blob: e374cce3fdf32873f6641f4b0f921a084d1fc796 [file] [log] [blame]
/*
* Copyright (c) 2008, 2009, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/image-decoders/bmp/BMPImageReader.h"
namespace WebCore {
BMPImageReader::BMPImageReader(ImageDecoder* parent, size_t decodedAndHeaderOffset, size_t imgDataOffset, bool usesAndMask)
: m_parent(parent)
, m_buffer(0)
, m_decodedOffset(decodedAndHeaderOffset)
, m_headerOffset(decodedAndHeaderOffset)
, m_imgDataOffset(imgDataOffset)
, m_isOS21x(false)
, m_isOS22x(false)
, m_isTopDown(false)
, m_needToProcessBitmasks(false)
, m_needToProcessColorTable(false)
, m_tableSizeInBytes(0)
, m_seenNonZeroAlphaPixel(false)
, m_seenZeroAlphaPixel(false)
, m_andMaskState(usesAndMask ? NotYetDecoded : None)
{
// Clue-in decodeBMP() that we need to detect the correct info header size.
memset(&m_infoHeader, 0, sizeof(m_infoHeader));
}
bool BMPImageReader::decodeBMP(bool onlySize)
{
// Calculate size of info header.
if (!m_infoHeader.biSize && !readInfoHeaderSize())
return false;
// Read and process info header.
if ((m_decodedOffset < (m_headerOffset + m_infoHeader.biSize)) && !processInfoHeader())
return false;
// processInfoHeader() set the size, so if that's all we needed, we're done.
if (onlySize)
return true;
// Read and process the bitmasks, if needed.
if (m_needToProcessBitmasks && !processBitmasks())
return false;
// Read and process the color table, if needed.
if (m_needToProcessColorTable && !processColorTable())
return false;
// Initialize the framebuffer if needed.
ASSERT(m_buffer); // Parent should set this before asking us to decode!
if (m_buffer->status() == ImageFrame::FrameEmpty) {
if (!m_buffer->setSize(m_parent->size().width(), m_parent->size().height()))
return m_parent->setFailed(); // Unable to allocate.
m_buffer->setStatus(ImageFrame::FramePartial);
// setSize() calls eraseARGB(), which resets the alpha flag, so we force
// it back to false here. We'll set it true below in all cases where
// these 0s could actually show through.
m_buffer->setHasAlpha(false);
// For BMPs, the frame always fills the entire image.
m_buffer->setOriginalFrameRect(IntRect(IntPoint(), m_parent->size()));
if (!m_isTopDown)
m_coord.setY(m_parent->size().height() - 1);
}
// Decode the data.
if ((m_andMaskState != Decoding) && !pastEndOfImage(0)) {
if ((m_infoHeader.biCompression != RLE4) && (m_infoHeader.biCompression != RLE8) && (m_infoHeader.biCompression != RLE24)) {
const ProcessingResult result = processNonRLEData(false, 0);
if (result != Success)
return (result == Failure) ? m_parent->setFailed() : false;
} else if (!processRLEData())
return false;
}
// If the image has an AND mask and there was no alpha data, process the
// mask.
if ((m_andMaskState == NotYetDecoded) && !m_buffer->hasAlpha()) {
// Reset decoding coordinates to start of image.
m_coord.setX(0);
m_coord.setY(m_isTopDown ? 0 : (m_parent->size().height() - 1));
// The AND mask is stored as 1-bit data.
m_infoHeader.biBitCount = 1;
m_andMaskState = Decoding;
}
if (m_andMaskState == Decoding) {
const ProcessingResult result = processNonRLEData(false, 0);
if (result != Success)
return (result == Failure) ? m_parent->setFailed() : false;
}
// Done!
m_buffer->setStatus(ImageFrame::FrameComplete);
return true;
}
bool BMPImageReader::readInfoHeaderSize()
{
// Get size of info header.
