blob: 76fefbd595fd099afcb28482659bb13030652c1f [file] [log] [blame]
/*
* Copyright (C) 2011 University of Szeged
* Copyright (C) 2011 Zoltan Herczeg
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FELightingNEON.h"
#if CPU(ARM_NEON) && CPU(ARM_TRADITIONAL) && COMPILER(GCC)
#include <wtf/Alignment.h>
namespace WebCore {
// These constants are copied to the following SIMD registers:
// ALPHAX_Q ALPHAY_Q REMAPX_D REMAPY_D
static WTF_ALIGNED(short, s_FELightingConstantsForNeon[], 16) = {
// Alpha coefficients.
-2, 1, 0, -1, 2, 1, 0, -1,
0, -1, -2, -1, 0, 1, 2, 1,
// Remapping indicies.
0x0f0e, 0x0302, 0x0504, 0x0706,
0x0b0a, 0x1312, 0x1514, 0x1716,
};
short* feLightingConstantsForNeon()
{
return s_FELightingConstantsForNeon;
}
void FELighting::platformApplyNeonWorker(FELightingPaintingDataForNeon* parameters)
{
neonDrawLighting(parameters);
}
#define ASSTRING(str) #str
#define TOSTRING(value) ASSTRING(value)
#define PIXELS_OFFSET TOSTRING(0)
#define YSTART_OFFSET TOSTRING(4)
#define WIDTH_OFFSET TOSTRING(8)
#define HEIGHT_OFFSET TOSTRING(12)
#define FLAGS_OFFSET TOSTRING(16)
#define SPECULAR_EXPONENT_OFFSET TOSTRING(20)
#define CONE_EXPONENT_OFFSET TOSTRING(24)
#define FLOAT_ARGUMENTS_OFFSET TOSTRING(28)
#define PAINTING_CONSTANTS_OFFSET TOSTRING(32)
#define NL "\n"
// Register allocation
#define PAINTING_DATA_R "r11"
#define RESET_WIDTH_R PAINTING_DATA_R
#define PIXELS_R "r4"
#define WIDTH_R "r5"
#define HEIGHT_R "r6"
#define FLAGS_R "r7"
#define SPECULAR_EXPONENT_R "r8"
#define CONE_EXPONENT_R "r10"
#define SCANLINE_R "r12"
#define TMP1_Q "q0"
#define TMP1_D0 "d0"
#define TMP1_S0 "s0"
#define TMP1_S1 "s1"
#define TMP1_D1 "d1"
#define TMP1_S2 "s2"
#define TMP1_S3 "s3"
#define TMP2_Q "q1"
#define TMP2_D0 "d2"
#define TMP2_S0 "s4"
#define TMP2_S1 "s5"
#define TMP2_D1 "d3"
#define TMP2_S2 "s6"
#define TMP2_S3 "s7"
#define TMP3_Q "q2"
#define TMP3_D0 "d4"
#define TMP3_S0 "s8"
#define TMP3_S1 "s9"
#define TMP3_D1 "d5"
#define TMP3_S2 "s10"
#define TMP3_S3 "s11"
#define COSINE_OF_ANGLE "s12"
#define POWF_INT_S "s13"
#define POWF_FRAC_S "s14"
#define SPOT_COLOR_Q "q4"
// Because of VMIN and VMAX CONST_ZERO_S and CONST_ONE_S
// must be placed on the same side of the double vector
// Current pixel position
#define POSITION_Q "q5"
#define POSITION_X_S "s20"
#define POSITION_Y_S "s21"
#define POSITION_Z_S "s22"
#define CONST_ZERO_HI_D "d11"
#define CONST_ZERO_S "s23"
// -------------------------------
// Variable arguments
// Misc arguments
#define READ1_RANGE "d12-d15"
#define READ2_RANGE "d16-d19"
#define READ3_RANGE "d20-d21"
#define SCALE_S "s24"
#define SCALE_DIV4_S "s25"
#define DIFFUSE_CONST_S "s26"
// Light source position
#define CONE_CUT_OFF_S "s28"
#define CONE_FULL_LIGHT_S "s29"
#define CONE_CUT_OFF_RANGE_S "s30"
#define CONST_ONE_HI_D "d15"
#define CONST_ONE_S "s31"
#define LIGHT_Q "q8"
#define DIRECTION_Q "q9"
#define COLOR_Q "q10"
// -------------------------------
// Constant coefficients
#define READ4_RANGE "d22-d25"
#define READ5_RANGE "d26-d27"
#define ALPHAX_Q "q11"
#define ALPHAY_Q "q12"
#define REMAPX_D "d26"
#define REMAPY_D "d27"
// -------------------------------
#define ALL_ROWS_D "{d28,d29,d30}"
#define TOP_ROW_D "d28"
#define MIDDLE_ROW_D "d29"
#define BOTTOM_ROW_D "d30"
#define GET_LENGTH(source, temp) \
"vmul.f32 " temp##_Q ", " source##_Q ", " source##_Q NL \
"vadd.f32 " source##_S3 ", " temp##_S0 ", " temp##_S1 NL \
"vadd.f32 " source##_S3 ", " source##_S3 ", " temp##_S2 NL \
"vsqrt.f32 " source##_S3 ", " source##_S3 NL
// destination##_S3 can contain the multiply of length.
