blob: 11474d6b9153b483983e0f05f4bbff8f4b23fdc0 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderGrid.h"
#include "core/paint/GridPainter.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/TextAutosizer.h"
#include "core/rendering/style/GridCoordinate.h"
#include "core/rendering/style/RenderStyle.h"
#include "platform/LengthFunctions.h"
namespace blink {
static const int infinity = -1;
class GridTrack {
public:
GridTrack()
: m_usedBreadth(0)
, m_maxBreadth(0)
{
}
void growUsedBreadth(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_usedBreadth += growth;
}
LayoutUnit usedBreadth() const { return m_usedBreadth; }
void growMaxBreadth(LayoutUnit growth)
{
if (m_maxBreadth == infinity)
m_maxBreadth = m_usedBreadth + growth;
else
m_maxBreadth += growth;
}
LayoutUnit maxBreadthIfNotInfinite() const
{
return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
}
LayoutUnit m_usedBreadth;
LayoutUnit m_maxBreadth;
};
struct GridTrackForNormalization {
GridTrackForNormalization(const GridTrack& track, double flex)
: m_track(&track)
, m_flex(flex)
, m_normalizedFlexValue(track.m_usedBreadth / flex)
{
}
// Required by std::sort.
GridTrackForNormalization& operator=(const GridTrackForNormalization& o)
{
m_track = o.m_track;
m_flex = o.m_flex;
m_normalizedFlexValue = o.m_normalizedFlexValue;
return *this;
}
const GridTrack* m_track;
double m_flex;
LayoutUnit m_normalizedFlexValue;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
ASSERT(!m_grid.isEmpty());
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const
{
// Ignore cells outside current grid as we will grow it later if needed.
size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size());
size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size());
// This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small.
for (size_t row = m_rowIndex; row < maxRows; ++row) {
for (size_t column = m_columnIndex; column < maxColumns; ++column) {
const GridCell& children = m_grid[row][column];
if (!children.isEmpty())
return false;
}
}
return true;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan)
{
ASSERT(!m_grid.isEmpty());
ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1);
size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan;
size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan;
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
if (checkEmptyCells(rowSpan, columnSpan)) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const GridRepresentation& m_grid;
GridTrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
struct RenderGrid::GridSizingData {
WTF_MAKE_NONCOPYABLE(GridSizingData);
STACK_ALLOCATED();
public:
GridSizingData(size_t gridColumnCount, size_t gridRowCount)
: columnTracks(gridColumnCount)
, rowTracks(gridRowCount)
{
}
Vector<GridTrack> columnTracks;
Vector<GridTrack> rowTracks;
Vector<size_t> contentSizedTracksIndex;
// Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free.
Vector<LayoutUnit> distributeTrackVector;
Vector<GridTrack*> filteredTracks;
WillBeHeapVector<GridItemWithSpan> itemsSortedByIncreasingSpan;
Vector<size_t> growAboveMaxBreadthTrackIndexes;
};
RenderGrid::RenderGrid(Element* element)
: RenderBlock(element)
, m_gridIsDirty(true)
, m_orderIterator(this)
{
ASSERT(!childrenInline());
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
// If the new requested beforeChild is not one of our children is because it's wrapped by an anonymous container. If
// we do not special case this situation we could end up calling addChild() twice for the newChild, one with the
// initial beforeChild and another one with its parent.
if (beforeChild && beforeChild->parent() != this) {
ASSERT(beforeChild->parent()->isAnonymous());
beforeChild = splitAnonymousBoxesAroundChild(beforeChild);
dirtyGrid();
}
RenderBlock::addChild(newChild, beforeChild);
if (gridIsDirty())
return;
if (!newChild->isBox()) {
dirtyGrid();
return;
}
// If the new child has been inserted inside an existent anonymous block, we can simply ignore it as the anonymous
// block is an already known grid item.
if (newChild->parent() != this)
return;
// FIXME: Implement properly "stack" value in auto-placement algorithm.
if (!style()->isGridAutoFlowAlgorithmStack()) {
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
return;
}
RenderBox* newChildBox = toRenderBox(newChild);
OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForRows);
OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *newChildBox, ForColumns);
if (!rowPositions || !columnPositions) {
// The new child requires the auto-placement algorithm to run so we need to recompute the grid fully.