ASSERT(m_decodedOffset == m_headerOffset);
if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < 4))
return false;
m_infoHeader.biSize = readUint32(0);
// Don't increment m_decodedOffset here, it just makes the code in
// processInfoHeader() more confusing.
// Don't allow the header to overflow (which would be harmless here, but
// problematic or at least confusing in other places), or to overrun the
// image data.
if (((m_headerOffset + m_infoHeader.biSize) < m_headerOffset) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize))))
return m_parent->setFailed();
// See if this is a header size we understand:
// OS/2 1.x: 12
if (m_infoHeader.biSize == 12)
m_isOS21x = true;
// Windows V3: 40
else if ((m_infoHeader.biSize == 40) || isWindowsV4Plus())
;
// OS/2 2.x: any multiple of 4 between 16 and 64, inclusive, or 42 or 46
else if ((m_infoHeader.biSize >= 16) && (m_infoHeader.biSize <= 64) && (!(m_infoHeader.biSize & 3) || (m_infoHeader.biSize == 42) || (m_infoHeader.biSize == 46)))
m_isOS22x = true;
else
return m_parent->setFailed();
return true;
}
bool BMPImageReader::processInfoHeader()
{
// Read info header.
ASSERT(m_decodedOffset == m_headerOffset);
if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_infoHeader.biSize) || !readInfoHeader())
return false;
m_decodedOffset += m_infoHeader.biSize;
// Sanity-check header values.
if (!isInfoHeaderValid())
return m_parent->setFailed();
// Set our size.
if (!m_parent->setSize(m_infoHeader.biWidth, m_infoHeader.biHeight))
return false;
// For paletted images, bitmaps can set biClrUsed to 0 to mean "all
// colors", so set it to the maximum number of colors for this bit depth.
// Also do this for bitmaps that put too large a value here.
if (m_infoHeader.biBitCount < 16) {
const uint32_t maxColors = static_cast<uint32_t>(1) << m_infoHeader.biBitCount;
if (!m_infoHeader.biClrUsed || (m_infoHeader.biClrUsed > maxColors))
m_infoHeader.biClrUsed = maxColors;
}
// For any bitmaps that set their BitCount to the wrong value, reset the
// counts now that we've calculated the number of necessary colors, since
// other code relies on this value being correct.
if (m_infoHeader.biCompression == RLE8)
m_infoHeader.biBitCount = 8;
else if (m_infoHeader.biCompression == RLE4)
m_infoHeader.biBitCount = 4;
// Tell caller what still needs to be processed.
if (m_infoHeader.biBitCount >= 16)
m_needToProcessBitmasks = true;
else if (m_infoHeader.biBitCount)
m_needToProcessColorTable = true;
return true;
}
bool BMPImageReader::readInfoHeader()
{
// Pre-initialize some fields that not all headers set.
m_infoHeader.biCompression = RGB;
m_infoHeader.biClrUsed = 0;
if (m_isOS21x) {
m_infoHeader.biWidth = readUint16(4);
m_infoHeader.biHeight = readUint16(6);
ASSERT(m_andMaskState == None); // ICO is a Windows format, not OS/2!
m_infoHeader.biBitCount = readUint16(10);
return true;
}
m_infoHeader.biWidth = readUint32(4);
m_infoHeader.biHeight = readUint32(8);
if (m_andMaskState != None)
m_infoHeader.biHeight /= 2;
m_infoHeader.biBitCount = readUint16(14);
// Read compression type, if present.
if (m_infoHeader.biSize >= 20) {
uint32_t biCompression = readUint32(16);
// Detect OS/2 2.x-specific compression types.
if ((biCompression == 3) && (m_infoHeader.biBitCount == 1)) {
m_infoHeader.biCompression = HUFFMAN1D;
m_isOS22x = true;
} else if ((biCompression == 4) && (m_infoHeader.biBitCount == 24)) {
m_infoHeader.biCompression = RLE24;
m_isOS22x = true;
} else if (biCompression > 5)
return m_parent->setFailed(); // Some type we don't understand.