#define DOT_PRODUCT(destination, source1, source2) \
"vmul.f32 " destination##_Q ", " source1##_Q ", " source2##_Q NL \
"vadd.f32 " destination##_S0 ", " destination##_S0 ", " destination##_S1 NL \
"vadd.f32 " destination##_S0 ", " destination##_S0 ", " destination##_S2 NL
#define MULTIPLY_BY_DIFFUSE_CONST(normalVectorLength, dotProductLength) \
"tst " FLAGS_R ", #" TOSTRING(FLAG_DIFFUSE_CONST_IS_1) NL \
"vmuleq.f32 " TMP2_S1 ", " DIFFUSE_CONST_S ", " normalVectorLength NL \
"vdiveq.f32 " TMP2_S1 ", " TMP2_S1 ", " dotProductLength NL \
"vdivne.f32 " TMP2_S1 ", " normalVectorLength ", " dotProductLength NL
#define POWF_SQR(value, exponent, current, remaining) \
"tst " exponent ", #" ASSTRING(current) NL \
"vmulne.f32 " value ", " value ", " POWF_INT_S NL \
"tst " exponent ", #" ASSTRING(remaining) NL \
"vmulne.f32 " POWF_INT_S ", " POWF_INT_S ", " POWF_INT_S NL
#define POWF_SQRT(value, exponent, current, remaining) \
"tst " exponent ", #" ASSTRING(remaining) NL \
"vsqrtne.f32 " POWF_FRAC_S ", " POWF_FRAC_S NL \
"tst " exponent ", #" ASSTRING(current) NL \
"vmulne.f32 " value ", " value ", " POWF_FRAC_S NL
// This simplified powf function is sufficiently accurate.
#define POWF(value, exponent) \
"tst " exponent ", #0xfc0" NL \
"vmovne.f32 " POWF_INT_S ", " value NL \
"tst " exponent ", #0x03f" NL \
"vmovne.f32 " POWF_FRAC_S ", " value NL \
"vmov.f32 " value ", " CONST_ONE_S NL \
\
POWF_SQR(value, exponent, 0x040, 0xf80) \
POWF_SQR(value, exponent, 0x080, 0xf00) \
POWF_SQR(value, exponent, 0x100, 0xe00) \
POWF_SQR(value, exponent, 0x200, 0xc00) \
POWF_SQR(value, exponent, 0x400, 0x800) \
"tst " exponent ", #0x800" NL \
"vmulne.f32 " value ", " value ", " POWF_INT_S NL \
\
POWF_SQRT(value, exponent, 0x20, 0x3f) \
POWF_SQRT(value, exponent, 0x10, 0x1f) \
POWF_SQRT(value, exponent, 0x08, 0x0f) \
POWF_SQRT(value, exponent, 0x04, 0x07) \
POWF_SQRT(value, exponent, 0x02, 0x03) \
POWF_SQRT(value, exponent, 0x01, 0x01)
// The following algorithm is an ARM-NEON optimized version of
// the main loop found in FELighting.cpp. Since the whole code
// is redesigned to be as effective as possible (ARM specific
// thinking), it is four times faster than its C++ counterpart.
asm ( // NOLINT
".globl " TOSTRING(neonDrawLighting) NL
TOSTRING(neonDrawLighting) ":" NL
// Because of the clever register allocation, nothing is stored on the stack
// except the saved registers.
// Stack must be aligned to 8 bytes.
"stmdb sp!, {r4-r8, r10, r11, lr}" NL
"vstmdb sp!, {d8-d15}" NL
"mov " PAINTING_DATA_R ", r0" NL
// The following two arguments are loaded to SIMD registers.