dirtyGrid();
return;
} else {
insertItemIntoGrid(*newChildBox, GridCoordinate(*rowPositions, *columnPositions));
addChildToIndexesMap(*newChildBox);
}
}
void RenderGrid::addChildToIndexesMap(RenderBox& child)
{
ASSERT(!m_gridItemsIndexesMap.contains(&child));
RenderBox* sibling = child.nextSiblingBox();
bool lastSibling = !sibling;
if (lastSibling)
sibling = child.previousSiblingBox();
size_t index = 0;
if (sibling)
index = lastSibling ? m_gridItemsIndexesMap.get(sibling) + 1 : m_gridItemsIndexesMap.get(sibling);
if (sibling && !lastSibling) {
for (; sibling; sibling = sibling->nextSiblingBox())
m_gridItemsIndexesMap.set(sibling, m_gridItemsIndexesMap.get(sibling) + 1);
}
m_gridItemsIndexesMap.set(&child, index);
}
void RenderGrid::removeChild(RenderObject* child)
{
RenderBlock::removeChild(child);
if (gridIsDirty())
return;
ASSERT(child->isBox());
// FIXME: Implement properly "stack" value in auto-placement algorithm.
if (!style()->isGridAutoFlowAlgorithmStack()) {
// The grid needs to be recomputed as it might contain auto-placed items that will change their position.
dirtyGrid();
return;
}
const RenderBox* childBox = toRenderBox(child);
GridCoordinate coordinate = m_gridItemCoordinate.take(childBox);
for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column) {
GridCell& cell = m_grid[row.toInt()][column.toInt()];
cell.remove(cell.find(childBox));
}
}
m_gridItemsIndexesMap.remove(childBox);
}
void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (!oldStyle)
return;
// FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
// - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
// - named grid lines only impact grid items with named grid lines.
// - auto-flow changes only impacts auto-placed children.
if (explicitGridDidResize(oldStyle)
|| namedGridLinesDefinitionDidChange(oldStyle)
|| oldStyle->gridAutoFlow() != style()->gridAutoFlow())
dirtyGrid();
}
bool RenderGrid::explicitGridDidResize(const RenderStyle* oldStyle) const
{
return oldStyle->gridTemplateColumns().size() != style()->gridTemplateColumns().size()
|| oldStyle->gridTemplateRows().size() != style()->gridTemplateRows().size();
}
bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle* oldStyle) const
{
return oldStyle->namedGridRowLines() != style()->namedGridRowLines()
|| oldStyle->namedGridColumnLines() != style()->namedGridColumnLines();
}
void RenderGrid::layoutBlock(bool relayoutChildren)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutState state(*this, locationOffset());
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
TextAutosizer::LayoutScope textAutosizerLayoutScope(this);
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isDocumentElement());
computeOverflow(oldClientAfterEdge);
updateLayerTransformAfterLayout();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
if (hasOverflowClip())
layer()->scrollableArea()->updateAfterLayout();
clearNeedsLayout();
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
LayoutUnit availableLogicalSpace = 0;
const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace);
for (size_t i = 0; i < sizingData.columnTracks.size(); ++i) {
LayoutUnit minTrackBreadth = sizingData.columnTracks[i].m_usedBreadth;
LayoutUnit maxTrackBreadth = sizingData.columnTracks[i].m_maxBreadth;
maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
// FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
}
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
clearPreferredLogicalWidthsDirty();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace);
}
bool RenderGrid::gridElementIsShrinkToFit()
{
return isFloatingOrOutOfFlowPositioned();
}
void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks;
Vector<size_t> flexibleSizedTracksIndex;
sizingData.contentSizedTracksIndex.shrink(0);
// 1. Initialize per Grid track variables.
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
GridTrackSize trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);
if (track.m_maxBreadth != infinity)
track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
if (trackSize.isContentSized())
sizingData.contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
flexibleSizedTracksIndex.append(i);
}
// 2. Resolve content-based TrackSizingFunctions.
if (!sizingData.contentSizedTracksIndex.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, sizingData, availableLogicalSpace);
for (size_t i = 0; i < tracks.size(); ++i) {
ASSERT(tracks[i].m_maxBreadth != infinity);
availableLogicalSpace -= tracks[i].m_usedBreadth;
}
const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit();
if (!hasUndefinedRemainingSpace && availableLogicalSpace <= 0)
return;
// 3. Grow all Grid tracks in GridTracks from their UsedBreadth up to their MaxBreadth value until
// availableLogicalSpace (RemainingSpace in the specs) is exhausted.
