blob: 449073752ae1e6e73f252dc473a2ef0e76f621bd [file] [log] [blame]
/*
* Copyright (C) 2012 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderMultiColumnSet.h"
#include "core/rendering/PaintInfo.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderMultiColumnBlock.h"
#include "core/rendering/RenderMultiColumnFlowThread.h"
using namespace std;
namespace WebCore {
RenderMultiColumnSet::RenderMultiColumnSet(RenderFlowThread* flowThread)
: RenderRegionSet(0, flowThread)
, m_computedColumnCount(1)
, m_computedColumnWidth(0)
, m_computedColumnHeight(0)
, m_maxColumnHeight(LayoutUnit::max())
, m_minSpaceShortage(LayoutUnit::max())
, m_minimumColumnHeight(0)
, m_forcedBreaksCount(0)
, m_maximumDistanceBetweenForcedBreaks(0)
, m_forcedBreakOffset(0)
{
}
RenderMultiColumnSet* RenderMultiColumnSet::createAnonymous(RenderFlowThread* flowThread)
{
Document& document = flowThread->document();
RenderMultiColumnSet* renderer = new RenderMultiColumnSet(flowThread);
renderer->setDocumentForAnonymous(&document);
return renderer;
}
LayoutUnit RenderMultiColumnSet::heightAdjustedForSetOffset(LayoutUnit height) const
{
RenderMultiColumnBlock* multicolBlock = toRenderMultiColumnBlock(parent());
LayoutUnit contentLogicalTop = logicalTop() - multicolBlock->borderBefore() - multicolBlock->paddingBefore();
height -= contentLogicalTop;
return max(height, LayoutUnit(1)); // Let's avoid zero height, as that would probably cause an infinite amount of columns to be created.
}
LayoutUnit RenderMultiColumnSet::pageLogicalTopForOffset(LayoutUnit offset) const
{
LayoutUnit portionLogicalTop = (isHorizontalWritingMode() ? flowThreadPortionRect().y() : flowThreadPortionRect().x());
unsigned columnIndex = columnIndexAtOffset(offset, AssumeNewColumns);
return portionLogicalTop + columnIndex * computedColumnHeight();
}
void RenderMultiColumnSet::setAndConstrainColumnHeight(LayoutUnit newHeight)
{
m_computedColumnHeight = newHeight;
if (m_computedColumnHeight > m_maxColumnHeight)
m_computedColumnHeight = m_maxColumnHeight;
// FIXME: the height may also be affected by the enclosing pagination context, if any.
}
bool RenderMultiColumnSet::calculateBalancedHeight(bool initial)
{
ASSERT(toRenderMultiColumnBlock(parent())->requiresBalancing());
LayoutUnit oldColumnHeight = m_computedColumnHeight;
LayoutUnit currentMinSpaceShortage = m_minSpaceShortage;
m_minSpaceShortage = LayoutUnit::max();
if (initial) {
// Start with the lowest imaginable column height.
LayoutUnit logicalHeightGuess = ceilf(float(flowThread()->logicalHeight()) / float(m_computedColumnCount));
logicalHeightGuess = max(logicalHeightGuess, m_minimumColumnHeight);
setAndConstrainColumnHeight(logicalHeightGuess);
// The multicol container now typically needs at least one more layout pass with a new
// column height, but if height was specified, we only need to do this if we found that we
// might need less space than that. On the other hand, if we determined that the columns
// need to be as tall as the specified height of the container, we have already laid it out
// correctly, and there's no need for another pass.
return m_computedColumnHeight != oldColumnHeight;
}
if (columnCount() <= computedColumnCount()) {
// With the current column height, the content fits without creating overflowing columns. We're done.
return false;
}
// If the initial guessed column height wasn't enough, stretch it now. Stretch by the lowest
// amount of space shortage found during layout.
ASSERT(currentMinSpaceShortage != LayoutUnit::max()); // If this can actually happen, we probably have a bug.
if (currentMinSpaceShortage == LayoutUnit::max())
return false; // So bail out rather than looping infinitely.
setAndConstrainColumnHeight(m_computedColumnHeight + currentMinSpaceShortage);
// If we reach the maximum column height (typically set by the height or max-height property),
// we may not be allowed to stretch further. Return true only if stretching
// succeeded. Otherwise, we're done.
ASSERT(m_computedColumnHeight >= oldColumnHeight); // We shouldn't be able to shrink the height!
return m_computedColumnHeight > oldColumnHeight;
}
void RenderMultiColumnSet::recordSpaceShortage(LayoutUnit spaceShortage)
{
if (spaceShortage >= m_minSpaceShortage)
return;
// The space shortage is what we use as our stretch amount. We need a positive number here in
// order to get anywhere.
