blob: df3f5a8bbd44807645c43051be3791784e1455f8 [file] [log] [blame]
/*
* Copyright (C) 2013 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
* * Neither the name of Google Inc. nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "platform/heap/Heap.h"
#include "platform/TraceEvent.h"
#include "platform/heap/ThreadState.h"
#include "public/platform/Platform.h"
#include "wtf/Assertions.h"
#include "wtf/LeakAnnotations.h"
#include "wtf/PassOwnPtr.h"
#if ENABLE(GC_TRACING)
#include "wtf/HashMap.h"
#include "wtf/HashSet.h"
#include "wtf/text/StringBuilder.h"
#include "wtf/text/StringHash.h"
#include <stdio.h>
#include <utility>
#endif
#if OS(POSIX)
#include <sys/mman.h>
#include <unistd.h>
#elif OS(WIN)
#include <windows.h>
#endif
namespace WebCore {
#if ENABLE(GC_TRACING)
static String classOf(const void* object)
{
const GCInfo* gcInfo = Heap::findGCInfo(reinterpret_cast<Address>(const_cast<void*>(object)));
if (gcInfo)
return gcInfo->m_className;
return "unknown";
}
#endif
static bool vTableInitialized(void* objectPointer)
{
return !!(*reinterpret_cast<Address*>(objectPointer));
}
#if OS(WIN)
static bool IsPowerOf2(size_t power)
{
return !((power - 1) & power);
}
#endif
static Address roundToBlinkPageBoundary(void* base)
{
return reinterpret_cast<Address>((reinterpret_cast<uintptr_t>(base) + blinkPageOffsetMask) & blinkPageBaseMask);
}
static size_t roundToOsPageSize(size_t size)
{
return (size + osPageSize() - 1) & ~(osPageSize() - 1);
}
size_t osPageSize()
{
#if OS(POSIX)
static const size_t pageSize = getpagesize();
#else
static size_t pageSize = 0;
if (!pageSize) {
SYSTEM_INFO info;
GetSystemInfo(&info);
pageSize = info.dwPageSize;
ASSERT(IsPowerOf2(pageSize));
}
#endif
return pageSize;
}
class MemoryRegion {
public:
MemoryRegion(Address base, size_t size)
: m_base(base)
, m_size(size)
{
ASSERT(size > 0);
}
bool contains(Address addr) const
{
return m_base <= addr && addr < (m_base + m_size);
}
bool contains(const MemoryRegion& other) const
{
return contains(other.m_base) && contains(other.m_base + other.m_size - 1);
}
void release()
{
#if OS(POSIX)
int err = munmap(m_base, m_size);
RELEASE_ASSERT(!err);
#else
bool success = VirtualFree(m_base, 0, MEM_RELEASE);
RELEASE_ASSERT(success);
#endif
}
WARN_UNUSED_RETURN bool commit()
{
ASSERT(Heap::heapDoesNotContainCacheIsEmpty());
#if OS(POSIX)
int err = mprotect(m_base, m_size, PROT_READ | PROT_WRITE);
if (!err) {
madvise(m_base, m_size, MADV_NORMAL);
return true;
}
return false;
#else
void* result = VirtualAlloc(m_base, m_size, MEM_COMMIT, PAGE_READWRITE);
return !!result;
#endif
}
void decommit()
{
#if OS(POSIX)
int err = mprotect(m_base, m_size, PROT_NONE);
RELEASE_ASSERT(!err);
// FIXME: Consider using MADV_FREE on MacOS.
madvise(m_base, m_size, MADV_DONTNEED);
#else
bool success = VirtualFree(m_base, m_size, MEM_DECOMMIT);
RELEASE_ASSERT(success);
#endif
}
Address base() const { return m_base; }
size_t size() const { return m_size; }
private:
Address m_base;
size_t m_size;
};
// Representation of the memory used for a Blink heap page.