const size_t tracksSize = tracks.size();
if (!hasUndefinedRemainingSpace) {
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, sizingData, availableLogicalSpace);
} else {
for (size_t i = 0; i < tracksSize; ++i)
tracks[i].m_usedBreadth = tracks[i].m_maxBreadth;
}
if (flexibleSizedTracksIndex.isEmpty())
return;
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
double normalizedFractionBreadth = 0;
if (!hasUndefinedRemainingSpace) {
normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, availableLogicalSpace);
} else {
for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
const size_t trackIndex = flexibleSizedTracksIndex[i];
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].m_usedBreadth / trackSize.maxTrackBreadth().flex());
}
for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
const GridCoordinate coordinate = cachedGridCoordinate(*gridItem);
const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
// Do not include already processed items.
if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1])
continue;
double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks));
normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth);
}
}
}
for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
const size_t trackIndex = flexibleSizedTracksIndex[i];
GridTrackSize trackSize = gridTrackSize(direction, trackIndex);
tracks[trackIndex].m_usedBreadth = std::max<LayoutUnit>(tracks[trackIndex].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
}
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const
{
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isSpecified()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(computedBreadth != infinity);
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const
{
ASSERT(trackLength.isSpecified());
// FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1));
}
static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
{
return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
}
double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
{
// |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.
Vector<GridTrackForNormalization> tracksForNormalization;
for (GridSpan::iterator resolvedPosition = tracksSpan.begin(); resolvedPosition != tracksSpan.end(); ++resolvedPosition) {
GridTrackSize trackSize = gridTrackSize(direction, resolvedPosition.toInt());
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracksForNormalization.append(GridTrackForNormalization(tracks[resolvedPosition.toInt()], trackSize.maxTrackBreadth().flex()));
}
// The function is not called if we don't have <flex> grid tracks
ASSERT(!tracksForNormalization.isEmpty());
std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
// These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
// to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
// fit into availableLogicalSpaceIgnoringFractionTracks.
double accumulatedFractions = 0;
LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;
for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
const GridTrackForNormalization& track = tracksForNormalization[i];
if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
// If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
// will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
break;
fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
}
accumulatedFractions += track.m_flex;
// This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
}
return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}
GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const
{
bool isForColumns = direction == ForColumns;
const Vector<GridTrackSize>& trackStyles = isForColumns ? style()->gridTemplateColumns() : style()->gridTemplateRows();
const GridTrackSize& trackSize = (i >= trackStyles.size()) ? (isForColumns ? style()->gridAutoColumns() : style()->gridAutoRows()) : trackStyles[i];
// If the logical width/height of the grid container is indefinite, percentage values are treated as <auto> (or in
// the case of minmax() as min-content for the first position and max-content for the second).
Length logicalSize = isForColumns ? style()->logicalWidth() : style()->logicalHeight();
// FIXME: isIntrinsicOrAuto() does not fulfil the 'indefinite size' description as it does not include <percentage>
// of indefinite sizes. This is a broather issue as Length does not have the required context to support it.
if (logicalSize.isIntrinsicOrAuto()) {
const GridLength& oldMinTrackBreadth = trackSize.minTrackBreadth();
const GridLength& oldMaxTrackBreadth = trackSize.maxTrackBreadth();
return GridTrackSize(oldMinTrackBreadth.isPercentage() ? Length(MinContent) : oldMinTrackBreadth, oldMaxTrackBreadth.isPercentage() ? Length(MaxContent) : oldMaxTrackBreadth);
}
return trackSize;
}
LayoutUnit RenderGrid::logicalHeightForChild(RenderBox& child, Vector<GridTrack>& columnTracks)
{
SubtreeLayoutScope layoutScope(child);
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
if (child.style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth)
layoutScope.setNeedsLayout(&child);
child.clearOverrideLogicalContentHeight();
child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child.setOverrideContainingBlockContentLogicalHeight(-1);
child.layoutIfNeeded();
return child.logicalHeight() + child.marginLogicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(&child);
}
return logicalHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(&child);
}
return logicalHeightForChild(child, columnTracks);
}
// We're basically using a class instead of a std::pair for two reasons. First of all, accessing gridItem() or
// coordinate() is much more self-explanatory that using .first or .second members in the pair. Secondly the class
// allows us to precompute the value of the span, something which is quite convenient for the sorting. Having a
// std::pair<RenderBox*, size_t> does not work either because we still need the GridCoordinate so we'd have to add an
// extra hash lookup for each item at the beginning of RenderGrid::resolveContentBasedTrackSizingFunctionsForItems().