else
m_infoHeader.biCompression = static_cast<CompressionType>(biCompression);
}
// Read colors used, if present.
if (m_infoHeader.biSize >= 36)
m_infoHeader.biClrUsed = readUint32(32);
// Windows V4+ can safely read the four bitmasks from 40-56 bytes in, so do
// that here. If the bit depth is less than 16, these values will be
// ignored by the image data decoders. If the bit depth is at least 16 but
// the compression format isn't BITFIELDS, these values will be ignored and
// overwritten* in processBitmasks().
// NOTE: We allow alpha here. Microsoft doesn't really document this well,
// but some BMPs appear to use it.
//
// For non-Windows V4+, m_bitMasks[] et. al will be initialized later
// during processBitmasks().
//
// *Except the alpha channel. Bizarrely, some RGB bitmaps expect decoders
// to pay attention to the alpha mask here, so there's a special case in
// processBitmasks() that doesn't always overwrite that value.
if (isWindowsV4Plus()) {
m_bitMasks[0] = readUint32(40);
m_bitMasks[1] = readUint32(44);
m_bitMasks[2] = readUint32(48);
m_bitMasks[3] = readUint32(52);
}
// Detect top-down BMPs.
if (m_infoHeader.biHeight < 0) {
m_isTopDown = true;
m_infoHeader.biHeight = -m_infoHeader.biHeight;
}
return true;
}
bool BMPImageReader::isInfoHeaderValid() const
{
// Non-positive widths/heights are invalid. (We've already flipped the
// sign of the height for top-down bitmaps.)
if ((m_infoHeader.biWidth <= 0) || !m_infoHeader.biHeight)
return false;
// Only Windows V3+ has top-down bitmaps.
if (m_isTopDown && (m_isOS21x || m_isOS22x))
return false;
// Only bit depths of 1, 4, 8, or 24 are universally supported.
if ((m_infoHeader.biBitCount != 1) && (m_infoHeader.biBitCount != 4) && (m_infoHeader.biBitCount != 8) && (m_infoHeader.biBitCount != 24)) {
// Windows V3+ additionally supports bit depths of 0 (for embedded
// JPEG/PNG images), 16, and 32.
if (m_isOS21x || m_isOS22x || (m_infoHeader.biBitCount && (m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
return false;
}
// Each compression type is only valid with certain bit depths (except RGB,
// which can be used with any bit depth). Also, some formats do not
// some compression types.
switch (m_infoHeader.biCompression) {
case RGB:
if (!m_infoHeader.biBitCount)
return false;
break;
case RLE8:
// Supposedly there are undocumented formats like "BitCount = 1,
// Compression = RLE4" (which means "4 bit, but with a 2-color table"),
// so also allow the paletted RLE compression types to have too low a
// bit count; we'll correct this later.
if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 8))
return false;
break;
case RLE4:
// See comments in RLE8.
if (!m_infoHeader.biBitCount || (m_infoHeader.biBitCount > 4))
return false;
break;
case BITFIELDS:
// Only valid for Windows V3+.
if (m_isOS21x || m_isOS22x || ((m_infoHeader.biBitCount != 16) && (m_infoHeader.biBitCount != 32)))
return false;
break;
case JPEG:
case PNG:
// Only valid for Windows V3+.
if (m_isOS21x || m_isOS22x || m_infoHeader.biBitCount)
return false;
break;
case HUFFMAN1D:
// Only valid for OS/2 2.x.
if (!m_isOS22x || (m_infoHeader.biBitCount != 1))
return false;
break;
case RLE24:
// Only valid for OS/2 2.x.
if (!m_isOS22x || (m_infoHeader.biBitCount != 24))
return false;
break;
default:
// Some type we don't understand. This should have been caught in
// readInfoHeader().