//
// The representation keeps track of two memory regions:
//
// 1. The virtual memory reserved from the sytem in order to be able
// to free all the virtual memory reserved on destruction.
//
// 2. The writable memory (a sub-region of the reserved virtual
// memory region) that is used for the actual heap page payload.
//
// Guard pages are created before and after the writable memory.
class PageMemory {
public:
~PageMemory()
{
__lsan_unregister_root_region(m_writable.base(), m_writable.size());
m_reserved.release();
}
bool commit() WARN_UNUSED_RETURN { return m_writable.commit(); }
void decommit() { m_writable.decommit(); }
Address writableStart() { return m_writable.base(); }
// Allocate a virtual address space for the blink page with the
// following layout:
//
// [ guard os page | ... payload ... | guard os page ]
// ^---{ aligned to blink page size }
//
static PageMemory* allocate(size_t payloadSize)
{
ASSERT(payloadSize > 0);
// Virtual memory allocation routines operate in OS page sizes.
// Round up the requested size to nearest os page size.
payloadSize = roundToOsPageSize(payloadSize);
// Overallocate by blinkPageSize and 2 times OS page size to
// ensure a chunk of memory which is blinkPageSize aligned and
// has a system page before and after to use for guarding. We
// unmap the excess memory before returning.
size_t allocationSize = payloadSize + 2 * osPageSize() + blinkPageSize;
ASSERT(Heap::heapDoesNotContainCacheIsEmpty());
#if OS(POSIX)
Address base = static_cast<Address>(mmap(0, allocationSize, PROT_READ | PROT_WRITE, MAP_ANON | MAP_PRIVATE, -1, 0));
RELEASE_ASSERT(base != MAP_FAILED);
Address end = base + allocationSize;
Address alignedBase = roundToBlinkPageBoundary(base);
Address payloadBase = alignedBase + osPageSize();
Address payloadEnd = payloadBase + payloadSize;
Address blinkPageEnd = payloadEnd + osPageSize();
// If the allocate memory was not blink page aligned release
// the memory before the aligned address.
if (alignedBase != base)
MemoryRegion(base, alignedBase - base).release();
// Create guard pages by decommiting an OS page before and
// after the payload.
MemoryRegion(alignedBase, osPageSize()).decommit();
MemoryRegion(payloadEnd, osPageSize()).decommit();
// Free the additional memory at the end of the page if any.
if (blinkPageEnd < end)
MemoryRegion(blinkPageEnd, end - blinkPageEnd).release();
return new PageMemory(MemoryRegion(alignedBase, blinkPageEnd - alignedBase), MemoryRegion(payloadBase, payloadSize));
#else
Address base = 0;
Address alignedBase = 0;
// On Windows it is impossible to partially release a region
// of memory allocated by VirtualAlloc. To avoid wasting
// virtual address space we attempt to release a large region
// of memory returned as a whole and then allocate an aligned
// region inside this larger region.
for (int attempt = 0; attempt < 3; attempt++) {
base = static_cast<Address>(VirtualAlloc(0, allocationSize, MEM_RESERVE, PAGE_NOACCESS));
RELEASE_ASSERT(base);
VirtualFree(base, 0, MEM_RELEASE);
alignedBase = roundToBlinkPageBoundary(base);
base = static_cast<Address>(VirtualAlloc(alignedBase, payloadSize + 2 * osPageSize(), MEM_RESERVE, PAGE_NOACCESS));
if (base) {
RELEASE_ASSERT(base == alignedBase);
allocationSize = payloadSize + 2 * osPageSize();
break;
}
}
if (!base) {
// We failed to avoid wasting virtual address space after
// several attempts.
base = static_cast<Address>(VirtualAlloc(0, allocationSize, MEM_RESERVE, PAGE_NOACCESS));
RELEASE_ASSERT(base);
// FIXME: If base is by accident blink page size aligned
// here then we can create two pages out of reserved
// space. Do this.
alignedBase = roundToBlinkPageBoundary(base);
}
Address payloadBase = alignedBase + osPageSize();
PageMemory* storage = new PageMemory(MemoryRegion(base, allocationSize), MemoryRegion(payloadBase, payloadSize));
bool res = storage->commit();
RELEASE_ASSERT(res);
return storage;
#endif
}
private:
PageMemory(const MemoryRegion& reserved, const MemoryRegion& writable)
: m_reserved(reserved)
, m_writable(writable)
{
ASSERT(reserved.contains(writable));
// Register the writable area of the memory as part of the LSan root set.