ASSERT(spaceShortage > 0);
m_minSpaceShortage = spaceShortage;
}
void RenderMultiColumnSet::updateLogicalWidth()
{
RenderMultiColumnBlock* parentBlock = toRenderMultiColumnBlock(parent());
setComputedColumnWidthAndCount(parentBlock->columnWidth(), parentBlock->columnCount()); // FIXME: This will eventually vary if we are contained inside regions.
// FIXME: When we add regions support, we'll start it off at the width of the multi-column
// block in that particular region.
setLogicalWidth(parentBox()->contentLogicalWidth());
// If we overflow, increase our logical width.
unsigned colCount = columnCount();
LayoutUnit colGap = columnGap();
LayoutUnit minimumContentLogicalWidth = colCount * computedColumnWidth() + (colCount - 1) * colGap;
LayoutUnit currentContentLogicalWidth = contentLogicalWidth();
LayoutUnit delta = max(LayoutUnit(), minimumContentLogicalWidth - currentContentLogicalWidth);
if (!delta)
return;
// Increase our logical width by the delta.
setLogicalWidth(logicalWidth() + delta);
}
void RenderMultiColumnSet::prepareForLayout()
{
RenderMultiColumnBlock* multicolBlock = toRenderMultiColumnBlock(parent());
RenderStyle* multicolStyle = multicolBlock->style();
// Set box logical top.
ASSERT(!previousSiblingBox() || !previousSiblingBox()->isRenderMultiColumnSet()); // FIXME: multiple set not implemented; need to examine previous set to calculate the correct logical top.
setLogicalTop(multicolBlock->borderBefore() + multicolBlock->paddingBefore());
// Set box width.
updateLogicalWidth();
if (multicolBlock->requiresBalancing()) {
// Set maximum column height. We will not stretch beyond this.
m_maxColumnHeight = LayoutUnit::max();
if (!multicolStyle->logicalHeight().isAuto())
m_maxColumnHeight = multicolBlock->computeContentLogicalHeight(multicolStyle->logicalHeight(), -1);
if (!multicolStyle->logicalMaxHeight().isUndefined()) {
LayoutUnit logicalMaxHeight = multicolBlock->computeContentLogicalHeight(multicolStyle->logicalMaxHeight(), -1);
if (m_maxColumnHeight > logicalMaxHeight)
m_maxColumnHeight = logicalMaxHeight;
}
m_maxColumnHeight = heightAdjustedForSetOffset(m_maxColumnHeight);
m_computedColumnHeight = 0; // Restart balancing.
} else {
setAndConstrainColumnHeight(heightAdjustedForSetOffset(multicolBlock->columnHeightAvailable()));
}
// Nuke previously stored minimum column height. Contents may have changed for all we know.
m_minimumColumnHeight = 0;
}
void RenderMultiColumnSet::computeLogicalHeight(LayoutUnit, LayoutUnit logicalTop, LogicalExtentComputedValues& computedValues) const
{
computedValues.m_extent = m_computedColumnHeight;
computedValues.m_position = logicalTop;
}
LayoutUnit RenderMultiColumnSet::columnGap() const
{
// FIXME: Eventually we will cache the column gap when the widths of columns start varying, but for now we just
// go to the parent block to get the gap.
RenderMultiColumnBlock* parentBlock = toRenderMultiColumnBlock(parent());
if (parentBlock->style()->hasNormalColumnGap())
return parentBlock->style()->fontDescription().computedPixelSize(); // "1em" is recommended as the normal gap setting. Matches <p> margins.
return parentBlock->style()->columnGap();
}
unsigned RenderMultiColumnSet::columnCount() const
{
// We must always return a value of 1 or greater. Column count = 0 is a meaningless situation,
// and will confuse and cause problems in other parts of the code.
if (!computedColumnHeight())
return 1;
// Our portion rect determines our column count. We have as many columns as needed to fit all the content.