class GridItemWithSpan {
ALLOW_ONLY_INLINE_ALLOCATION();
public:
GridItemWithSpan(RenderBox& gridItem, const GridCoordinate& coordinate, GridTrackSizingDirection direction)
: m_gridItem(gridItem)
, m_coordinate(coordinate)
{
const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns;
m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1;
}
RenderBox& gridItem() const { return *m_gridItem; }
GridCoordinate coordinate() const { return m_coordinate; }
bool operator<(const GridItemWithSpan other) const { return m_span < other.m_span; }
void trace(Visitor* visitor)
{
visitor->trace(m_gridItem);
}
private:
RawPtrWillBeMember<RenderBox> m_gridItem;
GridCoordinate m_coordinate;
size_t m_span;
};
bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridCoordinate& coordinate, GridTrackSizingDirection direction) const
{
const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt());
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
static inline size_t integerSpanForDirection(const GridCoordinate& coordinate, GridTrackSizingDirection direction)
{
return (direction == ForRows) ? coordinate.rows.integerSpan() : coordinate.columns.integerSpan();
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
sizingData.itemsSortedByIncreasingSpan.shrink(0);
HashSet<RenderBox*> itemsSet;
size_t contentSizedTracksCount = sizingData.contentSizedTracksIndex.size();
for (size_t i = 0; i < contentSizedTracksCount; ++i) {
GridIterator iterator(m_grid, direction, sizingData.contentSizedTracksIndex[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridCoordinate& coordinate = cachedGridCoordinate(*gridItem);
// We should not include items spanning more than one track that span tracks with flexible sizing functions.
if (integerSpanForDirection(coordinate, direction) == 1 || !spanningItemCrossesFlexibleSizedTracks(coordinate, direction))
sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, coordinate, direction));
}
}
}
std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end());
Vector<GridItemWithSpan>::iterator end = sizingData.itemsSortedByIncreasingSpan.end();
for (Vector<GridItemWithSpan>::iterator it = sizingData.itemsSortedByIncreasingSpan.begin(); it != end; ++it) {
GridItemWithSpan itemWithSpan = *it;
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, &GridTrackSize::hasMinContentMinTrackBreadthAndMinOrMaxContentMaxTrackBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, &GridTrackSize::hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
}
for (size_t i = 0; i < contentSizedTracksCount; ++i) {
size_t trackIndex = sizingData.contentSizedTracksIndex[i];
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex];
if (track.m_maxBreadth == infinity)
track.m_maxBreadth = track.m_usedBreadth;
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, GridItemWithSpan& gridItemWithSpan, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, FilterFunction growAboveMaxBreadthFilterFunction)
{
const GridCoordinate coordinate = gridItemWithSpan.coordinate();
const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition;
const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition;
sizingData.growAboveMaxBreadthTrackIndexes.shrink(0);
sizingData.filteredTracks.shrink(0);
for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) {
GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt());
if (!(trackSize.*filterFunction)())
continue;
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()];
sizingData.filteredTracks.append(&track);
if (growAboveMaxBreadthFilterFunction && (trackSize.*growAboveMaxBreadthFilterFunction)())
sizingData.growAboveMaxBreadthTrackIndexes.append(sizingData.filteredTracks.size() - 1);
}
if (sizingData.filteredTracks.isEmpty())
return;
LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItemWithSpan.gridItem(), direction, sizingData.columnTracks);
for (GridResolvedPosition trackIndexForSpace = initialTrackPosition; trackIndexForSpace <= finalTrackPosition; ++trackIndexForSpace) {
GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndexForSpace.toInt()] : sizingData.rowTracks[trackIndexForSpace.toInt()];
additionalBreadthSpace -= (track.*trackGetter)();
}
// Specs mandate to floor additionalBreadthSpace (extra-space in specs) to 0. Instead we directly avoid the function
// call in those cases as it will be a noop in terms of track sizing.
