blob: 2fad4f931177dc752025e5c3ee30f2012fb9a15a [file] [log] [blame]
/*
* Copyright (C) 1999 Lars Knoll (knoll@kde.org)
* (C) 1999 Antti Koivisto (koivisto@kde.org)
* (C) 2001 Dirk Mueller ( mueller@kde.org )
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2013 Apple Inc. All rights reserved.
* Copyright (C) 2006 Andrew Wellington (proton@wiretapped.net)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#include "config.h"
#include "wtf/text/StringImpl.h"
#include "wtf/StdLibExtras.h"
#include "wtf/WTFThreadData.h"
#include "wtf/text/AtomicString.h"
#include "wtf/text/StringBuffer.h"
#include "wtf/text/StringHash.h"
#include "wtf/unicode/CharacterNames.h"
#ifdef STRING_STATS
#include "wtf/DataLog.h"
#include "wtf/MainThread.h"
#include "wtf/ProcessID.h"
#include "wtf/RefCounted.h"
#include <unistd.h>
#endif
using namespace std;
namespace WTF {
using namespace Unicode;
COMPILE_ASSERT(sizeof(StringImpl) == 3 * sizeof(int), StringImpl_should_stay_small);
#ifdef STRING_STATS
static Mutex& statsMutex()
{
DEFINE_STATIC_LOCAL(Mutex, mutex, ());
return mutex;
}
static HashSet<void*>& liveStrings()
{
// Notice that we can't use HashSet<StringImpl*> because then HashSet would dedup identical strings.
DEFINE_STATIC_LOCAL(HashSet<void*>, strings, ());
return strings;
}
void addStringForStats(StringImpl* string)
{
MutexLocker locker(statsMutex());
liveStrings().add(string);
}
void removeStringForStats(StringImpl* string)
{
MutexLocker locker(statsMutex());
liveStrings().remove(string);
}
static void fillWithSnippet(const StringImpl* string, Vector<char>& snippet)
{
const unsigned kMaxSnippetLength = 64;
snippet.clear();
size_t expectedLength = std::min(string->length(), kMaxSnippetLength);
if (expectedLength == kMaxSnippetLength)
expectedLength += 3; // For the "...".
++expectedLength; // For the terminating '\0'.
snippet.reserveCapacity(expectedLength);
size_t i;
for (i = 0; i < string->length() && i < kMaxSnippetLength; ++i) {
UChar c = (*string)[i];
if (isASCIIPrintable(c))
snippet.append(c);
else
snippet.append('?');
}
if (i < string->length()) {
snippet.append('.');
snippet.append('.');
snippet.append('.');
}
snippet.append('\0');
}
static bool isUnnecessarilyWide(const StringImpl* string)
{
if (string->is8Bit())
return false;
UChar c = 0;
for (unsigned i = 0; i < string->length(); ++i)
c |= (*string)[i] >> 8;
return !c;
}
class PerStringStats : public RefCounted<PerStringStats> {
public:
static PassRefPtr<PerStringStats> create()
{
return adoptRef(new PerStringStats);
}
void add(const StringImpl* string)
{
++m_numberOfCopies;
if (!m_length) {
m_length = string->length();
fillWithSnippet(string, m_snippet);
}
if (string->isAtomic())
++m_numberOfAtomicCopies;
if (isUnnecessarilyWide(string))
m_unnecessarilyWide = true;
}
size_t totalCharacters() const
{
return m_numberOfCopies * m_length;
}
void print()
{
const char* status = "ok";
if (m_unnecessarilyWide)
status = "16";
dataLogF("%8u copies (%s) of length %8u %s\n", m_numberOfCopies, status, m_length, m_snippet.data());
}
bool m_unnecessarilyWide;
unsigned m_numberOfCopies;
unsigned m_length;
unsigned m_numberOfAtomicCopies;
Vector<char> m_snippet;
private:
PerStringStats()
: m_unnecessarilyWide(false)
, m_numberOfCopies(0)
, m_length(0)
, m_numberOfAtomicCopies(0)
{
}
};
bool operator<(const RefPtr<PerStringStats>& a, const RefPtr<PerStringStats>& b)
{
if (a->m_unnecessarilyWide != b->m_unnecessarilyWide)
return !a->m_unnecessarilyWide && b->m_unnecessarilyWide;
if (a->totalCharacters() != b->totalCharacters())
return a->totalCharacters() < b->totalCharacters();
if (a->m_numberOfCopies != b->m_numberOfCopies)
return a->m_numberOfCopies < b->m_numberOfCopies;
if (a->m_length != b->m_length)
return a->m_length < b->m_length;
return a->m_numberOfAtomicCopies < b->m_numberOfAtomicCopies;
}
static void printLiveStringStats(void*)
{
MutexLocker locker(statsMutex());
HashSet<void*>& strings = liveStrings();
HashMap<StringImpl*, RefPtr<PerStringStats> > stats;
for (HashSet<void*>::iterator iter = strings.begin(); iter != strings.end(); ++iter) {
StringImpl* string = static_cast<StringImpl*>(*iter);
HashMap<StringImpl*, RefPtr<PerStringStats> >::iterator entry = stats.find(string);
RefPtr<PerStringStats> value = entry == stats.end() ? RefPtr<PerStringStats>(PerStringStats::create()) : entry->value;
value->add(string);
stats.set(string, value.release());
}
Vector<RefPtr<PerStringStats> > all;
for (HashMap<StringImpl*, RefPtr<PerStringStats> >::iterator iter = stats.begin(); iter != stats.end(); ++iter)
all.append(iter->value);
std::sort(all.begin(), all.end());
std::reverse(all.begin(), all.end());
for (size_t i = 0; i < 20 && i < all.size(); ++i)
all[i]->print();
}
StringStats StringImpl::m_stringStats;
unsigned StringStats::s_stringRemovesTillPrintStats = StringStats::s_printStringStatsFrequency;
void StringStats::removeString(StringImpl* string)
{
unsigned length = string->length();
--m_totalNumberStrings;