ASSERT_NOT_REACHED();
return false;
}
// Top-down bitmaps cannot be compressed; they must be RGB or BITFIELDS.
if (m_isTopDown && (m_infoHeader.biCompression != RGB) && (m_infoHeader.biCompression != BITFIELDS))
return false;
// Reject the following valid bitmap types that we don't currently bother
// decoding. Few other people decode these either, they're unlikely to be
// in much use.
// TODO(pkasting): Consider supporting these someday.
// * Bitmaps larger than 2^16 pixels in either dimension (Windows
// probably doesn't draw these well anyway, and the decoded data would
// take a lot of memory).
if ((m_infoHeader.biWidth >= (1 << 16)) || (m_infoHeader.biHeight >= (1 << 16)))
return false;
// * Windows V3+ JPEG-in-BMP and PNG-in-BMP bitmaps (supposedly not found
// in the wild, only used to send data to printers?).
if ((m_infoHeader.biCompression == JPEG) || (m_infoHeader.biCompression == PNG))
return false;
// * OS/2 2.x Huffman-encoded monochrome bitmaps (see
// http://www.fileformat.info/mirror/egff/ch09_05.htm , re: "G31D"
// algorithm).
if (m_infoHeader.biCompression == HUFFMAN1D)
return false;
return true;
}
bool BMPImageReader::processBitmasks()
{
// Create m_bitMasks[] values.
if (m_infoHeader.biCompression != BITFIELDS) {
// The format doesn't actually use bitmasks. To simplify the decode
// logic later, create bitmasks for the RGB data. For Windows V4+,
// this overwrites the masks we read from the header, which are
// supposed to be ignored in non-BITFIELDS cases.
// 16 bits: MSB <- xRRRRRGG GGGBBBBB -> LSB
// 24/32 bits: MSB <- [AAAAAAAA] RRRRRRRR GGGGGGGG BBBBBBBB -> LSB
const int numBits = (m_infoHeader.biBitCount == 16) ? 5 : 8;
for (int i = 0; i <= 2; ++i)
m_bitMasks[i] = ((static_cast<uint32_t>(1) << (numBits * (3 - i))) - 1) ^ ((static_cast<uint32_t>(1) << (numBits * (2 - i))) - 1);
// For Windows V4+ 32-bit RGB, don't overwrite the alpha mask from the
// header (see note in readInfoHeader()).
if (m_infoHeader.biBitCount < 32)
m_bitMasks[3] = 0;
else if (!isWindowsV4Plus())
m_bitMasks[3] = static_cast<uint32_t>(0xff000000);
} else if (!isWindowsV4Plus()) {
// For Windows V4+ BITFIELDS mode bitmaps, this was already done when
// we read the info header.
// Fail if we don't have enough file space for the bitmasks.
static const size_t SIZEOF_BITMASKS = 12;
if (((m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + SIZEOF_BITMASKS))))
return m_parent->setFailed();
// Read bitmasks.
if ((m_data->size() - m_decodedOffset) < SIZEOF_BITMASKS)
return false;
m_bitMasks[0] = readUint32(0);
m_bitMasks[1] = readUint32(4);
m_bitMasks[2] = readUint32(8);
// No alpha in anything other than Windows V4+.
m_bitMasks[3] = 0;
m_decodedOffset += SIZEOF_BITMASKS;
}
// We've now decoded all the non-image data we care about. Skip anything
// else before the actual raster data.
if (m_imgDataOffset)
m_decodedOffset = m_imgDataOffset;
m_needToProcessBitmasks = false;
// Check masks and set shift values.
for (int i = 0; i < 4; ++i) {
// Trim the mask to the allowed bit depth. Some Windows V4+ BMPs
// specify a bogus alpha channel in bits that don't exist in the pixel
// data (for example, bits 25-31 in a 24-bit RGB format).
if (m_infoHeader.biBitCount < 32)
m_bitMasks[i] &= ((static_cast<uint32_t>(1) << m_infoHeader.biBitCount) - 1);
// For empty masks (common on the alpha channel, especially after the
// trimming above), quickly clear the shifts and continue, to avoid an
// infinite loop in the counting code below.