if (additionalBreadthSpace > 0)
distributeSpaceToTracks(sizingData.filteredTracks, &sizingData.growAboveMaxBreadthTrackIndexes, trackGetter, trackGrowthFunction, sizingData, additionalBreadthSpace);
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
if (track1->m_maxBreadth == infinity && track2->m_maxBreadth == infinity)
return false;
if (track1->m_maxBreadth == infinity || track2->m_maxBreadth == infinity)
return track2->m_maxBreadth == infinity;
return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<size_t>* growAboveMaxBreadthTrackIndexes, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace)
{
ASSERT(availableLogicalSpace > 0);
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
sizingData.distributeTrackVector.resize(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
LayoutUnit growthShare = track.m_maxBreadth == infinity ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth);
sizingData.distributeTrackVector[i] = trackBreadth;
// We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
if (growthShare > 0) {
sizingData.distributeTrackVector[i] += growthShare;
availableLogicalSpace -= growthShare;
}
}
if (availableLogicalSpace > 0 && growAboveMaxBreadthTrackIndexes) {
size_t indexesSize = growAboveMaxBreadthTrackIndexes->size();
size_t tracksGrowingAboveMaxBreadthSize = indexesSize ? indexesSize : tracksSize;
// If we have a non-null empty vector of track indexes to grow above max breadth means that we should grow all
// affected tracks.
for (size_t i = 0; i < tracksGrowingAboveMaxBreadthSize; ++i) {
LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingAboveMaxBreadthSize - i);
size_t distributeTrackIndex = indexesSize ? growAboveMaxBreadthTrackIndexes->at(i) : i;
sizingData.distributeTrackVector[distributeTrackIndex] += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growth = sizingData.distributeTrackVector[i] - (tracks[i]->*trackGetter)();
if (growth >= 0)
(tracks[i]->*trackGrowthFunction)(growth);
}
}
#if ENABLE(ASSERT)
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrackSize trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
return false;
}
return true;
}
#endif
void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex)
{
const size_t oldRowSize = gridRowCount();
if (maximumRowIndex >= oldRowSize) {
m_grid.grow(maximumRowIndex + 1);
for (size_t row = oldRowSize; row < gridRowCount(); ++row)
m_grid[row].grow(gridColumnCount());
}
if (maximumColumnIndex >= gridColumnCount()) {
for (size_t row = 0; row < gridRowCount(); ++row)
m_grid[row].grow(maximumColumnIndex + 1);
}
}
void RenderGrid::insertItemIntoGrid(RenderBox& child, const GridCoordinate& coordinate)
{
ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt());
for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) {
for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column)
m_grid[row.toInt()][column.toInt()].append(&child);
}
RELEASE_ASSERT(!m_gridItemCoordinate.contains(&child));
m_gridItemCoordinate.set(&child, coordinate);
}
void RenderGrid::placeItemsOnGrid()
{
if (!gridIsDirty())
return;
ASSERT(m_gridItemCoordinate.isEmpty());
populateExplicitGridAndOrderIterator();
// We clear the dirty bit here as the grid sizes have been updated, this means
// that we can safely call gridRowCount() / gridColumnCount().
m_gridIsDirty = false;
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(*child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= GridResolvedPosition::explicitGridRowCount(*style()));
ASSERT(gridColumnCount() >= GridResolvedPosition::explicitGridColumnCount(*style()));
// FIXME: Implement properly "stack" value in auto-placement algorithm.
if (style()->isGridAutoFlowAlgorithmStack()) {
// If we did collect some grid items, they won't be placed thus never laid out.
ASSERT(!autoMajorAxisAutoGridItems.size());
ASSERT(!specifiedMajorAxisAutoGridItems.size());
return;
}
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
m_grid.shrinkToFit();
}
void RenderGrid::populateExplicitGridAndOrderIterator()
{
OrderIteratorPopulator populator(m_orderIterator);
size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style()));
size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style()));
ASSERT(m_gridItemsIndexesMap.isEmpty());
size_t childIndex = 0;
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
populator.collectChild(child);
m_gridItemsIndexesMap.set(child, childIndex++);
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows);
OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns);
// |positions| is 0 if we need to run the auto-placement algorithm.
if (rowPositions) {
maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite row span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0));
maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt());
}
if (columnPositions) {
maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt());
} else {
// Grow the grid for items with a definite column span, getting the largest such span.
GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0));
maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt());
}
}
m_grid.grow(maximumRowIndex);
for (size_t i = 0; i < m_grid.size(); ++i)
m_grid[i].grow(maximumColumnIndex);
}
PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const
{
GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns;
const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount();
GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection));
return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions));
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i) {
OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItems[i], autoPlacementMajorAxisDirection());
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItems[i], autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan());
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItems[i], autoPlacementMajorAxisDirection(), *majorAxisPositions);
insertItemIntoGrid(*autoGridItems[i], *emptyGridArea);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems)
{
std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0);
bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense();
for (size_t i = 0; i < autoGridItems.size(); ++i) {
placeAutoMajorAxisItemOnGrid(*autoGridItems[i], autoPlacementCursor);
// If grid-auto-flow is dense, reset auto-placement cursor.