// Only the writable area is mapped and can contain C++ objects. Those
// C++ objects can contain pointers to objects outside of the heap and
// should therefore be part of the LSan root set.
__lsan_register_root_region(m_writable.base(), m_writable.size());
}
MemoryRegion m_reserved;
MemoryRegion m_writable;
};
class GCScope {
public:
explicit GCScope(ThreadState::StackState stackState)
: m_state(ThreadState::current())
, m_safePointScope(stackState)
, m_parkedAllThreads(false)
{
TRACE_EVENT0("Blink", "Heap::GCScope");
const char* samplingState = TRACE_EVENT_GET_SAMPLING_STATE();
if (m_state->isMainThread())
TRACE_EVENT_SET_SAMPLING_STATE("Blink", "BlinkGCWaiting");
m_state->checkThread();
// FIXME: in an unlikely coincidence that two threads decide
// to collect garbage at the same time, avoid doing two GCs in
// a row.
RELEASE_ASSERT(!m_state->isInGC());
RELEASE_ASSERT(!m_state->isSweepInProgress());
if (LIKELY(ThreadState::stopThreads())) {
m_parkedAllThreads = true;
m_state->enterGC();
}
if (m_state->isMainThread())
TRACE_EVENT_SET_NONCONST_SAMPLING_STATE(samplingState);
}
bool allThreadsParked() { return m_parkedAllThreads; }
~GCScope()
{
// Only cleanup if we parked all threads in which case the GC happened
// and we need to resume the other threads.
if (LIKELY(m_parkedAllThreads)) {
m_state->leaveGC();
ASSERT(!m_state->isInGC());
ThreadState::resumeThreads();
}
}
private:
ThreadState* m_state;
ThreadState::SafePointScope m_safePointScope;
bool m_parkedAllThreads; // False if we fail to park all threads
};
NO_SANITIZE_ADDRESS
bool HeapObjectHeader::isMarked() const
{
checkHeader();
return m_size & markBitMask;
}
NO_SANITIZE_ADDRESS
void HeapObjectHeader::unmark()
{
checkHeader();
m_size &= ~markBitMask;
}
NO_SANITIZE_ADDRESS
bool HeapObjectHeader::hasDebugMark() const
{
checkHeader();
return m_size & debugBitMask;
}
NO_SANITIZE_ADDRESS
void HeapObjectHeader::clearDebugMark()
{
checkHeader();
m_size &= ~debugBitMask;
}
NO_SANITIZE_ADDRESS
void HeapObjectHeader::setDebugMark()
{
checkHeader();
m_size |= debugBitMask;
}
#ifndef NDEBUG
NO_SANITIZE_ADDRESS
void HeapObjectHeader::zapMagic()
{
m_magic = zappedMagic;
}
#endif
HeapObjectHeader* HeapObjectHeader::fromPayload(const void* payload)
{
Address addr = reinterpret_cast<Address>(const_cast<void*>(payload));
HeapObjectHeader* header =
reinterpret_cast<HeapObjectHeader*>(addr - objectHeaderSize);
return header;
}
void HeapObjectHeader::finalize(const GCInfo* gcInfo, Address object, size_t objectSize)
{
ASSERT(gcInfo);
if (gcInfo->hasFinalizer()) {
gcInfo->m_finalize(object);
}
#if !defined(NDEBUG) || defined(LEAK_SANITIZER)
// Zap freed memory with a recognizable zap value in debug mode.