uint32_t tempMask = m_bitMasks[i];
if (!tempMask) {
m_bitShiftsRight[i] = m_bitShiftsLeft[i] = 0;
continue;
}
// Make sure bitmask does not overlap any other bitmasks.
for (int j = 0; j < i; ++j) {
if (tempMask & m_bitMasks[j])
return m_parent->setFailed();
}
// Count offset into pixel data.
for (m_bitShiftsRight[i] = 0; !(tempMask & 1); tempMask >>= 1)
++m_bitShiftsRight[i];
// Count size of mask.
for (m_bitShiftsLeft[i] = 8; tempMask & 1; tempMask >>= 1)
--m_bitShiftsLeft[i];
// Make sure bitmask is contiguous.
if (tempMask)
return m_parent->setFailed();
// Since RGBABuffer tops out at 8 bits per channel, adjust the shift
// amounts to use the most significant 8 bits of the channel.
if (m_bitShiftsLeft[i] < 0) {
m_bitShiftsRight[i] -= m_bitShiftsLeft[i];
m_bitShiftsLeft[i] = 0;
}
}
return true;
}
bool BMPImageReader::processColorTable()
{
m_tableSizeInBytes = m_infoHeader.biClrUsed * (m_isOS21x ? 3 : 4);
// Fail if we don't have enough file space for the color table.
if (((m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes) < (m_headerOffset + m_infoHeader.biSize)) || (m_imgDataOffset && (m_imgDataOffset < (m_headerOffset + m_infoHeader.biSize + m_tableSizeInBytes))))
return m_parent->setFailed();
// Read color table.
if ((m_decodedOffset > m_data->size()) || ((m_data->size() - m_decodedOffset) < m_tableSizeInBytes))
return false;
m_colorTable.resize(m_infoHeader.biClrUsed);
for (size_t i = 0; i < m_infoHeader.biClrUsed; ++i) {
m_colorTable[i].rgbBlue = m_data->data()[m_decodedOffset++];
m_colorTable[i].rgbGreen = m_data->data()[m_decodedOffset++];
m_colorTable[i].rgbRed = m_data->data()[m_decodedOffset++];
// Skip padding byte (not present on OS/2 1.x).
if (!m_isOS21x)
++m_decodedOffset;
}
// We've now decoded all the non-image data we care about. Skip anything
// else before the actual raster data.
if (m_imgDataOffset)
m_decodedOffset = m_imgDataOffset;
m_needToProcessColorTable = false;
return true;
}
bool BMPImageReader::processRLEData()
{
if (m_decodedOffset > m_data->size())
return false;
// RLE decoding is poorly specified. Two main problems:
// (1) Are EOL markers necessary? What happens when we have too many
// pixels for one row?
// http://www.fileformat.info/format/bmp/egff.htm says extra pixels
// should wrap to the next line. Real BMPs I've encountered seem to
// instead expect extra pixels to be ignored until the EOL marker is
// seen, although this has only happened in a few cases and I suspect
// those BMPs may be invalid. So we only change lines on EOL (or Delta
// with dy > 0), and fail in most cases when pixels extend past the end
// of the line.
// (2) When Delta, EOL, or EOF are seen, what happens to the "skipped"
// pixels?
// http://www.daubnet.com/formats/BMP.html says these should be filled
// with color 0. However, the "do nothing" and "don't care" comments
// of other references suggest leaving these alone, i.e. letting them
// be transparent to the background behind the image. This seems to
// match how MSPAINT treats BMPs, so we do that. Note that when we
// actually skip pixels for a case like this, we need to note on the
// framebuffer that we have alpha.