if (isGridAutoFlowDense) {
autoPlacementCursor.first = 0;
autoPlacementCursor.second = 0;
}
}
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, std::pair<size_t, size_t>& autoPlacementCursor)
{
OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMinorAxisDirection());
ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMajorAxisDirection()));
GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0));
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first;
size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second;
OwnPtr<GridCoordinate> emptyGridArea;
if (minorAxisPositions) {
// Move to the next track in major axis if initial position in minor axis is before auto-placement cursor.
if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor)
majorAxisAutoPlacementCursor++;
if (majorAxisAutoPlacementCursor < endOfMajorAxis) {
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan());
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions);
} else {
GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0));
for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor);
emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan());
if (emptyGridArea) {
// Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()).
GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition;
const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount();
if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis)
break;
// Discard empty grid area as it does not fit in the minor axis direction.
// We don't need to create a new empty grid area yet as we might find a valid one in the next iteration.
emptyGridArea = nullptr;
}
// As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis.
minorAxisAutoPlacementCursor = 0;
}
if (!emptyGridArea)
emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions);
}
insertItemIntoGrid(gridItem, *emptyGridArea);
// Move auto-placement cursor to the new position.
autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt();
autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt();
}
GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows;
}
GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns;
}
void RenderGrid::dirtyGrid()
{
m_grid.resize(0);
m_gridItemCoordinate.clear();
m_gridIsDirty = true;
m_gridItemsOverflowingGridArea.resize(0);
m_gridItemsIndexesMap.clear();
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
GridSizingData sizingData(gridColumnCount(), gridRowCount());
computeUsedBreadthOfGridTracks(ForColumns, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks));
computeUsedBreadthOfGridTracks(ForRows, sizingData);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks));
populateGridPositions(sizingData);
m_gridItemsOverflowingGridArea.resize(0);
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
if (child->isOutOfFlowPositioned()) {
// FIXME: Absolute positioned grid items should have a special
// behavior as described in the spec (crbug.com/273898):
// http://www.w3.org/TR/css-grid-1/#abspos-items
child->containingBlock()->insertPositionedObject(child);
}
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks);
SubtreeLayoutScope layoutScope(*child);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight()))
layoutScope.setNeedsLayout(child);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
applyStretchAlignmentToChildIfNeeded(*child, overrideContainingBlockContentLogicalHeight);
child->layoutIfNeeded();
#if ENABLE(ASSERT)
const GridCoordinate& coordinate = cachedGridCoordinate(*child);
ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size());
ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size());
#endif
child->setLogicalLocation(findChildLogicalPosition(*child));
// Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is
// not visible
if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight
|| child->logicalWidth() > overrideContainingBlockContentLogicalWidth)
m_gridItemsOverflowingGridArea.append(child);
}
for (size_t i = 0; i < sizingData.rowTracks.size(); ++i)
setLogicalHeight(logicalHeight() + sizingData.rowTracks[i].m_usedBreadth);
// Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
}
GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox& gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(&gridItem));
return m_gridItemCoordinate.get(&gridItem);
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition)
gridAreaBreadth += tracks[trackPosition.toInt()].m_usedBreadth;
return gridAreaBreadth;
}
void RenderGrid::populateGridPositions(const GridSizingData& sizingData)
{
m_columnPositions.resize(sizingData.columnTracks.size() + 1);
m_columnPositions[0] = borderAndPaddingStart();
for (size_t i = 0; i < m_columnPositions.size() - 1; ++i)
m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].m_usedBreadth;
m_rowPositions.resize(sizingData.rowTracks.size() + 1);
m_rowPositions[0] = borderAndPaddingBefore();
for (size_t i = 0; i < m_rowPositions.size() - 1; ++i)
m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].m_usedBreadth;
}
static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit startOfTrack, LayoutUnit endOfTrack, LayoutUnit childBreadth)
{
LayoutUnit trackBreadth = endOfTrack - startOfTrack;
LayoutUnit offset = trackBreadth - childBreadth;
// If overflow is 'safe', we have to make sure we don't overflow the 'start'
// edge (potentially cause some data loss as the overflow is unreachable).
if (overflow == OverflowAlignmentSafe)
offset = std::max<LayoutUnit>(0, offset);
// If we overflow our alignment container and overflow is 'true' (default), we
// ignore the overflow and just return the value regardless (which may cause data
// loss as we overflow the 'start' edge).