if (string->is8Bit()) {
--m_number8BitStrings;
m_total8BitData -= length;
} else {
--m_number16BitStrings;
m_total16BitData -= length;
}
if (!--s_stringRemovesTillPrintStats) {
s_stringRemovesTillPrintStats = s_printStringStatsFrequency;
printStats();
}
}
void StringStats::printStats()
{
dataLogF("String stats for process id %d:\n", getCurrentProcessID());
unsigned long long totalNumberCharacters = m_total8BitData + m_total16BitData;
double percent8Bit = m_totalNumberStrings ? ((double)m_number8BitStrings * 100) / (double)m_totalNumberStrings : 0.0;
double average8bitLength = m_number8BitStrings ? (double)m_total8BitData / (double)m_number8BitStrings : 0.0;
dataLogF("%8u (%5.2f%%) 8 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number8BitStrings, percent8Bit, m_total8BitData, m_total8BitData, average8bitLength);
double percent16Bit = m_totalNumberStrings ? ((double)m_number16BitStrings * 100) / (double)m_totalNumberStrings : 0.0;
double average16bitLength = m_number16BitStrings ? (double)m_total16BitData / (double)m_number16BitStrings : 0.0;
dataLogF("%8u (%5.2f%%) 16 bit %12llu chars %12llu bytes avg length %6.1f\n", m_number16BitStrings, percent16Bit, m_total16BitData, m_total16BitData * 2, average16bitLength);
double averageLength = m_totalNumberStrings ? (double)totalNumberCharacters / (double)m_totalNumberStrings : 0.0;
unsigned long long totalDataBytes = m_total8BitData + m_total16BitData * 2;
dataLogF("%8u Total %12llu chars %12llu bytes avg length %6.1f\n", m_totalNumberStrings, totalNumberCharacters, totalDataBytes, averageLength);
unsigned long long totalSavedBytes = m_total8BitData;
double percentSavings = totalSavedBytes ? ((double)totalSavedBytes * 100) / (double)(totalDataBytes + totalSavedBytes) : 0.0;
dataLogF(" Total savings %12llu bytes (%5.2f%%)\n", totalSavedBytes, percentSavings);
unsigned totalOverhead = m_totalNumberStrings * sizeof(StringImpl);
double overheadPercent = (double)totalOverhead / (double)totalDataBytes * 100;
dataLogF(" StringImpl overheader: %8u (%5.2f%%)\n", totalOverhead, overheadPercent);
callOnMainThread(printLiveStringStats, 0);
}
#endif
StringImpl::~StringImpl()
{
ASSERT(!isStatic());
STRING_STATS_REMOVE_STRING(this);
if (isAtomic())
AtomicString::remove(this);
}
PassRefPtr<StringImpl> StringImpl::createUninitialized(unsigned length, LChar*& data)
{
if (!length) {
data = 0;
return empty();
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
RELEASE_ASSERT(length <= ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(LChar)));
size_t size = sizeof(StringImpl) + length * sizeof(LChar);
StringImpl* string = static_cast<StringImpl*>(fastMalloc(size));
data = reinterpret_cast<LChar*>(string + 1);
return adoptRef(new (NotNull, string) StringImpl(length, Force8BitConstructor));
}
PassRefPtr<StringImpl> StringImpl::createUninitialized(unsigned length, UChar*& data)
{
if (!length) {
data = 0;
return empty();
}
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
RELEASE_ASSERT(length <= ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(UChar)));
size_t size = sizeof(StringImpl) + length * sizeof(UChar);
StringImpl* string = static_cast<StringImpl*>(fastMalloc(size));
data = reinterpret_cast<UChar*>(string + 1);
return adoptRef(new (NotNull, string) StringImpl(length));
}
PassRefPtr<StringImpl> StringImpl::reallocate(PassRefPtr<StringImpl> originalString, unsigned length, LChar*& data)
{
ASSERT(originalString->is8Bit());
ASSERT(originalString->hasOneRef());
if (!length) {
data = 0;
return empty();
}
// Same as createUninitialized() except here we use fastRealloc.
RELEASE_ASSERT(length <= ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(LChar)));
size_t size = sizeof(StringImpl) + length * sizeof(LChar);
originalString->~StringImpl();
StringImpl* string = static_cast<StringImpl*>(fastRealloc(originalString.leakRef(), size));
data = reinterpret_cast<LChar*>(string + 1);
return adoptRef(new (NotNull, string) StringImpl(length, Force8BitConstructor));
}
PassRefPtr<StringImpl> StringImpl::reallocate(PassRefPtr<StringImpl> originalString, unsigned length, UChar*& data)
{
ASSERT(!originalString->is8Bit());
ASSERT(originalString->hasOneRef());
if (!length) {
data = 0;
return empty();
}
// Same as createUninitialized() except here we use fastRealloc.
RELEASE_ASSERT(length <= ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(UChar)));
size_t size = sizeof(StringImpl) + length * sizeof(UChar);
originalString->~StringImpl();
StringImpl* string = static_cast<StringImpl*>(fastRealloc(originalString.leakRef(), size));
data = reinterpret_cast<UChar*>(string + 1);
return adoptRef(new (NotNull, string) StringImpl(length));
}
StringImpl* StringImpl::createStatic(const char* string, unsigned length, unsigned hash)
{
ASSERT(string);
ASSERT(length);
// Allocate a single buffer large enough to contain the StringImpl
// struct as well as the data which it contains. This removes one
// heap allocation from this call.