"ldr r0, [" PAINTING_DATA_R ", #" FLOAT_ARGUMENTS_OFFSET "]" NL
"ldr r1, [" PAINTING_DATA_R ", #" PAINTING_CONSTANTS_OFFSET "]" NL
"ldr " PIXELS_R ", [" PAINTING_DATA_R ", #" PIXELS_OFFSET "]" NL
"vldr.f32 " POSITION_Y_S ", [" PAINTING_DATA_R ", #" YSTART_OFFSET "]" NL
"ldr " WIDTH_R ", [" PAINTING_DATA_R ", #" WIDTH_OFFSET "]" NL
"ldr " HEIGHT_R ", [" PAINTING_DATA_R ", #" HEIGHT_OFFSET "]" NL
"ldr " FLAGS_R ", [" PAINTING_DATA_R ", #" FLAGS_OFFSET "]" NL
"ldr " SPECULAR_EXPONENT_R ", [" PAINTING_DATA_R ", #" SPECULAR_EXPONENT_OFFSET "]" NL
"ldr " CONE_EXPONENT_R ", [" PAINTING_DATA_R ", #" CONE_EXPONENT_OFFSET "]" NL
// Load all data to the SIMD registers with the least number of instructions.
"vld1.f32 { " READ1_RANGE " }, [r0]!" NL
"vld1.f32 { " READ2_RANGE " }, [r0]!" NL
"vld1.f32 { " READ3_RANGE " }, [r0]!" NL
"vld1.s16 {" READ4_RANGE "}, [r1]!" NL
"vld1.s16 {" READ5_RANGE "}, [r1]!" NL
// Initializing local variables.
"mov " SCANLINE_R ", " WIDTH_R ", lsl #2" NL
"add " SCANLINE_R ", " SCANLINE_R ", #8" NL
"add " PIXELS_R ", " PIXELS_R ", " SCANLINE_R NL
"add " PIXELS_R ", " PIXELS_R ", #3" NL
"mov r0, #0" NL
"vmov.f32 " CONST_ZERO_S ", r0" NL
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPOT_LIGHT) NL
"vmov.f32 " SPOT_COLOR_Q ", " COLOR_Q NL
"mov " RESET_WIDTH_R ", " WIDTH_R NL
".mainLoop:" NL
"mov r3, #3" NL
"vmov.f32 " POSITION_X_S ", " CONST_ONE_S NL
".scanline:" NL
// The ROW registers are storing the alpha channel of the last three pixels.
// The alpha channel is stored as signed short (sint16) values. The fourth value
// is garbage. The following instructions are shifting out the unnecessary alpha
// values and load the next ones.
"ldrb r0, [" PIXELS_R ", -" SCANLINE_R "]" NL
"ldrb r1, [" PIXELS_R ", +" SCANLINE_R "]" NL
"ldrb r2, [" PIXELS_R "], #4" NL
"vext.s16 " TOP_ROW_D ", " TOP_ROW_D ", " TOP_ROW_D ", #3" NL
"vext.s16 " MIDDLE_ROW_D ", " MIDDLE_ROW_D ", " MIDDLE_ROW_D ", #3" NL
"vext.s16 " BOTTOM_ROW_D ", " BOTTOM_ROW_D ", " BOTTOM_ROW_D ", #3" NL
"vmov.s16 " TOP_ROW_D "[1], r0" NL
"vmov.s16 " MIDDLE_ROW_D "[1], r2" NL
"vmov.s16 " BOTTOM_ROW_D "[1], r1" NL
// The two border pixels (rightmost and leftmost) are skipped when
// the next scanline is reached. It also jumps, when the algorithm
// is started, and the first free alpha values are loaded to each row.
"subs r3, r3, #1" NL
"bne .scanline" NL
// The light vector goes to TMP1_Q. It is constant in case of distant light.
// The fourth value contains the length of the light vector.
"tst " FLAGS_R ", #" TOSTRING(FLAG_POINT_LIGHT | FLAG_SPOT_LIGHT) NL
"beq .distantLight" NL
"vmov.s16 r3, " MIDDLE_ROW_D "[2]" NL
"vmov.f32 " POSITION_Z_S ", r3" NL
"vcvt.f32.s32 " POSITION_Z_S ", " POSITION_Z_S NL
"vmul.f32 " POSITION_Z_S ", " POSITION_Z_S ", " SCALE_S NL
"vsub.f32 " TMP1_Q ", " LIGHT_Q ", " POSITION_Q NL
GET_LENGTH(TMP1, TMP2)
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPOT_LIGHT) NL
"bne .cosineOfAngle" NL
".visiblePixel:" NL
// | -1 0 1 | | -1 -2 -1 |
// X = | -2 0 2 | Y = | 0 0 0 |
// | -1 0 1 | | 1 2 1 |
// Multiply the alpha values by the X and Y matrices.
// Moving the 8 alpha value to TMP3.