// Also zap when using leak sanitizer because the heap is used as
// a root region for lsan and therefore pointers in unreachable
// memory could hide leaks.
for (size_t i = 0; i < objectSize; i++)
object[i] = finalizedZapValue;
#endif
// Zap the primary vTable entry (secondary vTable entries are not zapped)
*(reinterpret_cast<uintptr_t*>(object)) = zappedVTable;
}
NO_SANITIZE_ADDRESS
void FinalizedHeapObjectHeader::finalize()
{
HeapObjectHeader::finalize(m_gcInfo, payload(), payloadSize());
}
template<typename Header>
void LargeHeapObject<Header>::unmark()
{
return heapObjectHeader()->unmark();
}
template<typename Header>
bool LargeHeapObject<Header>::isMarked()
{
return heapObjectHeader()->isMarked();
}
template<typename Header>
void LargeHeapObject<Header>::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(contains(address));
if (!objectContains(address))
return;
#if ENABLE(GC_TRACING)
visitor->setHostInfo(&address, "stack");
#endif
mark(visitor);
}
template<>
void LargeHeapObject<FinalizedHeapObjectHeader>::mark(Visitor* visitor)
{
if (heapObjectHeader()->hasVTable() && !vTableInitialized(payload()))
visitor->markConservatively(heapObjectHeader());
else
visitor->mark(heapObjectHeader(), heapObjectHeader()->traceCallback());
}
template<>
void LargeHeapObject<HeapObjectHeader>::mark(Visitor* visitor)
{
ASSERT(gcInfo());
if (gcInfo()->hasVTable() && !vTableInitialized(payload()))
visitor->markConservatively(heapObjectHeader());
else
visitor->mark(heapObjectHeader(), gcInfo()->m_trace);
}
template<>
void LargeHeapObject<FinalizedHeapObjectHeader>::finalize()
{
heapObjectHeader()->finalize();
}
template<>
void LargeHeapObject<HeapObjectHeader>::finalize()
{
ASSERT(gcInfo());
HeapObjectHeader::finalize(gcInfo(), payload(), payloadSize());
}
FinalizedHeapObjectHeader* FinalizedHeapObjectHeader::fromPayload(const void* payload)
{
Address addr = reinterpret_cast<Address>(const_cast<void*>(payload));
FinalizedHeapObjectHeader* header =
reinterpret_cast<FinalizedHeapObjectHeader*>(addr - finalizedHeaderSize);
return header;
}
template<typename Header>
ThreadHeap<Header>::ThreadHeap(ThreadState* state)
: m_currentAllocationPoint(0)
, m_remainingAllocationSize(0)
, m_firstPage(0)
, m_firstLargeHeapObject(0)
, m_biggestFreeListIndex(0)
, m_threadState(state)
, m_pagePool(0)
{
clearFreeLists();
}
template<typename Header>
ThreadHeap<Header>::~ThreadHeap()
{
clearFreeLists();
if (!ThreadState::current()->isMainThread())
assertEmpty();
deletePages();
}
template<typename Header>
Address ThreadHeap<Header>::outOfLineAllocate(size_t size, const GCInfo* gcInfo)
{
size_t allocationSize = allocationSizeFromSize(size);
if (threadState()->shouldGC()) {
if (threadState()->shouldForceConservativeGC())
Heap::collectGarbage(ThreadState::HeapPointersOnStack);
else
threadState()->setGCRequested();
}
ensureCurrentAllocation(allocationSize, gcInfo);
return allocate(size, gcInfo);
}
template<typename Header>
bool ThreadHeap<Header>::allocateFromFreeList(size_t minSize)
{
size_t bucketSize = 1 << m_biggestFreeListIndex;
int i = m_biggestFreeListIndex;
for (; i > 0; i--, bucketSize >>= 1) {
if (bucketSize < minSize)
break;
FreeListEntry* entry = m_freeLists[i];
if (entry) {
m_biggestFreeListIndex = i;
entry->unlink(&m_freeLists[i]);
setAllocationPoint(entry->address(), entry->size());