RELEASE_ASSERT(length <= ((std::numeric_limits<unsigned>::max() - sizeof(StringImpl)) / sizeof(LChar)));
size_t size = sizeof(StringImpl) + length * sizeof(LChar);
StringImpl* impl = static_cast<StringImpl*>(fastMalloc(size));
LChar* data = reinterpret_cast<LChar*>(impl + 1);
impl = new (NotNull, impl) StringImpl(length, hash, StaticString);
memcpy(data, string, length * sizeof(LChar));
#ifndef NDEBUG
impl->assertHashIsCorrect();
#endif
return impl;
}
PassRefPtr<StringImpl> StringImpl::create(const UChar* characters, unsigned length)
{
if (!characters || !length)
return empty();
UChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
memcpy(data, characters, length * sizeof(UChar));
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const LChar* characters, unsigned length)
{
if (!characters || !length)
return empty();
LChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
memcpy(data, characters, length * sizeof(LChar));
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create8BitIfPossible(const UChar* characters, unsigned length)
{
if (!characters || !length)
return empty();
LChar* data;
RefPtr<StringImpl> string = createUninitialized(length, data);
for (size_t i = 0; i < length; ++i) {
if (characters[i] & 0xff00)
return create(characters, length);
data[i] = static_cast<LChar>(characters[i]);
}
return string.release();
}
PassRefPtr<StringImpl> StringImpl::create(const LChar* string)
{
if (!string)
return empty();
size_t length = strlen(reinterpret_cast<const char*>(string));
RELEASE_ASSERT(length <= numeric_limits<unsigned>::max());
return create(string, length);
}
bool StringImpl::containsOnlyWhitespace()
{
// FIXME: The definition of whitespace here includes a number of characters
// that are not whitespace from the point of view of RenderText; I wonder if
// that's a problem in practice.
if (is8Bit()) {
for (unsigned i = 0; i < m_length; ++i) {
UChar c = characters8()[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
for (unsigned i = 0; i < m_length; ++i) {
UChar c = characters16()[i];
if (!isASCIISpace(c))
return false;
}
return true;
}
PassRefPtr<StringImpl> StringImpl::substring(unsigned start, unsigned length)
{
if (start >= m_length)
return empty();
unsigned maxLength = m_length - start;
if (length >= maxLength) {
if (!start)
return this;
length = maxLength;
}
if (is8Bit())
return create(characters8() + start, length);
return create(characters16() + start, length);
}
UChar32 StringImpl::characterStartingAt(unsigned i)
{
if (is8Bit())
return characters8()[i];
if (U16_IS_SINGLE(characters16()[i]))
return characters16()[i];
if (i + 1 < m_length && U16_IS_LEAD(characters16()[i]) && U16_IS_TRAIL(characters16()[i + 1]))
return U16_GET_SUPPLEMENTARY(characters16()[i], characters16()[i + 1]);
return 0;
}
PassRefPtr<StringImpl> StringImpl::lower()
{
// Note: This is a hot function in the Dromaeo benchmark, specifically the
// no-op code path up through the first 'return' statement.
// First scan the string for uppercase and non-ASCII characters:
bool noUpper = true;
UChar ored = 0;
if (is8Bit()) {
const LChar* end = characters8() + m_length;
for (const LChar* chp = characters8(); chp != end; ++chp) {
if (UNLIKELY(isASCIIUpper(*chp)))
noUpper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(m_length <= static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
LChar* data8;
RefPtr<StringImpl> newImpl = createUninitialized(length, data8);
if (!(ored & ~0x7F)) {
for (int32_t i = 0; i < length; ++i)
data8[i] = toASCIILower(characters8()[i]);
return newImpl.release();
}
// Do a slower implementation for cases that include non-ASCII Latin-1 characters.
for (int32_t i = 0; i < length; ++i)
data8[i] = static_cast<LChar>(Unicode::toLower(characters8()[i]));
return newImpl.release();
}
const UChar* end = characters16() + m_length;
for (const UChar* chp = characters16(); chp != end; ++chp) {
if (UNLIKELY(isASCIIUpper(*chp)))
noUpper = false;
ored |= *chp;
}
// Nothing to do if the string is all ASCII with no uppercase.
if (noUpper && !(ored & ~0x7F))
return this;
RELEASE_ASSERT(m_length <= static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (!(ored & ~0x7F)) {
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
for (int32_t i = 0; i < length; ++i) {
UChar c = characters16()[i];
data16[i] = toASCIILower(c);
}
return newImpl.release();
}
// Do a slower implementation for cases that include non-ASCII characters.
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
bool error;
int32_t realLength = Unicode::toLower(data16, length, characters16(), m_length, &error);
if (!error && realLength == length)
return newImpl.release();
newImpl = createUninitialized(realLength, data16);
Unicode::toLower(data16, realLength, characters16(), m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::upper()
{
// This function could be optimized for no-op cases the way lower() is,
// but in empirical testing, few actual calls to upper() are no-ops, so
// it wouldn't be worth the extra time for pre-scanning.
RELEASE_ASSERT(m_length <= static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (is8Bit()) {
LChar* data8;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data8);
// Do a faster loop for the case where all the characters are ASCII.
LChar ored = 0;
for (int i = 0; i < length; ++i) {
LChar c = characters8()[i];
ored |= c;
data8[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII Latin-1 characters.
int numberSharpSCharacters = 0;
// There are two special cases.
// 1. latin-1 characters when converted to upper case are 16 bit characters.
// 2. Lower case sharp-S converts to "SS" (two characters)
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
if (UNLIKELY(c == smallLetterSharpS))
++numberSharpSCharacters;
UChar upper = Unicode::toUpper(c);
if (UNLIKELY(upper > 0xff)) {
// Since this upper-cased character does not fit in an 8-bit string, we need to take the 16-bit path.
goto upconvert;
}
data8[i] = static_cast<LChar>(upper);
}
if (!numberSharpSCharacters)
return newImpl.release();
// We have numberSSCharacters sharp-s characters, but none of the other special characters.
newImpl = createUninitialized(m_length + numberSharpSCharacters, data8);
LChar* dest = data8;
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
if (c == smallLetterSharpS) {
*dest++ = 'S';
*dest++ = 'S';
} else
*dest++ = static_cast<LChar>(Unicode::toUpper(c));
}
return newImpl.release();
}
upconvert:
const UChar* source16 = 0;
RefPtr<StringImpl> upconverted;
if (is8Bit()) {
upconverted = String::make16BitFrom8BitSource(characters8(), m_length).impl();
source16 = upconverted->characters16();
} else {
source16 = characters16();
}
UChar* data16;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data16);
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
for (int i = 0; i < length; ++i) {
UChar c = source16[i];
ored |= c;
data16[i] = toASCIIUpper(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
newImpl = createUninitialized(m_length, data16);
int32_t realLength = Unicode::toUpper(data16, length, source16, m_length, &error);
if (!error && realLength == length)
return newImpl;
newImpl = createUninitialized(realLength, data16);
Unicode::toUpper(data16, realLength, source16, m_length, &error);
if (error)
return this;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::fill(UChar character)
{
if (!m_length)
return this;
if (!(character & ~0x7F)) {
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (unsigned i = 0; i < m_length; ++i)
data[i] = character;
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (unsigned i = 0; i < m_length; ++i)
data[i] = character;
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::foldCase()
{
RELEASE_ASSERT(m_length <= static_cast<unsigned>(numeric_limits<int32_t>::max()));
int32_t length = m_length;
if (is8Bit()) {
// Do a faster loop for the case where all the characters are ASCII.