LayoutUnit logicalHeightInColumns = flowThread()->isHorizontalWritingMode() ? flowThreadPortionRect().height() : flowThreadPortionRect().width();
unsigned count = ceil(static_cast<float>(logicalHeightInColumns) / computedColumnHeight());
ASSERT(count >= 1);
return count;
}
LayoutRect RenderMultiColumnSet::columnRectAt(unsigned index) const
{
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colLogicalHeight = computedColumnHeight();
LayoutUnit colLogicalTop = borderBefore() + paddingBefore();
LayoutUnit colLogicalLeft = borderAndPaddingLogicalLeft();
LayoutUnit colGap = columnGap();
if (style()->isLeftToRightDirection())
colLogicalLeft += index * (colLogicalWidth + colGap);
else
colLogicalLeft += contentLogicalWidth() - colLogicalWidth - index * (colLogicalWidth + colGap);
if (isHorizontalWritingMode())
return LayoutRect(colLogicalLeft, colLogicalTop, colLogicalWidth, colLogicalHeight);
return LayoutRect(colLogicalTop, colLogicalLeft, colLogicalHeight, colLogicalWidth);
}
unsigned RenderMultiColumnSet::columnIndexAtOffset(LayoutUnit offset, ColumnIndexCalculationMode mode) const
{
LayoutRect portionRect(flowThreadPortionRect());
// Handle the offset being out of range.
LayoutUnit flowThreadLogicalTop = isHorizontalWritingMode() ? portionRect.y() : portionRect.x();
if (offset < flowThreadLogicalTop)
return 0;
// If we're laying out right now, we cannot constrain against some logical bottom, since it
// isn't known yet. Otherwise, just return the last column if we're past the logical bottom.
if (mode == ClampToExistingColumns) {
LayoutUnit flowThreadLogicalBottom = isHorizontalWritingMode() ? portionRect.maxY() : portionRect.maxX();
if (offset >= flowThreadLogicalBottom)
return columnCount() - 1;
}
// Just divide by the column height to determine the correct column.
return static_cast<float>(offset - flowThreadLogicalTop) / computedColumnHeight();
}
LayoutRect RenderMultiColumnSet::flowThreadPortionRectAt(unsigned index) const
{
LayoutRect portionRect = flowThreadPortionRect();
if (isHorizontalWritingMode())
portionRect = LayoutRect(portionRect.x(), portionRect.y() + index * computedColumnHeight(), portionRect.width(), computedColumnHeight());
else
portionRect = LayoutRect(portionRect.x() + index * computedColumnHeight(), portionRect.y(), computedColumnHeight(), portionRect.height());
return portionRect;
}
LayoutRect RenderMultiColumnSet::flowThreadPortionOverflowRect(const LayoutRect& portionRect, unsigned index, unsigned colCount, LayoutUnit colGap) const
{
// This function determines the portion of the flow thread that paints for the column. Along the inline axis, columns are
// unclipped at outside edges (i.e., the first and last column in the set), and they clip to half the column
// gap along interior edges.
//
// In the block direction, we will not clip overflow out of the top of the first column, or out of the bottom of
// the last column. This applies only to the true first column and last column across all column sets.
//
// FIXME: Eventually we will know overflow on a per-column basis, but we can't do this until we have a painting
// mode that understands not to paint contents from a previous column in the overflow area of a following column.
// This problem applies to regions and pages as well and is not unique to columns.
bool isFirstColumn = !index;
bool isLastColumn = index == colCount - 1;
bool isLeftmostColumn = style()->isLeftToRightDirection() ? isFirstColumn : isLastColumn;
bool isRightmostColumn = style()->isLeftToRightDirection() ? isLastColumn : isFirstColumn;
// Calculate the overflow rectangle, based on the flow thread's, clipped at column logical
// top/bottom unless it's the first/last column.
LayoutRect overflowRect = overflowRectForFlowThreadPortion(portionRect, isFirstColumn && isFirstRegion(), isLastColumn && isLastRegion());
// Avoid overflowing into neighboring columns, by clipping in the middle of adjacent column
// gaps. Also make sure that we avoid rounding errors.
if (isHorizontalWritingMode()) {
if (!isLeftmostColumn)
overflowRect.shiftXEdgeTo(portionRect.x() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxXEdgeTo(portionRect.maxX() + colGap - colGap / 2);
} else {
if (!isLeftmostColumn)
overflowRect.shiftYEdgeTo(portionRect.y() - colGap / 2);
if (!isRightmostColumn)
overflowRect.shiftMaxYEdgeTo(portionRect.maxY() + colGap - colGap / 2);
}
return overflowRect;
}
void RenderMultiColumnSet::paintObject(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (style()->visibility() != VISIBLE)
return;
RenderBlock::paintObject(paintInfo, paintOffset);
// FIXME: Right now we're only painting in the foreground phase.