return offset;
}
LayoutUnit RenderGrid::startOfColumnForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
return startOfColumn + marginStartForChild(&child);
}
LayoutUnit RenderGrid::endOfColumnForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit columnPosition = startOfColumn + marginStartForChild(&child);
LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth());
return columnPosition + offsetFromColumnPosition;
}
LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerStart(const RenderBox& child) const
{
if (style()->isLeftToRightDirection())
return startOfColumnForChild(child);
return endOfColumnForChild(child);
}
LayoutUnit RenderGrid::columnPositionAlignedWithGridContainerEnd(const RenderBox& child) const
{
if (!style()->isLeftToRightDirection())
return startOfColumnForChild(child);
return endOfColumnForChild(child);
}
LayoutUnit RenderGrid::centeredColumnPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()];
LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()];
LayoutUnit columnPosition = startOfColumn + marginStartForChild(&child);
LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth());
return columnPosition + offsetFromColumnPosition / 2;
}
LayoutUnit RenderGrid::columnPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
switch (RenderStyle::resolveJustification(style(), child.style(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return columnPositionAlignedWithGridContainerStart(child);
// self-start is based on the child's direction. That's why we need to check against the grid container's direction.
if (child.style()->direction() != style()->direction())
return columnPositionAlignedWithGridContainerEnd(child);
return columnPositionAlignedWithGridContainerStart(child);
case ItemPositionSelfEnd:
// For orthogonal writing-modes, this computes to 'start'
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return columnPositionAlignedWithGridContainerEnd(child);
// self-end is based on the child's direction. That's why we need to check against the grid container's direction.
if (child.style()->direction() != style()->direction())
return columnPositionAlignedWithGridContainerStart(child);
return columnPositionAlignedWithGridContainerEnd(child);
case ItemPositionFlexStart:
// Only used in flex layout, for other layout, it's equivalent to 'start'.
return columnPositionAlignedWithGridContainerStart(child);
case ItemPositionFlexEnd:
// Only used in flex layout, for other layout, it's equivalent to 'start'.
return columnPositionAlignedWithGridContainerEnd(child);
case ItemPositionLeft:
// If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
if (!isHorizontalWritingMode())
return columnPositionAlignedWithGridContainerStart(child);
if (style()->isLeftToRightDirection())
return columnPositionAlignedWithGridContainerStart(child);
return columnPositionAlignedWithGridContainerEnd(child);
case ItemPositionRight:
// If the property's axis is not parallel with the inline axis, this is equivalent to ‘start’.
if (!isHorizontalWritingMode())
return columnPositionAlignedWithGridContainerStart(child);
if (style()->isLeftToRightDirection())
return columnPositionAlignedWithGridContainerEnd(child);
return columnPositionAlignedWithGridContainerStart(child);
case ItemPositionCenter:
return centeredColumnPositionForChild(child);
case ItemPositionStart:
return columnPositionAlignedWithGridContainerStart(child);
case ItemPositionEnd:
return columnPositionAlignedWithGridContainerEnd(child);
case ItemPositionAuto:
break;
case ItemPositionStretch:
return startOfColumnForChild(child);
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the previous values. For now, we always start align the child.
return startOfColumnForChild(child);
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutUnit RenderGrid::endOfRowForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(&child);
LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight());
return rowPosition + offsetFromRowPosition;
}
LayoutUnit RenderGrid::startOfRowForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()];
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(&child);
return rowPosition;
}
LayoutUnit RenderGrid::centeredRowPositionForChild(const RenderBox& child) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()] + marginBeforeForChild(&child);
LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()];
LayoutUnit rowPosition = startOfRow + marginBeforeForChild(&child);
LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight());
return rowPosition + offsetFromRowPosition / 2;
}
static inline LayoutUnit constrainedChildIntrinsicContentLogicalHeight(const RenderBox& child)
{
LayoutUnit childIntrinsicContentLogicalHeight = child.intrinsicContentLogicalHeight();
return child.constrainLogicalHeightByMinMax(childIntrinsicContentLogicalHeight + child.borderAndPaddingLogicalHeight(), childIntrinsicContentLogicalHeight);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const
{
if (RenderStyle::resolveAlignment(style(), child.style(), ItemPositionStretch) != ItemPositionStretch)
return false;
return isHorizontalWritingMode() && child.style()->height().isAuto();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::childIntrinsicHeight(const RenderBox& child) const
{
if (child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
return constrainedChildIntrinsicContentLogicalHeight(child);
return child.height();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::childIntrinsicWidth(const RenderBox& child) const
{
if (!child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child))
return constrainedChildIntrinsicContentLogicalHeight(child);
return child.width();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::intrinsicLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? childIntrinsicHeight(child) : childIntrinsicWidth(child);
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const
{
return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth();
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const
{
LayoutUnit childLogicalHeight = marginLogicalHeightForChild(child) + intrinsicLogicalHeightForChild(child);
return gridAreaBreadthForChild - childLogicalHeight;
}
// FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox.
