blob: 67d1610a4ca0d28f58afb3c1099e15933ebd0879 [file] [log] [blame]
/*
* Copyright (C) 2012 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ComposedShadowTreeWalker.h"
#include "ContentDistributor.h"
#include "Element.h"
#include "ElementShadow.h"
#include "HTMLContentElement.h"
#include "HTMLShadowElement.h"
#include "InsertionPoint.h"
namespace WebCore {
static inline ElementShadow* shadowFor(const Node* node)
{
if (node && node->isElementNode())
return toElement(node)->shadow();
return 0;
}
static inline ElementShadow* shadowOfParent(const Node* node)
{
if (!node)
return 0;
if (Node* parent = node->parentNode())
if (parent->isElementNode())
return toElement(parent)->shadow();
return 0;
}
static inline bool nodeCanBeDistributed(const Node* node)
{
ASSERT(node);
Node* parent = parentNodeForDistribution(node);
if (!parent)
return false;
if (ShadowRoot* shadowRoot = parent->isShadowRoot() ? toShadowRoot(parent) : 0)
return shadowRoot->assignedTo();
if (parent->isElementNode() && toElement(parent)->shadow())
return true;
return false;
}
inline void ComposedShadowTreeWalker::ParentTraversalDetails::didTraverseInsertionPoint(InsertionPoint* insertionPoint)
{
if (!m_insertionPoint)
m_insertionPoint = insertionPoint;
}
inline void ComposedShadowTreeWalker::ParentTraversalDetails::didTraverseShadowRoot(const ShadowRoot* root)
{
m_resetStyleInheritance = m_resetStyleInheritance || root->resetStyleInheritance();
}
inline void ComposedShadowTreeWalker::ParentTraversalDetails::didFindNode(ContainerNode* node)
{
if (!m_outOfComposition)
m_node = node;
}
ComposedShadowTreeWalker ComposedShadowTreeWalker::fromFirstChild(const Node* node, Policy policy)
{
ComposedShadowTreeWalker walker(node, policy);
walker.firstChild();
return walker;
}
void ComposedShadowTreeWalker::findParent(const Node* node, ParentTraversalDetails* details)
{
ComposedShadowTreeWalker walker(node, CrossUpperBoundary, CanStartFromShadowBoundary);
ContainerNode* found = toContainerNode(walker.traverseParent(walker.get(), details));
if (found)
details->didFindNode(found);
}
void ComposedShadowTreeWalker::firstChild()
{
assertPrecondition();
m_node = traverseChild(m_node, TraversalDirectionForward);
assertPostcondition();
}
Node* ComposedShadowTreeWalker::traverseFirstChild(const Node* node) const
{
ASSERT(node);
return traverseChild(node, TraversalDirectionForward);
}
void ComposedShadowTreeWalker::lastChild()
{
assertPrecondition();
m_node = traverseLastChild(m_node);
assertPostcondition();
}
Node* ComposedShadowTreeWalker::traverseLastChild(const Node* node) const
{
ASSERT(node);
return traverseChild(node, TraversalDirectionBackward);
}
Node* ComposedShadowTreeWalker::traverseChild(const Node* node, TraversalDirection direction) const
{
ASSERT(node);
if (canCrossUpperBoundary()) {
ElementShadow* shadow = shadowFor(node);
return shadow ? traverseLightChildren(shadow->youngestShadowRoot(), direction)
: traverseLightChildren(node, direction);
}
if (isShadowHost(node))
return 0;
return traverseLightChildren(node, direction);
}
Node* ComposedShadowTreeWalker::traverseLightChildren(const Node* node, TraversalDirection direction)
{
ASSERT(node);
return traverseSiblings(direction == TraversalDirectionForward ? node->firstChild() : node->lastChild(), direction);
}
Node* ComposedShadowTreeWalker::traverseSiblings(const Node* node, TraversalDirection direction)
{
for (const Node* sibling = node; sibling; sibling = (direction == TraversalDirectionForward ? sibling->nextSibling() : sibling->previousSibling())) {
if (Node* found = traverseNode(sibling, direction))
return found;
}
return 0;
}