ASSERT(currentAllocationPoint() && remainingAllocationSize() >= minSize);
return true;
}
}
m_biggestFreeListIndex = i;
return false;
}
template<typename Header>
void ThreadHeap<Header>::ensureCurrentAllocation(size_t minSize, const GCInfo* gcInfo)
{
ASSERT(minSize >= allocationGranularity);
if (remainingAllocationSize() >= minSize)
return;
if (remainingAllocationSize() > 0)
addToFreeList(currentAllocationPoint(), remainingAllocationSize());
if (allocateFromFreeList(minSize))
return;
addPageToHeap(gcInfo);
bool success = allocateFromFreeList(minSize);
RELEASE_ASSERT(success);
}
template<typename Header>
BaseHeapPage* ThreadHeap<Header>::heapPageFromAddress(Address address)
{
for (HeapPage<Header>* page = m_firstPage; page; page = page->next()) {
if (page->contains(address))
return page;
}
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current; current = current->next()) {
// Check that large pages are blinkPageSize aligned (modulo the
// osPageSize for the guard page).
ASSERT(reinterpret_cast<Address>(current) - osPageSize() == roundToBlinkPageStart(reinterpret_cast<Address>(current)));
if (current->contains(address))
return current;
}
return 0;
}
#if ENABLE(GC_TRACING)
template<typename Header>
const GCInfo* ThreadHeap<Header>::findGCInfoOfLargeHeapObject(Address address)
{
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current; current = current->next()) {
if (current->contains(address))
return current->gcInfo();
}
return 0;
}
#endif
template<typename Header>
void ThreadHeap<Header>::addToFreeList(Address address, size_t size)
{
ASSERT(heapPageFromAddress(address));
ASSERT(heapPageFromAddress(address + size - 1));
ASSERT(size < blinkPagePayloadSize());
// The free list entries are only pointer aligned (but when we allocate
// from them we are 8 byte aligned due to the header size).
ASSERT(!((reinterpret_cast<uintptr_t>(address) + sizeof(Header)) & allocationMask));
ASSERT(!(size & allocationMask));
ASAN_POISON_MEMORY_REGION(address, size);
FreeListEntry* entry;
if (size < sizeof(*entry)) {
// Create a dummy header with only a size and freelist bit set.
ASSERT(size >= sizeof(BasicObjectHeader));
// Free list encode the size to mark the lost memory as freelist memory.
new (NotNull, address) BasicObjectHeader(BasicObjectHeader::freeListEncodedSize(size));
// This memory gets lost. Sweeping can reclaim it.
return;
}
entry = new (NotNull, address) FreeListEntry(size);
#if defined(ADDRESS_SANITIZER)
// For ASAN we don't add the entry to the free lists until the asanDeferMemoryReuseCount
// reaches zero. However we always add entire pages to ensure that adding a new page will
// increase the allocation space.
if (HeapPage<Header>::payloadSize() != size && !entry->shouldAddToFreeList())
return;
#endif
int index = bucketIndexForSize(size);
entry->link(&m_freeLists[index]);
if (index > m_biggestFreeListIndex)
m_biggestFreeListIndex = index;
}
template<typename Header>
Address ThreadHeap<Header>::allocateLargeObject(size_t size, const GCInfo* gcInfo)
{
// Caller already added space for object header and rounded up to allocation alignment
ASSERT(!(size & allocationMask));
size_t allocationSize = sizeof(LargeHeapObject<Header>) + size;
// Ensure that there is enough space for alignment. If the header
// is not a multiple of 8 bytes we will allocate an extra
// headerPadding<Header> bytes to ensure it 8 byte aligned.