LChar* data;
RefPtr <StringImpl>newImpl = createUninitialized(m_length, data);
LChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
LChar c = characters8()[i];
data[i] = toASCIILower(c);
ored |= c;
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII Latin-1 characters.
for (int32_t i = 0; i < length; ++i)
data[i] = static_cast<LChar>(Unicode::toLower(characters8()[i]));
return newImpl.release();
}
// Do a faster loop for the case where all the characters are ASCII.
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
UChar ored = 0;
for (int32_t i = 0; i < length; ++i) {
UChar c = characters16()[i];
ored |= c;
data[i] = toASCIILower(c);
}
if (!(ored & ~0x7F))
return newImpl.release();
// Do a slower implementation for cases that include non-ASCII characters.
bool error;
int32_t realLength = Unicode::foldCase(data, length, characters16(), m_length, &error);
if (!error && realLength == length)
return newImpl.release();
newImpl = createUninitialized(realLength, data);
Unicode::foldCase(data, realLength, characters16(), m_length, &error);
if (error)
return this;
return newImpl.release();
}
template <class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::stripMatchedCharacters(UCharPredicate predicate)
{
if (!m_length)
return empty();
unsigned start = 0;
unsigned end = m_length - 1;
// skip white space from start
while (start <= end && predicate(is8Bit() ? characters8()[start] : characters16()[start]))
++start;
// only white space
if (start > end)
return empty();
// skip white space from end
while (end && predicate(is8Bit() ? characters8()[end] : characters16()[end]))
--end;
if (!start && end == m_length - 1)
return this;
if (is8Bit())
return create(characters8() + start, end + 1 - start);
return create(characters16() + start, end + 1 - start);
}
class UCharPredicate {
public:
inline UCharPredicate(CharacterMatchFunctionPtr function): m_function(function) { }
inline bool operator()(UChar ch) const
{
return m_function(ch);
}
private:
const CharacterMatchFunctionPtr m_function;
};
class SpaceOrNewlinePredicate {
public:
inline bool operator()(UChar ch) const
{
return isSpaceOrNewline(ch);
}
};
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace()
{
return stripMatchedCharacters(SpaceOrNewlinePredicate());
}
PassRefPtr<StringImpl> StringImpl::stripWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace)
{
return stripMatchedCharacters(UCharPredicate(isWhiteSpace));
}
template <typename CharType>
ALWAYS_INLINE PassRefPtr<StringImpl> StringImpl::removeCharacters(const CharType* characters, CharacterMatchFunctionPtr findMatch)
{
const CharType* from = characters;
const CharType* fromend = from + m_length;
// Assume the common case will not remove any characters
while (from != fromend && !findMatch(*from))
++from;
if (from == fromend)
return this;
StringBuffer<CharType> data(m_length);
CharType* to = data.characters();
unsigned outc = from - characters;
if (outc)
memcpy(to, characters, outc * sizeof(CharType));
while (true) {
while (from != fromend && findMatch(*from))
++from;
while (from != fromend && !findMatch(*from))
to[outc++] = *from++;
if (from == fromend)
break;
}
data.shrink(outc);
return data.release();
}
PassRefPtr<StringImpl> StringImpl::removeCharacters(CharacterMatchFunctionPtr findMatch)
{
if (is8Bit())
return removeCharacters(characters8(), findMatch);
return removeCharacters(characters16(), findMatch);
}
template <typename CharType, class UCharPredicate>
inline PassRefPtr<StringImpl> StringImpl::simplifyMatchedCharactersToSpace(UCharPredicate predicate)
{
StringBuffer<CharType> data(m_length);
const CharType* from = getCharacters<CharType>();
const CharType* fromend = from + m_length;
int outc = 0;
bool changedToSpace = false;
CharType* to = data.characters();
while (true) {
while (from != fromend && predicate(*from)) {
if (*from != ' ')
changedToSpace = true;
++from;
}
while (from != fromend && !predicate(*from))
to[outc++] = *from++;
if (from != fromend)
to[outc++] = ' ';
else
break;
}
if (outc > 0 && to[outc - 1] == ' ')
--outc;
if (static_cast<unsigned>(outc) == m_length && !changedToSpace)
return this;
data.shrink(outc);
return data.release();
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace()
{
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(SpaceOrNewlinePredicate());
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(SpaceOrNewlinePredicate());
}
PassRefPtr<StringImpl> StringImpl::simplifyWhiteSpace(IsWhiteSpaceFunctionPtr isWhiteSpace)
{
if (is8Bit())
return StringImpl::simplifyMatchedCharactersToSpace<LChar>(UCharPredicate(isWhiteSpace));
return StringImpl::simplifyMatchedCharactersToSpace<UChar>(UCharPredicate(isWhiteSpace));
}
int StringImpl::toIntStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToIntStrict(characters8(), m_length, ok, base);
return charactersToIntStrict(characters16(), m_length, ok, base);
}
unsigned StringImpl::toUIntStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToUIntStrict(characters8(), m_length, ok, base);
return charactersToUIntStrict(characters16(), m_length, ok, base);
}
int64_t StringImpl::toInt64Strict(bool* ok, int base)
{
if (is8Bit())
return charactersToInt64Strict(characters8(), m_length, ok, base);
return charactersToInt64Strict(characters16(), m_length, ok, base);
}
uint64_t StringImpl::toUInt64Strict(bool* ok, int base)
{
if (is8Bit())
return charactersToUInt64Strict(characters8(), m_length, ok, base);
return charactersToUInt64Strict(characters16(), m_length, ok, base);
}
intptr_t StringImpl::toIntPtrStrict(bool* ok, int base)
{
if (is8Bit())
return charactersToIntPtrStrict(characters8(), m_length, ok, base);
return charactersToIntPtrStrict(characters16(), m_length, ok, base);
}
int StringImpl::toInt(bool* ok)
{
if (is8Bit())
return charactersToInt(characters8(), m_length, ok);
return charactersToInt(characters16(), m_length, ok);
}
unsigned StringImpl::toUInt(bool* ok)
{
if (is8Bit())
return charactersToUInt(characters8(), m_length, ok);
return charactersToUInt(characters16(), m_length, ok);
}
int64_t StringImpl::toInt64(bool* ok)
{
if (is8Bit())
return charactersToInt64(characters8(), m_length, ok);
return charactersToInt64(characters16(), m_length, ok);
}
uint64_t StringImpl::toUInt64(bool* ok)