// Columns should technically respect phases and allow for background/float/foreground overlap etc., just like
// RenderBlocks do. Note this is a pretty minor issue, since the old column implementation clipped columns
// anyway, thus making it impossible for them to overlap one another. It's also really unlikely that the columns
// would overlap another block.
if (!m_flowThread || !isValid() || (paintInfo.phase != PaintPhaseForeground && paintInfo.phase != PaintPhaseSelection))
return;
paintColumnRules(paintInfo, paintOffset);
}
void RenderMultiColumnSet::paintColumnRules(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
if (paintInfo.context->paintingDisabled())
return;
RenderStyle* blockStyle = toRenderMultiColumnBlock(parent())->style();
const Color& ruleColor = resolveColor(blockStyle, CSSPropertyWebkitColumnRuleColor);
bool ruleTransparent = blockStyle->columnRuleIsTransparent();
EBorderStyle ruleStyle = blockStyle->columnRuleStyle();
LayoutUnit ruleThickness = blockStyle->columnRuleWidth();
LayoutUnit colGap = columnGap();
bool renderRule = ruleStyle > BHIDDEN && !ruleTransparent;
if (!renderRule)
return;
unsigned colCount = columnCount();
if (colCount <= 1)
return;
bool antialias = shouldAntialiasLines(paintInfo.context);
bool leftToRight = style()->isLeftToRightDirection();
LayoutUnit currLogicalLeftOffset = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit ruleAdd = borderAndPaddingLogicalLeft();
LayoutUnit ruleLogicalLeft = leftToRight ? LayoutUnit() : contentLogicalWidth();
LayoutUnit inlineDirectionSize = computedColumnWidth();
BoxSide boxSide = isHorizontalWritingMode()
? leftToRight ? BSLeft : BSRight
: leftToRight ? BSTop : BSBottom;
for (unsigned i = 0; i < colCount; i++) {
// Move to the next position.
if (leftToRight) {
ruleLogicalLeft += inlineDirectionSize + colGap / 2;
currLogicalLeftOffset += inlineDirectionSize + colGap;
} else {
ruleLogicalLeft -= (inlineDirectionSize + colGap / 2);
currLogicalLeftOffset -= (inlineDirectionSize + colGap);
}
// Now paint the column rule.
if (i < colCount - 1) {
LayoutUnit ruleLeft = isHorizontalWritingMode() ? paintOffset.x() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd : paintOffset.x() + borderLeft() + paddingLeft();
LayoutUnit ruleRight = isHorizontalWritingMode() ? ruleLeft + ruleThickness : ruleLeft + contentWidth();
LayoutUnit ruleTop = isHorizontalWritingMode() ? paintOffset.y() + borderTop() + paddingTop() : paintOffset.y() + ruleLogicalLeft - ruleThickness / 2 + ruleAdd;
LayoutUnit ruleBottom = isHorizontalWritingMode() ? ruleTop + contentHeight() : ruleTop + ruleThickness;
IntRect pixelSnappedRuleRect = pixelSnappedIntRectFromEdges(ruleLeft, ruleTop, ruleRight, ruleBottom);
drawLineForBoxSide(paintInfo.context, pixelSnappedRuleRect.x(), pixelSnappedRuleRect.y(), pixelSnappedRuleRect.maxX(), pixelSnappedRuleRect.maxY(), boxSide, ruleColor, ruleStyle, 0, 0, antialias);
}
ruleLogicalLeft = currLogicalLeftOffset;
}
}
void RenderMultiColumnSet::repaintFlowThreadContent(const LayoutRect& repaintRect) const
{
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set. Put the repaint rect into flow thread coordinates by flipping it first.
LayoutRect flowThreadRepaintRect(repaintRect);
flowThread()->flipForWritingMode(flowThreadRepaintRect);
// Now we can compare this rect with the flow thread portions owned by each column. First let's
// just see if the repaint rect intersects our flow thread portion at all.
LayoutRect clippedRect(flowThreadRepaintRect);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're repainting.
LayoutUnit repaintLogicalTop = isHorizontalWritingMode() ? flowThreadRepaintRect.y() : flowThreadRepaintRect.x();
LayoutUnit repaintLogicalBottom = (isHorizontalWritingMode() ? flowThreadRepaintRect.maxY() : flowThreadRepaintRect.maxX()) - 1;
unsigned startColumn = columnIndexAtOffset(repaintLogicalTop);
unsigned endColumn = columnIndexAtOffset(repaintLogicalBottom);
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
for (unsigned i = startColumn; i <= endColumn; i++) {
LayoutRect colRect = columnRectAt(i);
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// Do a repaint for this specific column.
repaintFlowThreadContentRectangle(repaintRect, flowThreadPortion, flowThreadOverflowPortion, colRect.location());
}
}
void RenderMultiColumnSet::collectLayerFragments(LayerFragments& fragments, const LayoutRect& layerBoundingBox, const LayoutRect& dirtyRect)
{
// The two rectangles passed to this method are physical, except that we pretend that there's
// only one long column (that's how a flow thread works).