allocationSize += headerPadding<Header>();
// If ASAN is supported we add allocationGranularity bytes to the allocated space and
// poison that to detect overflows
#if defined(ADDRESS_SANITIZER)
allocationSize += allocationGranularity;
#endif
if (threadState()->shouldGC())
threadState()->setGCRequested();
Heap::flushHeapDoesNotContainCache();
PageMemory* pageMemory = PageMemory::allocate(allocationSize);
Address largeObjectAddress = pageMemory->writableStart();
Address headerAddress = largeObjectAddress + sizeof(LargeHeapObject<Header>) + headerPadding<Header>();
memset(headerAddress, 0, size);
Header* header = new (NotNull, headerAddress) Header(size, gcInfo);
Address result = headerAddress + sizeof(*header);
ASSERT(!(reinterpret_cast<uintptr_t>(result) & allocationMask));
LargeHeapObject<Header>* largeObject = new (largeObjectAddress) LargeHeapObject<Header>(pageMemory, gcInfo, threadState());
// Poison the object header and allocationGranularity bytes after the object
ASAN_POISON_MEMORY_REGION(header, sizeof(*header));
ASAN_POISON_MEMORY_REGION(largeObject->address() + largeObject->size(), allocationGranularity);
largeObject->link(&m_firstLargeHeapObject);
stats().increaseAllocatedSpace(largeObject->size());
stats().increaseObjectSpace(largeObject->payloadSize());
return result;
}
template<typename Header>
void ThreadHeap<Header>::freeLargeObject(LargeHeapObject<Header>* object, LargeHeapObject<Header>** previousNext)
{
flushHeapContainsCache();
object->unlink(previousNext);
object->finalize();
// Unpoison the object header and allocationGranularity bytes after the
// object before freeing.
ASAN_UNPOISON_MEMORY_REGION(object->heapObjectHeader(), sizeof(Header));
ASAN_UNPOISON_MEMORY_REGION(object->address() + object->size(), allocationGranularity);
delete object->storage();
}
template<>
void ThreadHeap<FinalizedHeapObjectHeader>::addPageToHeap(const GCInfo* gcInfo)
{
// When adding a page to the ThreadHeap using FinalizedHeapObjectHeaders the GCInfo on
// the heap should be unused (ie. 0).
allocatePage(0);
}
template<>
void ThreadHeap<HeapObjectHeader>::addPageToHeap(const GCInfo* gcInfo)
{
// When adding a page to the ThreadHeap using HeapObjectHeaders store the GCInfo on the heap
// since it is the same for all objects
ASSERT(gcInfo);
allocatePage(gcInfo);
}
template<typename Header>
void ThreadHeap<Header>::clearPagePool()
{
while (takePageFromPool()) { }
}
template<typename Header>
PageMemory* ThreadHeap<Header>::takePageFromPool()
{
Heap::flushHeapDoesNotContainCache();
while (PagePoolEntry* entry = m_pagePool) {
m_pagePool = entry->next();
PageMemory* storage = entry->storage();
delete entry;
if (storage->commit())
return storage;
// Failed to commit pooled storage. Release it.
delete storage;
}
return 0;
}
template<typename Header>
void ThreadHeap<Header>::addPageToPool(HeapPage<Header>* unused)
{
flushHeapContainsCache();
PageMemory* storage = unused->storage();
PagePoolEntry* entry = new PagePoolEntry(storage, m_pagePool);
m_pagePool = entry;
storage->decommit();
}
template<typename Header>
void ThreadHeap<Header>::allocatePage(const GCInfo* gcInfo)
{
Heap::flushHeapDoesNotContainCache();
PageMemory* pageMemory = takePageFromPool();
if (!pageMemory) {
pageMemory = PageMemory::allocate(blinkPagePayloadSize());
RELEASE_ASSERT(pageMemory);
}
HeapPage<Header>* page = new (pageMemory->writableStart()) HeapPage<Header>(pageMemory, this, gcInfo);
// FIXME: Oilpan: Linking new pages into the front of the list is
// crucial when performing allocations during finalization because
// it ensures that those pages are not swept in the current GC
// round. We should create a separate page list for that to
// separate out the pages allocated during finalization clearly
// from the pages currently being swept.