{
if (is8Bit())
return charactersToUInt64(characters8(), m_length, ok);
return charactersToUInt64(characters16(), m_length, ok);
}
intptr_t StringImpl::toIntPtr(bool* ok)
{
if (is8Bit())
return charactersToIntPtr(characters8(), m_length, ok);
return charactersToIntPtr(characters16(), m_length, ok);
}
double StringImpl::toDouble(bool* ok)
{
if (is8Bit())
return charactersToDouble(characters8(), m_length, ok);
return charactersToDouble(characters16(), m_length, ok);
}
float StringImpl::toFloat(bool* ok)
{
if (is8Bit())
return charactersToFloat(characters8(), m_length, ok);
return charactersToFloat(characters16(), m_length, ok);
}
bool equalIgnoringCase(const LChar* a, const LChar* b, unsigned length)
{
while (length--) {
LChar bc = *b++;
if (foldCase(*a++) != foldCase(bc))
return false;
}
return true;
}
bool equalIgnoringCase(const UChar* a, const LChar* b, unsigned length)
{
while (length--) {
LChar bc = *b++;
if (foldCase(*a++) != foldCase(bc))
return false;
}
return true;
}
size_t StringImpl::find(CharacterMatchFunctionPtr matchFunction, unsigned start)
{
if (is8Bit())
return WTF::find(characters8(), m_length, matchFunction, start);
return WTF::find(characters16(), m_length, matchFunction, start);
}
size_t StringImpl::find(const LChar* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(reinterpret_cast<const char*>(matchString));
RELEASE_ASSERT(matchStringLength <= numeric_limits<unsigned>::max());
unsigned matchLength = matchStringLength;
if (!matchLength)
return min(index, length());
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1)
return WTF::find(characters16(), length(), *matchString, index);
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
const UChar* searchCharacters = characters16() + index;
// Optimization 2: keep a running hash of the strings,
// only call equal if the hashes match.
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchString[i];
}
unsigned i = 0;
// keep looping until we match
while (searchHash != matchHash || !equal(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
template<typename CharType>
ALWAYS_INLINE size_t findIgnoringCaseInternal(const CharType* searchCharacters, const LChar* matchString, unsigned index, unsigned searchLength, unsigned matchLength)
{
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
unsigned i = 0;
while (!equalIgnoringCase(searchCharacters + i, matchString, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(const LChar* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
size_t matchStringLength = strlen(reinterpret_cast<const char*>(matchString));
RELEASE_ASSERT(matchStringLength <= numeric_limits<unsigned>::max());
unsigned matchLength = matchStringLength;
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
if (is8Bit())
return findIgnoringCaseInternal(characters8() + index, matchString, index, searchLength, matchLength);
return findIgnoringCaseInternal(characters16() + index, matchString, index, searchLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findInternal(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned searchLength, unsigned matchLength)
{
// Optimization: keep a running hash of the strings,
// only call equal() if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[i];
matchHash += matchCharacters[i];
}
unsigned i = 0;
// keep looping until we match
while (searchHash != matchHash || !equal(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return notFound;
searchHash += searchCharacters[i + matchLength];
searchHash -= searchCharacters[i];
++i;
}
return index + i;
}
size_t StringImpl::find(StringImpl* matchString)
{
// Check for null string to match against
if (UNLIKELY(!matchString))
return notFound;
unsigned matchLength = matchString->length();
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit()) {
if (matchString->is8Bit())
return WTF::find(characters8(), length(), matchString->characters8()[0]);
return WTF::find(characters8(), length(), matchString->characters16()[0]);
}
if (matchString->is8Bit())
return WTF::find(characters16(), length(), matchString->characters8()[0]);
return WTF::find(characters16(), length(), matchString->characters16()[0]);
}
// Check matchLength is in range.
if (matchLength > length())
return notFound;
// Check for empty string to match against
if (UNLIKELY(!matchLength))
return 0;
if (is8Bit()) {
if (matchString->is8Bit())
return findInternal(characters8(), matchString->characters8(), 0, length(), matchLength);
return findInternal(characters8(), matchString->characters16(), 0, length(), matchLength);
}
if (matchString->is8Bit())
return findInternal(characters16(), matchString->characters8(), 0, length(), matchLength);
return findInternal(characters16(), matchString->characters16(), 0, length(), matchLength);
}
size_t StringImpl::find(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (UNLIKELY(!matchString))
return notFound;
unsigned matchLength = matchString->length();
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::find(characters8(), length(), (*matchString)[0], index);
return WTF::find(characters16(), length(), (*matchString)[0], index);
}
if (UNLIKELY(!matchLength))
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return findInternal(characters8() + index, matchString->characters8(), index, searchLength, matchLength);
return findInternal(characters8() + index, matchString->characters16(), index, searchLength, matchLength);
}
if (matchString->is8Bit())
return findInternal(characters16() + index, matchString->characters8(), index, searchLength, matchLength);
return findInternal(characters16() + index, matchString->characters16(), index, searchLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t findIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned searchLength, unsigned matchLength)
{
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = searchLength - matchLength;
unsigned i = 0;
// keep looping until we match
while (!equalIgnoringCase(searchCharacters + i, matchCharacters, matchLength)) {
if (i == delta)
return notFound;
++i;
}
return index + i;
}
size_t StringImpl::findIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
if (!matchLength)
return min(index, length());
// Check index & matchLength are in range.