void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child, LayoutUnit gridAreaBreadthForChild)
{
if (RenderStyle::resolveAlignment(style(), child.style(), ItemPositionStretch) != ItemPositionStretch)
return;
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
if (child.style()->logicalHeight().isAuto()) {
// FIXME: If the child has orthogonal flow, then it already has an override height set, so use it.
// FIXME: grid track sizing and positioning do not support orthogonal modes yet.
if (!hasOrthogonalWritingMode) {
LayoutUnit heightBeforeStretching = needToStretchChildLogicalHeight(child) ? constrainedChildIntrinsicContentLogicalHeight(child) : child.logicalHeight();
LayoutUnit stretchedLogicalHeight = heightBeforeStretching + availableAlignmentSpaceForChildBeforeStretching(gridAreaBreadthForChild, child);
LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, heightBeforeStretching - child.borderAndPaddingLogicalHeight());
LayoutUnit desiredLogicalContentHeight = desiredLogicalHeight - child.borderAndPaddingLogicalHeight();
// FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905.
if (desiredLogicalHeight != child.logicalHeight() || !child.hasOverrideHeight() || desiredLogicalContentHeight != child.overrideLogicalContentHeight()) {
child.setOverrideLogicalContentHeight(desiredLogicalContentHeight);
child.setLogicalHeight(0);
child.forceChildLayout();
}
}
}
}
LayoutUnit RenderGrid::rowPositionForChild(const RenderBox& child) const
{
bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode();
switch (RenderStyle::resolveAlignment(style(), child.style(), ItemPositionStretch)) {
case ItemPositionSelfStart:
// If orthogonal writing-modes, this computes to 'Start'.
// FIXME: grid track sizing and positioning does not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return startOfRowForChild(child);
// self-start is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
if (child.style()->writingMode() != style()->writingMode())
return endOfRowForChild(child);
return startOfRowForChild(child);
case ItemPositionSelfEnd:
// If orthogonal writing-modes, this computes to 'End'.
// FIXME: grid track sizing and positioning does not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return endOfRowForChild(child);
// self-end is based on the child's block axis direction. That's why we need to check against the grid container's block flow.
if (child.style()->writingMode() != style()->writingMode())
return startOfRowForChild(child);
return endOfRowForChild(child);
case ItemPositionLeft:
// orthogonal modes make property and inline axes to be parallel, but in any case
// this is always equivalent to 'Start'.
//
// self-align's axis is never parallel to the inline axis, except in orthogonal
// writing-mode, so this is equivalent to 'Start’.
return startOfRowForChild(child);
case ItemPositionRight:
// orthogonal modes make property and inline axes to be parallel.
// FIXME: grid track sizing and positioning does not support orthogonal modes yet.
if (hasOrthogonalWritingMode)
return endOfRowForChild(child);
// self-align's axis is never parallel to the inline axis, except in orthogonal
// writing-mode, so this is equivalent to 'Start'.
return startOfRowForChild(child);
case ItemPositionCenter:
return centeredRowPositionForChild(child);
// Only used in flex layout, for other layout, it's equivalent to 'Start'.
case ItemPositionFlexStart:
case ItemPositionStart:
return startOfRowForChild(child);
// Only used in flex layout, for other layout, it's equivalent to 'End'.
case ItemPositionFlexEnd:
case ItemPositionEnd:
return endOfRowForChild(child);
case ItemPositionStretch:
return startOfRowForChild(child);
case ItemPositionBaseline:
case ItemPositionLastBaseline:
// FIXME: Implement the ItemPositionBaseline value. For now, we always start align the child.
return startOfRowForChild(child);
case ItemPositionAuto:
break;
}
ASSERT_NOT_REACHED();
return 0;
}
LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child) const
{
return LayoutPoint(columnPositionForChild(child), rowPositionForChild(child));
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
GridPainter(*this).paintChildren(paintInfo, paintOffset);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace blink