Node* ComposedShadowTreeWalker::traverseNode(const Node* node, TraversalDirection direction)
{
ASSERT(node);
if (!isActiveInsertionPoint(node))
return const_cast<Node*>(node);
const InsertionPoint* insertionPoint = toInsertionPoint(node);
if (Node* found = traverseDistributedNodes(direction == TraversalDirectionForward ? insertionPoint->first() : insertionPoint->last(), insertionPoint, direction))
return found;
return traverseLightChildren(node, direction);
}
void ComposedShadowTreeWalker::nextSibling()
{
assertPrecondition();
m_node = traverseSiblingOrBackToInsertionPoint(m_node, TraversalDirectionForward);
assertPostcondition();
}
void ComposedShadowTreeWalker::previousSibling()
{
assertPrecondition();
m_node = traverseSiblingOrBackToInsertionPoint(m_node, TraversalDirectionBackward);
assertPostcondition();
}
Node* ComposedShadowTreeWalker::traverseDistributedNodes(const Node* node, const InsertionPoint* insertionPoint, TraversalDirection direction)
{
for (const Node* next = node; next; next = (direction == TraversalDirectionForward ? insertionPoint->nextTo(next) : insertionPoint->previousTo(next))) {
if (Node* found = traverseNode(next, direction))
return found;
}
return 0;
}
Node* ComposedShadowTreeWalker::traverseSiblingOrBackToInsertionPoint(const Node* node, TraversalDirection direction)
{
ASSERT(node);
if (!nodeCanBeDistributed(node))
return traverseSiblingInCurrentTree(node, direction);
InsertionPoint* insertionPoint = resolveReprojection(node);
if (!insertionPoint)
return traverseSiblingInCurrentTree(node, direction);
if (Node* found = traverseDistributedNodes(direction == TraversalDirectionForward ? insertionPoint->nextTo(node) : insertionPoint->previousTo(node), insertionPoint, direction))
return found;
return traverseSiblingOrBackToInsertionPoint(insertionPoint, direction);
}
Node* ComposedShadowTreeWalker::traverseSiblingInCurrentTree(const Node* node, TraversalDirection direction)
{
ASSERT(node);
if (Node* found = traverseSiblings(direction == TraversalDirectionForward ? node->nextSibling() : node->previousSibling(), direction))
return found;
if (Node* next = traverseBackToYoungerShadowRoot(node, direction))
return next;
return escapeFallbackContentElement(node, direction);
}
Node* ComposedShadowTreeWalker::traverseBackToYoungerShadowRoot(const Node* node, TraversalDirection direction)
{
ASSERT(node);
if (node->parentNode() && node->parentNode()->isShadowRoot()) {
ShadowRoot* parentShadowRoot = toShadowRoot(node->parentNode());
if (!parentShadowRoot->isYoungest()) {
InsertionPoint* assignedInsertionPoint = parentShadowRoot->assignedTo();
ASSERT(assignedInsertionPoint);
return traverseSiblingInCurrentTree(assignedInsertionPoint, direction);
}
}
return 0;
}
inline Node* ComposedShadowTreeWalker::escapeFallbackContentElement(const Node* node, TraversalDirection direction)
{
ASSERT(node);
if (node->parentNode() && isActiveInsertionPoint(node->parentNode()))
return traverseSiblingOrBackToInsertionPoint(node->parentNode(), direction);
return 0;
}
inline Node* ComposedShadowTreeWalker::traverseNodeEscapingFallbackContents(const Node* node, ParentTraversalDetails* details) const
{
ASSERT(node);
if (!isInsertionPoint(node))
return const_cast<Node*>(node);
const InsertionPoint* insertionPoint = toInsertionPoint(node);
return insertionPoint->hasDistribution() ? 0 :
insertionPoint->isActive() ? traverseParent(node, details) : const_cast<Node*>(node);
}
void ComposedShadowTreeWalker::parent()
{
assertPrecondition();
m_node = traverseParent(m_node);
assertPostcondition();
}
// FIXME: Use an iterative algorithm so that it can be inlined.