if (index > length())
return notFound;
unsigned searchLength = length() - index;
if (matchLength > searchLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return findIgnoringCaseInner(characters8() + index, matchString->characters8(), index, searchLength, matchLength);
return findIgnoringCaseInner(characters8() + index, matchString->characters16(), index, searchLength, matchLength);
}
if (matchString->is8Bit())
return findIgnoringCaseInner(characters16() + index, matchString->characters8(), index, searchLength, matchLength);
return findIgnoringCaseInner(characters16() + index, matchString->characters16(), index, searchLength, matchLength);
}
size_t StringImpl::findNextLineStart(unsigned index)
{
if (is8Bit())
return WTF::findNextLineStart(characters8(), m_length, index);
return WTF::findNextLineStart(characters16(), m_length, index);
}
size_t StringImpl::count(LChar c) const
{
int count = 0;
if (is8Bit()) {
for (size_t i = 0; i < m_length; ++i)
count += characters8()[i] == c;
} else {
for (size_t i = 0; i < m_length; ++i)
count += characters16()[i] == c;
}
return count;
}
size_t StringImpl::reverseFind(UChar c, unsigned index)
{
if (is8Bit())
return WTF::reverseFind(characters8(), m_length, c, index);
return WTF::reverseFind(characters16(), m_length, c, index);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t reverseFindInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength)
{
// Optimization: keep a running hash of the strings,
// only call equal if the hashes match.
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = min(index, length - matchLength);
unsigned searchHash = 0;
unsigned matchHash = 0;
for (unsigned i = 0; i < matchLength; ++i) {
searchHash += searchCharacters[delta + i];
matchHash += matchCharacters[i];
}
// keep looping until we match
while (searchHash != matchHash || !equal(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return notFound;
--delta;
searchHash -= searchCharacters[delta + matchLength];
searchHash += searchCharacters[delta];
}
return delta;
}
size_t StringImpl::reverseFind(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
unsigned ourLength = length();
if (!matchLength)
return min(index, ourLength);
// Optimization 1: fast case for strings of length 1.
if (matchLength == 1) {
if (is8Bit())
return WTF::reverseFind(characters8(), ourLength, (*matchString)[0], index);
return WTF::reverseFind(characters16(), ourLength, (*matchString)[0], index);
}
// Check index & matchLength are in range.
if (matchLength > ourLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return reverseFindInner(characters8(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindInner(characters8(), matchString->characters16(), index, ourLength, matchLength);
}
if (matchString->is8Bit())
return reverseFindInner(characters16(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindInner(characters16(), matchString->characters16(), index, ourLength, matchLength);
}
template <typename SearchCharacterType, typename MatchCharacterType>
ALWAYS_INLINE static size_t reverseFindIgnoringCaseInner(const SearchCharacterType* searchCharacters, const MatchCharacterType* matchCharacters, unsigned index, unsigned length, unsigned matchLength)
{
// delta is the number of additional times to test; delta == 0 means test only once.
unsigned delta = min(index, length - matchLength);
// keep looping until we match
while (!equalIgnoringCase(searchCharacters + delta, matchCharacters, matchLength)) {
if (!delta)
return notFound;
--delta;
}
return delta;
}
size_t StringImpl::reverseFindIgnoringCase(StringImpl* matchString, unsigned index)
{
// Check for null or empty string to match against
if (!matchString)
return notFound;
unsigned matchLength = matchString->length();
unsigned ourLength = length();
if (!matchLength)
return min(index, ourLength);
// Check index & matchLength are in range.
if (matchLength > ourLength)
return notFound;
if (is8Bit()) {
if (matchString->is8Bit())
return reverseFindIgnoringCaseInner(characters8(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindIgnoringCaseInner(characters8(), matchString->characters16(), index, ourLength, matchLength);
}
if (matchString->is8Bit())
return reverseFindIgnoringCaseInner(characters16(), matchString->characters8(), index, ourLength, matchLength);
return reverseFindIgnoringCaseInner(characters16(), matchString->characters16(), index, ourLength, matchLength);
}
ALWAYS_INLINE static bool equalInner(const StringImpl* stringImpl, unsigned startOffset, const char* matchString, unsigned matchLength, bool caseSensitive)
{
ASSERT(stringImpl);
ASSERT(matchLength <= stringImpl->length());
ASSERT(startOffset + matchLength <= stringImpl->length());
if (caseSensitive) {
if (stringImpl->is8Bit())
return equal(stringImpl->characters8() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
return equal(stringImpl->characters16() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
}
if (stringImpl->is8Bit())
return equalIgnoringCase(stringImpl->characters8() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
return equalIgnoringCase(stringImpl->characters16() + startOffset, reinterpret_cast<const LChar*>(matchString), matchLength);
}
bool StringImpl::startsWith(UChar character) const
{
return m_length && (*this)[0] == character;
}
bool StringImpl::startsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const
{
ASSERT(matchLength);
if (matchLength > length())
return false;
return equalInner(this, 0, matchString, matchLength, caseSensitive);
}
bool StringImpl::endsWith(StringImpl* matchString, bool caseSensitive)
{
ASSERT(matchString);
if (m_length >= matchString->m_length) {
unsigned start = m_length - matchString->m_length;
return (caseSensitive ? find(matchString, start) : findIgnoringCase(matchString, start)) == start;
}
return false;
}
bool StringImpl::endsWith(UChar character) const
{
return m_length && (*this)[m_length - 1] == character;
}
bool StringImpl::endsWith(const char* matchString, unsigned matchLength, bool caseSensitive) const
{
ASSERT(matchLength);
if (matchLength > length())
return false;
unsigned startOffset = length() - matchLength;
return equalInner(this, startOffset, matchString, matchLength, caseSensitive);
}
PassRefPtr<StringImpl> StringImpl::replace(UChar oldC, UChar newC)
{
if (oldC == newC)
return this;
unsigned i;
for (i = 0; i != m_length; ++i) {
UChar c = is8Bit() ? characters8()[i] : characters16()[i];
if (c == oldC)
break;
}
if (i == m_length)
return this;
if (is8Bit()) {
if (oldC > 0xff)
// Looking for a 16 bit char in an 8 bit string, we're done.