"vtbl.8 " TMP3_D0 ", " ALL_ROWS_D ", " REMAPX_D NL
"vtbl.8 " TMP3_D1 ", " ALL_ROWS_D ", " REMAPY_D NL
"vmul.s16 " TMP2_Q ", " TMP3_Q ", " ALPHAX_Q NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D1 NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D0 NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D0 NL
"vmov.s16 r0, " TMP2_D0 "[0]" NL
"vmul.s16 " TMP2_Q ", " TMP3_Q ", " ALPHAY_Q NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D1 NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D0 NL
"vpadd.s16 " TMP2_D0 ", " TMP2_D0 ", " TMP2_D0 NL
"vmov.s16 r1, " TMP2_D0 "[0]" NL
// r0 and r1 contains the X and Y coordinates of the
// normal vector, respectively.
// Calculating the spot light strength.
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPOT_LIGHT) NL
"beq .endLight" NL
"vneg.f32 " TMP3_S1 ", " COSINE_OF_ANGLE NL
"tst " FLAGS_R ", #" TOSTRING(FLAG_CONE_EXPONENT_IS_1) NL
"beq .coneExpPowf" NL
".coneExpPowfFinished:" NL
// Smoothing the cone edge if necessary.
"vcmp.f32 " COSINE_OF_ANGLE ", " CONE_FULL_LIGHT_S NL
"fmstat" NL
"bhi .cutOff" NL
".cutOffFinished:" NL
"vmin.f32 " TMP3_D0 ", " TMP3_D0 ", " CONST_ONE_HI_D NL
"vmul.f32 " COLOR_Q ", " SPOT_COLOR_Q ", " TMP3_D0 "[1]" NL
".endLight:" NL
// Summarize:
// r0 and r1 contains the normalVector.
// TMP1_Q contains the light vector and its length.
// COLOR_Q contains the color of the light vector.
// Test whether both r0 and r1 are zero (Normal vector is (0, 0, 1)).
"orrs r2, r0, r1" NL
"bne .normalVectorIsNonZero" NL
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPECULAR_LIGHT) NL
"bne .specularLight1" NL
// Calculate diffuse light strength.
MULTIPLY_BY_DIFFUSE_CONST(TMP1_S2, TMP1_S3)
"b .lightStrengthCalculated" NL
".specularLight1:" NL
// Calculating specular light strength.
"vadd.f32 " TMP1_S2 ", " TMP1_S2 ", " TMP1_S3 NL
GET_LENGTH(TMP1, TMP2)
// When the exponent is 1, we don't need to call an expensive powf function.
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPECULAR_EXPONENT_IS_1) NL
"vdiveq.f32 " TMP2_S1 ", " TMP1_S2 ", " TMP1_S3 NL
"beq .specularExpPowf" NL
MULTIPLY_BY_DIFFUSE_CONST(TMP1_S2, TMP1_S3)
"b .lightStrengthCalculated" NL
".normalVectorIsNonZero:" NL
// Normal vector goes to TMP2, and its length is calculated as well.
"vmov.s32 " TMP2_S0 ", r0" NL
"vcvt.f32.s32 " TMP2_S0 ", " TMP2_S0 NL
"vmul.f32 " TMP2_S0 ", " TMP2_S0 ", " SCALE_DIV4_S NL
"vmov.s32 " TMP2_S1 ", r1" NL
"vcvt.f32.s32 " TMP2_S1 ", " TMP2_S1 NL
"vmul.f32 " TMP2_S1 ", " TMP2_S1 ", " SCALE_DIV4_S NL
"vmov.f32 " TMP2_S2 ", " CONST_ONE_S NL
GET_LENGTH(TMP2, TMP3)
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPECULAR_LIGHT) NL
"bne .specularLight2" NL
// Calculating diffuse light strength.
DOT_PRODUCT(TMP3, TMP2, TMP1)
MULTIPLY_BY_DIFFUSE_CONST(TMP3_S0, TMP3_S3)
"b .lightStrengthCalculated" NL
".specularLight2:" NL
// Calculating specular light strength.
"vadd.f32 " TMP1_S2 ", " TMP1_S2 ", " TMP1_S3 NL
GET_LENGTH(TMP1, TMP3)
DOT_PRODUCT(TMP3, TMP2, TMP1)
// When the exponent is 1, we don't need to call an expensive powf function.