// Impossible to decode row-at-a-time, so just do things as a stream of
// bytes.
while (true) {
// Every entry takes at least two bytes; bail if there isn't enough
// data.
if ((m_data->size() - m_decodedOffset) < 2)
return false;
// For every entry except EOF, we'd better not have reached the end of
// the image.
const uint8_t count = m_data->data()[m_decodedOffset];
const uint8_t code = m_data->data()[m_decodedOffset + 1];
if ((count || (code != 1)) && pastEndOfImage(0))
return m_parent->setFailed();
// Decode.
if (!count) {
switch (code) {
case 0: // Magic token: EOL
// Skip any remaining pixels in this row.
if (m_coord.x() < m_parent->size().width())
m_buffer->setHasAlpha(true);
moveBufferToNextRow();
m_decodedOffset += 2;
break;
case 1: // Magic token: EOF
// Skip any remaining pixels in the image.
if ((m_coord.x() < m_parent->size().width()) || (m_isTopDown ? (m_coord.y() < (m_parent->size().height() - 1)) : (m_coord.y() > 0)))
m_buffer->setHasAlpha(true);
return true;
case 2: { // Magic token: Delta
// The next two bytes specify dx and dy. Bail if there isn't
// enough data.
if ((m_data->size() - m_decodedOffset) < 4)
return false;
// Fail if this takes us past the end of the desired row or
// past the end of the image.
const uint8_t dx = m_data->data()[m_decodedOffset + 2];
const uint8_t dy = m_data->data()[m_decodedOffset + 3];
if (dx || dy)
m_buffer->setHasAlpha(true);
if (((m_coord.x() + dx) > m_parent->size().width()) || pastEndOfImage(dy))
return m_parent->setFailed();
// Skip intervening pixels.
m_coord.move(dx, m_isTopDown ? dy : -dy);
m_decodedOffset += 4;
break;
}
default: { // Absolute mode
// |code| pixels specified as in BI_RGB, zero-padded at the end
// to a multiple of 16 bits.
// Because processNonRLEData() expects m_decodedOffset to
// point to the beginning of the pixel data, bump it past
// the escape bytes and then reset if decoding failed.
m_decodedOffset += 2;
const ProcessingResult result = processNonRLEData(true, code);
if (result == Failure)
return m_parent->setFailed();
if (result == InsufficientData) {
m_decodedOffset -= 2;
return false;
}
break;
}
}
} else { // Encoded mode
// The following color data is repeated for |count| total pixels.
// Strangely, some BMPs seem to specify excessively large counts
// here; ignore pixels past the end of the row.
const int endX = std::min(m_coord.x() + count, m_parent->size().width());
if (m_infoHeader.biCompression == RLE24) {
// Bail if there isn't enough data.
if ((m_data->size() - m_decodedOffset) < 4)
return false;
// One BGR triple that we copy |count| times.
fillRGBA(endX, m_data->data()[m_decodedOffset + 3], m_data->data()[m_decodedOffset + 2], code, 0xff);
m_decodedOffset += 4;
} else {
// RLE8 has one color index that gets repeated; RLE4 has two
// color indexes in the upper and lower 4 bits of the byte,
// which are alternated.
size_t colorIndexes[2] = {code, code};
if (m_infoHeader.biCompression == RLE4) {
colorIndexes[0] = (colorIndexes[0] >> 4) & 0xf;
colorIndexes[1] &= 0xf;
}
if ((colorIndexes[0] >= m_infoHeader.biClrUsed) || (colorIndexes[1] >= m_infoHeader.biClrUsed))
return m_parent->setFailed();
for (int which = 0; m_coord.x() < endX; ) {
setI(colorIndexes[which]);
which = !which;
}
m_decodedOffset += 2;
}
}
}
}
BMPImageReader::ProcessingResult BMPImageReader::processNonRLEData(bool inRLE, int numPixels)
{
if (m_decodedOffset > m_data->size())
return InsufficientData;
if (!inRLE)
numPixels = m_parent->size().width();
// Fail if we're being asked to decode more pixels than remain in the row.