return this;
if (newC <= 0xff) {
LChar* data;
LChar oldChar = static_cast<LChar>(oldC);
LChar newChar = static_cast<LChar>(newC);
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
LChar ch = characters8()[i];
if (ch == oldChar)
ch = newChar;
data[i] = ch;
}
return newImpl.release();
}
// There is the possibility we need to up convert from 8 to 16 bit,
// create a 16 bit string for the result.
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = characters8()[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(m_length, data);
for (i = 0; i != m_length; ++i) {
UChar ch = characters16()[i];
if (ch == oldC)
ch = newC;
data[i] = ch;
}
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(unsigned position, unsigned lengthToReplace, StringImpl* str)
{
position = min(position, length());
lengthToReplace = min(lengthToReplace, length() - position);
unsigned lengthToInsert = str ? str->length() : 0;
if (!lengthToReplace && !lengthToInsert)
return this;
RELEASE_ASSERT((length() - lengthToReplace) < (numeric_limits<unsigned>::max() - lengthToInsert));
if (is8Bit() && (!str || str->is8Bit())) {
LChar* data;
RefPtr<StringImpl> newImpl =
createUninitialized(length() - lengthToReplace + lengthToInsert, data);
memcpy(data, characters8(), position * sizeof(LChar));
if (str)
memcpy(data + position, str->characters8(), lengthToInsert * sizeof(LChar));
memcpy(data + position + lengthToInsert, characters8() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(LChar));
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl =
createUninitialized(length() - lengthToReplace + lengthToInsert, data);
if (is8Bit())
for (unsigned i = 0; i < position; ++i)
data[i] = characters8()[i];
else
memcpy(data, characters16(), position * sizeof(UChar));
if (str) {
if (str->is8Bit())
for (unsigned i = 0; i < lengthToInsert; ++i)
data[i + position] = str->characters8()[i];
else
memcpy(data + position, str->characters16(), lengthToInsert * sizeof(UChar));
}
if (is8Bit()) {
for (unsigned i = 0; i < length() - position - lengthToReplace; ++i)
data[i + position + lengthToInsert] = characters8()[i + position + lengthToReplace];
} else {
memcpy(data + position + lengthToInsert, characters16() + position + lengthToReplace,
(length() - position - lengthToReplace) * sizeof(UChar));
}
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern, StringImpl* replacement)
{
if (!replacement)
return this;
if (replacement->is8Bit())
return replace(pattern, replacement->characters8(), replacement->length());
return replace(pattern, replacement->characters16(), replacement->length());
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern, const LChar* replacement, unsigned repStrLength)
{
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return this;
RELEASE_ASSERT(!repStrLength || matchCount <= numeric_limits<unsigned>::max() / repStrLength);
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
RELEASE_ASSERT(newSize < (numeric_limits<unsigned>::max() - replaceSize));
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart, srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart, srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement[i];
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(UChar pattern, const UChar* replacement, unsigned repStrLength)
{
ASSERT(replacement);
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
++srcSegmentStart;
}
// If we have 0 matches then we don't have to do any more work.
if (!matchCount)
return this;
RELEASE_ASSERT(!repStrLength || matchCount <= numeric_limits<unsigned>::max() / repStrLength);
unsigned replaceSize = matchCount * repStrLength;
unsigned newSize = m_length - matchCount;
RELEASE_ASSERT(newSize < (numeric_limits<unsigned>::max() - replaceSize));
newSize += replaceSize;
// Construct the new data.
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
if (is8Bit()) {
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement, repStrLength * sizeof(UChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + 1;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
PassRefPtr<StringImpl> StringImpl::replace(StringImpl* pattern, StringImpl* replacement)
{
if (!pattern || !replacement)
return this;
unsigned patternLength = pattern->length();
if (!patternLength)
return this;
unsigned repStrLength = replacement->length();
size_t srcSegmentStart = 0;
unsigned matchCount = 0;
// Count the matches.
while ((srcSegmentStart = find(pattern, srcSegmentStart)) != notFound) {
++matchCount;
srcSegmentStart += patternLength;
}
// If we have 0 matches, we don't have to do any more work
if (!matchCount)
return this;
unsigned newSize = m_length - matchCount * patternLength;
RELEASE_ASSERT(!repStrLength || matchCount <= numeric_limits<unsigned>::max() / repStrLength);
RELEASE_ASSERT(newSize <= (numeric_limits<unsigned>::max() - matchCount * repStrLength));
newSize += matchCount * repStrLength;
// Construct the new data
size_t srcSegmentEnd;
unsigned srcSegmentLength;
srcSegmentStart = 0;
unsigned dstOffset = 0;
bool srcIs8Bit = is8Bit();
bool replacementIs8Bit = replacement->is8Bit();
// There are 4 cases:
// 1. This and replacement are both 8 bit.
// 2. This and replacement are both 16 bit.
// 3. This is 8 bit and replacement is 16 bit.
// 4. This is 16 bit and replacement is 8 bit.
if (srcIs8Bit && replacementIs8Bit) {
// Case 1
LChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart, srcSegmentLength * sizeof(LChar));
dstOffset += srcSegmentLength;
memcpy(data + dstOffset, replacement->characters8(), repStrLength * sizeof(LChar));
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
memcpy(data + dstOffset, characters8() + srcSegmentStart, srcSegmentLength * sizeof(LChar));
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
UChar* data;
RefPtr<StringImpl> newImpl = createUninitialized(newSize, data);
while ((srcSegmentEnd = find(pattern, srcSegmentStart)) != notFound) {
srcSegmentLength = srcSegmentEnd - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
} else {
// Case 2 & 4.