page->link(&m_firstPage);
addToFreeList(page->payload(), HeapPage<Header>::payloadSize());
}
#ifndef NDEBUG
template<typename Header>
void ThreadHeap<Header>::getScannedStats(HeapStats& scannedStats)
{
for (HeapPage<Header>* page = m_firstPage; page; page = page->next())
page->getStats(scannedStats);
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current; current = current->next())
current->getStats(scannedStats);
}
#endif
// STRICT_ASAN_FINALIZATION_CHECKING turns on poisoning of all objects during
// sweeping to catch cases where dead objects touch eachother. This is not
// turned on by default because it also triggers for cases that are safe.
// Examples of such safe cases are context life cycle observers and timers
// embedded in garbage collected objects.
#define STRICT_ASAN_FINALIZATION_CHECKING 0
template<typename Header>
void ThreadHeap<Header>::sweep()
{
ASSERT(isConsistentForGC());
#if defined(ADDRESS_SANITIZER) && STRICT_ASAN_FINALIZATION_CHECKING
// When using ASAN do a pre-sweep where all unmarked objects are poisoned before
// calling their finalizer methods. This can catch the cases where one objects
// finalizer tries to modify another object as part of finalization.
for (HeapPage<Header>* page = m_firstPage; page; page = page->next())
page->poisonUnmarkedObjects();
#endif
HeapPage<Header>* page = m_firstPage;
HeapPage<Header>** previous = &m_firstPage;
bool pagesRemoved = false;
while (page) {
if (page->isEmpty()) {
flushHeapContainsCache();
HeapPage<Header>* unused = page;
page = page->next();
HeapPage<Header>::unlink(unused, previous);
pagesRemoved = true;
} else {
page->sweep();
previous = &page->m_next;
page = page->next();
}
}
if (pagesRemoved)
flushHeapContainsCache();
LargeHeapObject<Header>** previousNext = &m_firstLargeHeapObject;
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current;) {
if (current->isMarked()) {
stats().increaseAllocatedSpace(current->size());
stats().increaseObjectSpace(current->payloadSize());
current->unmark();
previousNext = &current->m_next;
current = current->next();
} else {
LargeHeapObject<Header>* next = current->next();
freeLargeObject(current, previousNext);
current = next;
}
}
}
template<typename Header>
void ThreadHeap<Header>::assertEmpty()
{
// No allocations are permitted. The thread is exiting.
NoAllocationScope<AnyThread> noAllocation;
makeConsistentForGC();
for (HeapPage<Header>* page = m_firstPage; page; page = page->next()) {
Address end = page->end();
Address headerAddress;
for (headerAddress = page->payload(); headerAddress < end; ) {
BasicObjectHeader* basicHeader = reinterpret_cast<BasicObjectHeader*>(headerAddress);
ASSERT(basicHeader->size() < blinkPagePayloadSize());
// A live object is potentially a dangling pointer from
// some root. Treat that as a bug. Unfortunately, it is
// hard to reliably check in the presence of conservative
// stack scanning. Something could be conservatively kept
// alive because a non-pointer on another thread's stack
// is treated as a pointer into the heap.
//
// FIXME: This assert can currently trigger in cases where
// worker shutdown does not get enough precise GCs to get
// all objects removed from the worker heap. There are two
// issues: 1) conservative GCs keeping objects alive, and
// 2) long chains of RefPtrs/Persistents that require more
// GCs to get everything cleaned up. Maybe we can keep
// threads alive until their heaps become empty instead of
// forcing the threads to die immediately?