//
// Then there's the output from this method - the stuff we put into the list of fragments. The
// fragment.paginationOffset point is the actual physical translation required to get from a
// location in the flow thread to a location in a given column. The fragment.paginationClip
// rectangle, on the other hand, is in the same coordinate system as the two rectangles passed
// to this method (flow thread coordinates).
//
// All other rectangles in this method are sized physically, and the inline direction coordinate
// is physical too, but the block direction coordinate is "logical top". This is the same as
// e.g. RenderBox::frameRect(). These rectangles also pretend that there's only one long column,
// i.e. they are for the flow thread.
// Put the layer bounds into flow thread-local coordinates by flipping it first. Since we're in
// a renderer, most rectangles are represented this way.
LayoutRect layerBoundsInFlowThread(layerBoundingBox);
flowThread()->flipForWritingMode(layerBoundsInFlowThread);
// Now we can compare with the flow thread portions owned by each column. First let's
// see if the rect intersects our flow thread portion at all.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(RenderRegion::flowThreadPortionOverflowRect());
if (clippedRect.isEmpty())
return;
// Now we know we intersect at least one column. Let's figure out the logical top and logical
// bottom of the area we're checking.
LayoutUnit layerLogicalTop = isHorizontalWritingMode() ? layerBoundsInFlowThread.y() : layerBoundsInFlowThread.x();
LayoutUnit layerLogicalBottom = (isHorizontalWritingMode() ? layerBoundsInFlowThread.maxY() : layerBoundsInFlowThread.maxX()) - 1;
// Figure out the start and end columns and only check within that range so that we don't walk the
// entire column set.
unsigned startColumn = columnIndexAtOffset(layerLogicalTop);
unsigned endColumn = columnIndexAtOffset(layerLogicalBottom);
LayoutUnit colLogicalWidth = computedColumnWidth();
LayoutUnit colGap = columnGap();
unsigned colCount = columnCount();
for (unsigned i = startColumn; i <= endColumn; i++) {
// Get the portion of the flow thread that corresponds to this column.
LayoutRect flowThreadPortion = flowThreadPortionRectAt(i);
// Now get the overflow rect that corresponds to the column.
LayoutRect flowThreadOverflowPortion = flowThreadPortionOverflowRect(flowThreadPortion, i, colCount, colGap);
// In order to create a fragment we must intersect the portion painted by this column.
LayoutRect clippedRect(layerBoundsInFlowThread);
clippedRect.intersect(flowThreadOverflowPortion);
if (clippedRect.isEmpty())
continue;
// We also need to intersect the dirty rect. We have to apply a translation and shift based off
// our column index.
LayoutPoint translationOffset;
LayoutUnit inlineOffset = i * (colLogicalWidth + colGap);
if (!style()->isLeftToRightDirection())
inlineOffset = -inlineOffset;
translationOffset.setX(inlineOffset);
LayoutUnit blockOffset = isHorizontalWritingMode() ? -flowThreadPortion.y() : -flowThreadPortion.x();
if (isFlippedBlocksWritingMode(style()->writingMode()))
blockOffset = -blockOffset;
translationOffset.setY(blockOffset);
if (!isHorizontalWritingMode())
translationOffset = translationOffset.transposedPoint();
// FIXME: The translation needs to include the multicolumn set's content offset within the
// multicolumn block as well. This won't be an issue until we start creating multiple multicolumn sets.
// Shift the dirty rect to be in flow thread coordinates with this translation applied.
LayoutRect translatedDirtyRect(dirtyRect);
translatedDirtyRect.moveBy(-translationOffset);
// See if we intersect the dirty rect.
clippedRect = layerBoundingBox;
clippedRect.intersect(translatedDirtyRect);
if (clippedRect.isEmpty())
continue;
// Something does need to paint in this column. Make a fragment now and supply the physical translation
// offset and the clip rect for the column with that offset applied.
LayerFragment fragment;
fragment.paginationOffset = translationOffset;
LayoutRect flippedFlowThreadOverflowPortion(flowThreadOverflowPortion);
// Flip it into more a physical (RenderLayer-style) rectangle.
flowThread()->flipForWritingMode(flippedFlowThreadOverflowPortion);
fragment.paginationClip = flippedFlowThreadOverflowPortion;
fragments.append(fragment);
}
}
const char* RenderMultiColumnSet::renderName() const
{
return "RenderMultiColumnSet";
}
}