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
}
dstOffset += srcSegmentLength;
if (replacementIs8Bit) {
// Cases 2 & 3.
for (unsigned i = 0; i < repStrLength; ++i)
data[i + dstOffset] = replacement->characters8()[i];
} else {
// Case 4
memcpy(data + dstOffset, replacement->characters16(), repStrLength * sizeof(UChar));
}
dstOffset += repStrLength;
srcSegmentStart = srcSegmentEnd + patternLength;
}
srcSegmentLength = m_length - srcSegmentStart;
if (srcIs8Bit) {
// Case 3.
for (unsigned i = 0; i < srcSegmentLength; ++i)
data[i + dstOffset] = characters8()[i + srcSegmentStart];
} else {
// Cases 2 & 4.
memcpy(data + dstOffset, characters16() + srcSegmentStart, srcSegmentLength * sizeof(UChar));
}
ASSERT(dstOffset + srcSegmentLength == newImpl->length());
return newImpl.release();
}
static inline bool stringImplContentEqual(const StringImpl* a, const StringImpl* b)
{
unsigned aLength = a->length();
unsigned bLength = b->length();
if (aLength != bLength)
return false;
if (a->is8Bit()) {
if (b->is8Bit())
return equal(a->characters8(), b->characters8(), aLength);
return equal(a->characters8(), b->characters16(), aLength);
}
if (b->is8Bit())
return equal(a->characters16(), b->characters8(), aLength);
return equal(a->characters16(), b->characters16(), aLength);
}
bool equal(const StringImpl* a, const StringImpl* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return stringImplContentEqual(a, b);
}
template <typename CharType>
inline bool equalInternal(const StringImpl* a, const CharType* b, unsigned length)
{
if (!a)
return !b;
if (!b)
return false;
if (a->length() != length)
return false;
if (a->is8Bit())
return equal(a->characters8(), b, length);
return equal(a->characters16(), b, length);
}
bool equal(const StringImpl* a, const LChar* b, unsigned length)
{
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const UChar* b, unsigned length)
{
return equalInternal(a, b, length);
}
bool equal(const StringImpl* a, const LChar* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
if (a->is8Bit()) {
const LChar* aPtr = a->characters8();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
LChar ac = aPtr[i];
if (!bc)
return false;
if (ac != bc)
return false;
}
return !b[length];
}
const UChar* aPtr = a->characters16();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
if (aPtr[i] != bc)
return false;
}
return !b[length];
}
bool equalNonNull(const StringImpl* a, const StringImpl* b)
{
ASSERT(a && b);
if (a == b)
return true;
return stringImplContentEqual(a, b);
}
bool equalIgnoringCase(const StringImpl* a, const StringImpl* b)
{
if (a == b)
return true;
if (!a || !b)
return false;
return CaseFoldingHash::equal(a, b);
}
bool equalIgnoringCase(const StringImpl* a, const LChar* b)
{
if (!a)
return !b;
if (!b)
return !a;
unsigned length = a->length();
// Do a faster loop for the case where all the characters are ASCII.
UChar ored = 0;
bool equal = true;
if (a->is8Bit()) {
const LChar* as = a->characters8();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
UChar ac = as[i];
ored |= ac;
equal = equal && (toASCIILower(ac) == toASCIILower(bc));
}
// Do a slower implementation for cases that include non-ASCII characters.
if (ored & ~0x7F) {
equal = true;
for (unsigned i = 0; i != length; ++i)
equal = equal && (foldCase(as[i]) == foldCase(b[i]));
}
return equal && !b[length];
}
const UChar* as = a->characters16();
for (unsigned i = 0; i != length; ++i) {
LChar bc = b[i];
if (!bc)
return false;
UChar ac = as[i];
ored |= ac;
equal = equal && (toASCIILower(ac) == toASCIILower(bc));
}
// Do a slower implementation for cases that include non-ASCII characters.
if (ored & ~0x7F) {
equal = true;
for (unsigned i = 0; i != length; ++i) {
equal = equal && (foldCase(as[i]) == foldCase(b[i]));
}
}
return equal && !b[length];
}
bool equalIgnoringCaseNonNull(const StringImpl* a, const StringImpl* b)
{
ASSERT(a && b);
if (a == b)
return true;
unsigned length = a->length();
if (length != b->length())
return false;
if (a->is8Bit()) {
if (b->is8Bit())
return equalIgnoringCase(a->characters8(), b->characters8(), length);
return equalIgnoringCase(b->characters16(), a->characters8(), length);
}
if (b->is8Bit())
return equalIgnoringCase(a->characters16(), b->characters8(), length);
return equalIgnoringCase(a->characters16(), b->characters16(), length);
}
bool equalIgnoringNullity(StringImpl* a, StringImpl* b)
{
if (!a && b && !b->length())
return true;
if (!b && a && !a->length())
return true;
return equal(a, b);
}
WTF::Unicode::Direction StringImpl::defaultWritingDirection(bool* hasStrongDirectionality)
{
for (unsigned i = 0; i < m_length; ++i) {
WTF::Unicode::Direction charDirection = WTF::Unicode::direction(is8Bit() ? characters8()[i] : characters16()[i]);
if (charDirection == WTF::Unicode::LeftToRight) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return WTF::Unicode::LeftToRight;
}
if (charDirection == WTF::Unicode::RightToLeft || charDirection == WTF::Unicode::RightToLeftArabic) {
if (hasStrongDirectionality)
*hasStrongDirectionality = true;
return WTF::Unicode::RightToLeft;
}
}
if (hasStrongDirectionality)
*hasStrongDirectionality = false;
return WTF::Unicode::LeftToRight;
}
size_t StringImpl::sizeInBytes() const
{
size_t size = length();
if (!is8Bit())
size *= 2;
return size + sizeof(*this);
}
} // namespace WTF