const int endX = m_coord.x() + numPixels;
if (endX > m_parent->size().width())
return Failure;
// Determine how many bytes of data the requested number of pixels
// requires.
const size_t pixelsPerByte = 8 / m_infoHeader.biBitCount;
const size_t bytesPerPixel = m_infoHeader.biBitCount / 8;
const size_t unpaddedNumBytes = (m_infoHeader.biBitCount < 16) ? ((numPixels + pixelsPerByte - 1) / pixelsPerByte) : (numPixels * bytesPerPixel);
// RLE runs are zero-padded at the end to a multiple of 16 bits. Non-RLE
// data is in rows and is zero-padded to a multiple of 32 bits.
const size_t alignBits = inRLE ? 1 : 3;
const size_t paddedNumBytes = (unpaddedNumBytes + alignBits) & ~alignBits;
// Decode as many rows as we can. (For RLE, where we only want to decode
// one row, we've already checked that this condition is true.)
while (!pastEndOfImage(0)) {
// Bail if we don't have enough data for the desired number of pixels.
if ((m_data->size() - m_decodedOffset) < paddedNumBytes)
return InsufficientData;
if (m_infoHeader.biBitCount < 16) {
// Paletted data. Pixels are stored little-endian within bytes.
// Decode pixels one byte at a time, left to right (so, starting at
// the most significant bits in the byte).
const uint8_t mask = (1 << m_infoHeader.biBitCount) - 1;
for (size_t byte = 0; byte < unpaddedNumBytes; ++byte) {
uint8_t pixelData = m_data->data()[m_decodedOffset + byte];
for (size_t pixel = 0; (pixel < pixelsPerByte) && (m_coord.x() < endX); ++pixel) {
const size_t colorIndex = (pixelData >> (8 - m_infoHeader.biBitCount)) & mask;
if (m_andMaskState == Decoding) {
// There's no way to accurately represent an AND + XOR
// operation as an RGBA image, so where the AND values
// are 1, we simply set the framebuffer pixels to fully
// transparent, on the assumption that most ICOs on the
// web will not be doing a lot of inverting.
if (colorIndex) {
setRGBA(0, 0, 0, 0);
m_buffer->setHasAlpha(true);
} else
m_coord.move(1, 0);
} else {
if (colorIndex >= m_infoHeader.biClrUsed)
return Failure;
setI(colorIndex);
}
pixelData <<= m_infoHeader.biBitCount;
}
}
} else {
// RGB data. Decode pixels one at a time, left to right.
while (m_coord.x() < endX) {
const uint32_t pixel = readCurrentPixel(bytesPerPixel);
// Some BMPs specify an alpha channel but don't actually use it
// (it contains all 0s). To avoid displaying these images as
// fully-transparent, decode as if images are fully opaque
// until we actually see a non-zero alpha value; at that point,
// reset any previously-decoded pixels to fully transparent and
// continue decoding based on the real alpha channel values.
// As an optimization, avoid setting "hasAlpha" to true for
// images where all alpha values are 255; opaque images are
// faster to draw.
int alpha = getAlpha(pixel);
if (!m_seenNonZeroAlphaPixel && !alpha) {
m_seenZeroAlphaPixel = true;
alpha = 255;
} else {
m_seenNonZeroAlphaPixel = true;
if (m_seenZeroAlphaPixel) {
m_buffer->zeroFillPixelData();
m_seenZeroAlphaPixel = false;
} else if (alpha != 255)
m_buffer->setHasAlpha(true);
}
setRGBA(getComponent(pixel, 0), getComponent(pixel, 1),
getComponent(pixel, 2), alpha);
}
}
// Success, keep going.
m_decodedOffset += paddedNumBytes;
if (inRLE)
return Success;
moveBufferToNextRow();
}
// Finished decoding whole image.
return Success;
}
void BMPImageReader::moveBufferToNextRow()
{
m_coord.move(-m_coord.x(), m_isTopDown ? 1 : -1);
}
} // namespace WebCore