// https://bugs.webkit.org/show_bug.cgi?id=90415
Node* ComposedShadowTreeWalker::traverseParent(const Node* node, ParentTraversalDetails* details) const
{
if (!canCrossUpperBoundary() && node->isShadowRoot()) {
ASSERT(toShadowRoot(node)->isYoungest());
return 0;
}
if (nodeCanBeDistributed(node)) {
if (InsertionPoint* insertionPoint = resolveReprojection(node)) {
if (details)
details->didTraverseInsertionPoint(insertionPoint);
return traverseParent(insertionPoint, details);
}
// The node is a non-distributed light child or older shadow's child.
if (details)
details->childWasOutOfComposition();
}
return traverseParentInCurrentTree(node, details);
}
inline Node* ComposedShadowTreeWalker::traverseParentInCurrentTree(const Node* node, ParentTraversalDetails* details) const
{
if (Node* parent = node->parentNode())
return parent->isShadowRoot() ? traverseParentBackToYoungerShadowRootOrHost(toShadowRoot(parent), details) : traverseNodeEscapingFallbackContents(parent, details);
return 0;
}
Node* ComposedShadowTreeWalker::traverseParentBackToYoungerShadowRootOrHost(const ShadowRoot* shadowRoot, ParentTraversalDetails* details) const
{
ASSERT(shadowRoot);
ASSERT(!shadowRoot->assignedTo());
if (shadowRoot->isYoungest()) {
if (canCrossUpperBoundary()) {
if (details)
details->didTraverseShadowRoot(shadowRoot);
return shadowRoot->host();
}
return const_cast<ShadowRoot*>(shadowRoot);
}
return 0;
}
Node* ComposedShadowTreeWalker::traverseNextSibling(const Node* node)
{
ASSERT(node);
return traverseSiblingOrBackToInsertionPoint(node, TraversalDirectionForward);
}
Node* ComposedShadowTreeWalker::traversePreviousSibling(const Node* node)
{
ASSERT(node);
return traverseSiblingOrBackToInsertionPoint(node, TraversalDirectionBackward);
}
void ComposedShadowTreeWalker::next()
{
assertPrecondition();
if (Node* next = traverseFirstChild(m_node))
m_node = next;
else if (Node* next = traverseNextSibling(m_node))
m_node = next;
else {
const Node* n = m_node;
while (n && !traverseNextSibling(n))
n = traverseParent(n);
m_node = n ? traverseNextSibling(n) : 0;
}
assertPostcondition();
}
void ComposedShadowTreeWalker::previous()
{
assertPrecondition();
if (Node* n = traversePreviousSibling(m_node)) {
while (Node* child = traverseLastChild(n))
n = child;
m_node = n;
} else
parent();
assertPostcondition();
}
AncestorChainWalker::AncestorChainWalker(const Node* node)
: m_node(node)
, m_distributedNode(node)
, m_isCrossingInsertionPoint(false)
{
ASSERT(node);
}
void AncestorChainWalker::parent()
{
ASSERT(m_node);
ASSERT(m_distributedNode);
if (ElementShadow* shadow = shadowOfParent(m_node)) {
if (InsertionPoint* insertionPoint = shadow->distributor().findInsertionPointFor(m_distributedNode)) {
m_node = insertionPoint;
m_isCrossingInsertionPoint = true;
return;
}
}
if (!m_node->isShadowRoot()) {
m_node = m_node->parentNode();
if (!(m_node && m_node->isShadowRoot() && toShadowRoot(m_node)->assignedTo()))
m_distributedNode = m_node;
m_isCrossingInsertionPoint = false;
return;
}
const ShadowRoot* shadowRoot = toShadowRoot(m_node);
if (InsertionPoint* insertionPoint = shadowRoot->assignedTo()) {
m_node = insertionPoint;
m_isCrossingInsertionPoint = true;
return;
}
m_node = shadowRoot->host();
m_distributedNode = m_node;
m_isCrossingInsertionPoint = false;
}
} // namespace