdentifier thread) { m_audioThread = thread; } // FIXME: check either not initialized or the same
ThreadIdentifier audioThread() const { return m_audioThread; }
bool isAudioThread() const;
// Returns true only after the audio thread has been started and then shutdown.
bool isAudioThreadFinished() { return m_isAudioThreadFinished; }
// mustReleaseLock is set to true if we acquired the lock in this method call and caller must unlock(), false if it was previously acquired.
void lock(bool& mustReleaseLock);
// Returns true if we own the lock.
// mustReleaseLock is set to true if we acquired the lock in this method call and caller must unlock(), false if it was previously acquired.
bool tryLock(bool& mustReleaseLock);
void unlock();
// Returns true if this thread owns the context's lock.
bool isGraphOwner() const;
// Returns the maximum numuber of channels we can support.
static unsigned maxNumberOfChannels() { return MaxNumberOfChannels;}
class AutoLocker {
public:
AutoLocker(AudioContext* context)
: m_context(context)
{
ASSERT(context);
context->lock(m_mustReleaseLock);
}
~AutoLocker()
{
if (m_mustReleaseLock)
m_context->unlock();
}
private:
AudioContext* m_context;
bool m_mustReleaseLock;
};
// In AudioNode::deref() a tryLock() is used for calling finishDeref(), but if it fails keep track here.
void addDeferredFinishDeref(AudioNode*);
// In the audio thread at the start of each render cycle, we'll call handleDeferredFinishDerefs().
void handleDeferredFinishDerefs();
// Only accessed when the graph lock is held.
void markSummingJunctionDirty(AudioSummingJunction*);
void markAudioNodeOutputDirty(AudioNodeOutput*);
// Must be called on main thread.
void removeMarkedSummingJunction(AudioSummingJunction*);
// EventTarget
virtual const AtomicString& interfaceName() const OVERRIDE;
virtual ExecutionContext* executionContext() const OVERRIDE;
DEFINE_ATTRIBUTE_EVENT_LISTENER(complete);
void startRendering();
void fireCompletionEvent();
static unsigned s_hardwareContextCount;
protected:
explicit AudioContext(Document*);
AudioContext(Document*, unsigned numberOfChannels, size_t numberOfFrames, float sampleRate);
static bool isSampleRateRangeGood(float sampleRate);
private:
void constructCommon();
void lazyInitialize();
void uninitialize();
// ExecutionContext calls stop twice.
// We'd like to schedule only one stop action for them.
bool m_isStopScheduled;
static void stopDispatch(void* userData);
void clear();
void scheduleNodeDeletion();
static void deleteMarkedNodesDispatch(void* userData);
bool m_isInitialized;
bool m_isAudioThreadFinished;
// The context itself keeps a reference to all source nodes. The source nodes, then reference all nodes they're connected to.
// In turn, these nodes reference all nodes they're connected to. All nodes are ultimately connected to the AudioDestinationNode.
// When the context dereferences a source node, it will be deactivated from the rendering graph along with all other nodes it is
// uniquely connected to. See the AudioNode::ref() and AudioNode::deref() methods for more details.
void refNode(AudioNode*);
void derefNode(AudioNode*);
// When the context goes away, there might still be some sources which haven't finished playing.
// Make sure to dereference them here.
void derefUnfinishedSourceNodes();
RefPtr<AudioDestinationNode> m_destinationNode;
RefPtr<AudioListener> m_listener;
// Only accessed in the audio thread.
Vector<AudioNode*> m_finishedNodes;
// We don't use RefPtr<AudioNode> here because AudioNode has a more complex ref() / deref() implementation
// with an optional argument for refType. We need to use the special refType: RefTypeConnection
// Either accessed when the graph lock is held, or on the main thread when the audio thread has finished.
Vector<AudioNode*> m_referencedNodes;
// Accumulate nodes which need to be deleted here.
// This is copied to m_nodesToDelete at the end of a render cycle in handlePostRenderTasks(), where we're assured of a stable graph
// state which will have no references to any of the nodes in m_nodesToDelete once the context lock is released
// (when handlePostRenderTasks() has completed).
Vector<AudioNode*> m_nodesMarkedForDeletion;
// They will be scheduled for deletion (on the main thread) at the end of a render cycle (in realtime thread).
Vector<AudioNode*> m_nodesToDelete;
bool m_isDeletionScheduled;
// Only accessed when the graph lock is held.
HashSet<AudioSummingJunction*> m_dirtySummingJunctions;
HashSet<AudioNodeOutput*> m_dirtyAudioNodeOutputs;
void handleDirtyAudioSummingJunctions();
void handleDirtyAudioNodeOutputs();
// For the sake of thread safety, we maintain a seperate Vector of automatic pull nodes for rendering in m_renderingAutomaticPullNodes.
// It will be copied from m_automaticPullNodes by updateAutomaticPullNodes() at the very start or end of the rendering quantum.
HashSet<AudioNode*> m_automaticPullNodes;
Vector<AudioNode*> m_renderingAutomaticPullNodes;
// m_automaticPullNodesNeedUpdating keeps track if m_automaticPullNodes is modified.
bool m_automaticPullNodesNeedUpdating;
void updateAutomaticPullNodes();
unsigned m_connectionCount;
// Graph locking.
Mutex m_contextGraphMutex;
volatile ThreadIdentifier m_audioThread;
volatile ThreadIdentifier m_graphOwnerThread; // if the lock is held then this is the thread which owns it, otherwise == UndefinedThreadIdentifier
// Only accessed in the audio thread.
Vector<AudioNode*> m_deferredFinishDerefList;
// HRTF Database loader
RefPtr<HRTFDatabaseLoader> m_hrtfDatabaseLoader;
RefPtr<AudioBuffer> m_renderTarget;
bool m_isOfflineContext;
AsyncAudioDecoder m_audioDecoder;
// This is considering 32 is large enough for multiple channels audio.
// It is somewhat arbitrary and could be increased if necessary.
enum { MaxNumberOfChannels = 32 };
// Number of AudioBufferSourceNodes that are active (playing).
int m_activeSourceCount;
};
} // WebCore
#endif // AudioContext_h