"tst " FLAGS_R ", #" TOSTRING(FLAG_SPECULAR_EXPONENT_IS_1) NL
"vdiveq.f32 " TMP2_S1 ", " TMP3_S0 ", " TMP3_S3 NL
"beq .specularExpPowf" NL
MULTIPLY_BY_DIFFUSE_CONST(TMP3_S0, TMP3_S3)
".lightStrengthCalculated:" NL
// TMP2_S1 contains the light strength. Clamp it to [0, 1]
"vmax.f32 " TMP2_D0 ", " TMP2_D0 ", " CONST_ZERO_HI_D NL
"vmin.f32 " TMP2_D0 ", " TMP2_D0 ", " CONST_ONE_HI_D NL
"vmul.f32 " TMP3_Q ", " COLOR_Q ", " TMP2_D0 "[1]" NL
"vcvt.u32.f32 " TMP3_Q ", " TMP3_Q NL
"vmov.u32 r2, r3, " TMP3_S0 ", " TMP3_S1 NL
// The color values are stored in-place.
"strb r2, [" PIXELS_R ", #-11]" NL
"strb r3, [" PIXELS_R ", #-10]" NL
"vmov.u32 r2, " TMP3_S2 NL
"strb r2, [" PIXELS_R ", #-9]" NL
// Continue to the next pixel.
".blackPixel:" NL
"vadd.f32 " POSITION_X_S ", " CONST_ONE_S NL
"mov r3, #1" NL
"subs " WIDTH_R ", " WIDTH_R ", #1" NL
"bne .scanline" NL
// If the end of the scanline is reached, we continue
// to the next scanline.
"vadd.f32 " POSITION_Y_S ", " CONST_ONE_S NL
"mov " WIDTH_R ", " RESET_WIDTH_R NL
"subs " HEIGHT_R ", " HEIGHT_R ", #1" NL
"bne .mainLoop" NL
// Return.
"vldmia sp!, {d8-d15}" NL
"ldmia sp!, {r4-r8, r10, r11, pc}" NL
".distantLight:" NL
// In case of distant light, the light vector is constant,
// we simply copy it.
"vmov.f32 " TMP1_Q ", " LIGHT_Q NL
"b .visiblePixel" NL
".cosineOfAngle:" NL
// If the pixel is outside of the cone angle, it is simply a black pixel.
DOT_PRODUCT(TMP3, TMP1, DIRECTION)
"vdiv.f32 " COSINE_OF_ANGLE ", " TMP3_S0 ", " TMP1_S3 NL
"vcmp.f32 " COSINE_OF_ANGLE ", " CONE_CUT_OFF_S NL
"fmstat" NL
"bls .visiblePixel" NL
"mov r0, #0" NL
"strh r0, [" PIXELS_R ", #-11]" NL
"strb r0, [" PIXELS_R ", #-9]" NL
"b .blackPixel" NL
".cutOff:" NL
// Smoothing the light strength on the cone edge.
"vsub.f32 " TMP3_S0 ", " CONE_CUT_OFF_S ", " COSINE_OF_ANGLE NL
"vdiv.f32 " TMP3_S0 ", " TMP3_S0 ", " CONE_CUT_OFF_RANGE_S NL
"vmul.f32 " TMP3_S1 ", " TMP3_S1 ", " TMP3_S0 NL
"b .cutOffFinished" NL
".coneExpPowf:" NL
POWF(TMP3_S1, CONE_EXPONENT_R)
"b .coneExpPowfFinished" NL
".specularExpPowf:" NL
POWF(TMP2_S1, SPECULAR_EXPONENT_R)
"tst " FLAGS_R ", #" TOSTRING(FLAG_DIFFUSE_CONST_IS_1) NL
"vmuleq.f32 " TMP2_S1 ", " TMP2_S1 ", " DIFFUSE_CONST_S NL
"b .lightStrengthCalculated" NL
); // NOLINT
int FELighting::getPowerCoefficients(float exponent)
{
// Calling a powf function from the assembly code would require to save
// and reload a lot of NEON registers. Since the base is in range [0..1]
// and only 8 bit precision is required, we use our own powf function.
// This is probably not the best, but it uses only a few registers and
// gives us enough precision (modifying the exponent field directly would
// also be possible).
// First, we limit the exponent to maximum of 64, which gives us enough
// precision. We split the exponent to an integer and fraction part,
// since a^x = (a^y)*(a^z) where x = y+z. The integer exponent of the
// power is estimated by square, and the fraction exponent of the power
// is estimated by square root assembly instructions.
int i, result;
if (exponent < 0)
exponent = 1 / (-exponent);
if (exponent > 63.99)
exponent = 63.99;
exponent /= 64;
result = 0;
for (i = 11; i >= 0; --i) {
exponent *= 2;
if (exponent >= 1) {
result |= 1 << i;
exponent -= 1;
}
}
return result;
}
} // namespace WebCore
#endif // CPU(ARM_NEON) && COMPILER(GCC)