ASSERT(Heap::lastGCWasConservative() || basicHeader->isFree());
headerAddress += basicHeader->size();
}
ASSERT(headerAddress == end);
addToFreeList(page->payload(), end - page->payload());
}
ASSERT(Heap::lastGCWasConservative() || !m_firstLargeHeapObject);
}
template<typename Header>
bool ThreadHeap<Header>::isConsistentForGC()
{
for (size_t i = 0; i < blinkPageSizeLog2; i++) {
if (m_freeLists[i])
return false;
}
return !ownsNonEmptyAllocationArea();
}
template<typename Header>
void ThreadHeap<Header>::makeConsistentForGC()
{
if (ownsNonEmptyAllocationArea())
addToFreeList(currentAllocationPoint(), remainingAllocationSize());
setAllocationPoint(0, 0);
clearFreeLists();
}
template<typename Header>
void ThreadHeap<Header>::clearMarks()
{
ASSERT(isConsistentForGC());
for (HeapPage<Header>* page = m_firstPage; page; page = page->next())
page->clearMarks();
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current; current = current->next())
current->unmark();
}
template<typename Header>
void ThreadHeap<Header>::deletePages()
{
flushHeapContainsCache();
// Add all pages in the pool to the heap's list of pages before deleting
clearPagePool();
for (HeapPage<Header>* page = m_firstPage; page; ) {
HeapPage<Header>* dead = page;
page = page->next();
PageMemory* storage = dead->storage();
dead->~HeapPage();
delete storage;
}
m_firstPage = 0;
for (LargeHeapObject<Header>* current = m_firstLargeHeapObject; current;) {
LargeHeapObject<Header>* dead = current;
current = current->next();
PageMemory* storage = dead->storage();
dead->~LargeHeapObject();
delete storage;
}
m_firstLargeHeapObject = 0;
}
template<typename Header>
void ThreadHeap<Header>::clearFreeLists()
{
for (size_t i = 0; i < blinkPageSizeLog2; i++)
m_freeLists[i] = 0;
}
int BaseHeap::bucketIndexForSize(size_t size)
{
ASSERT(size > 0);
int index = -1;
while (size) {
size >>= 1;
index++;
}
return index;
}
template<typename Header>
HeapPage<Header>::HeapPage(PageMemory* storage, ThreadHeap<Header>* heap, const GCInfo* gcInfo)
: BaseHeapPage(storage, gcInfo, heap->threadState())
, m_next(0)
, m_heap(heap)
{
COMPILE_ASSERT(!(sizeof(HeapPage<Header>) & allocationMask), page_header_incorrectly_aligned);
m_objectStartBitMapComputed = false;
ASSERT(isPageHeaderAddress(reinterpret_cast<Address>(this)));
heap->stats().increaseAllocatedSpace(blinkPageSize);
}
template<typename Header>
void HeapPage<Header>::link(HeapPage** prevNext)
{
m_next = *prevNext;
*prevNext = this;
}
template<typename Header>
void HeapPage<Header>::unlink(HeapPage* unused, HeapPage** prevNext)
{
*prevNext = unused->m_next;
unused->heap()->addPageToPool(unused);
}
template<typename Header>
void HeapPage<Header>::getStats(HeapStats& stats)
{
stats.increaseAllocatedSpace(blinkPageSize);
Address headerAddress = payload();
ASSERT(headerAddress != end());
do {
Header* header = reinterpret_cast<Header*>(headerAddress);
if (!header->isFree())
stats.increaseObjectSpace(header->payloadSize());
ASSERT(header->size() < blinkPagePayloadSize());
headerAddress += header->size();
ASSERT(headerAddress <= end());
} while (headerAddress < end());
}
template<typename Header>
bool HeapPage<Header>::isEmpty()
{
BasicObjectHeader* header = reinterpret_cast<BasicObjectHeader*>(payload());
return header->isFree() && (header->size() == payloadSize());
}
template<typename Header>
void HeapPage<Header>::sweep()
{
clearObjectStartBitMap();
heap()->stats().increaseAllocatedSpace(blinkPageSize);
Address startOfGap = payload();
for (Address headerAddress = startOfGap; headerAddress < end(); ) {
BasicObjectHeader* basicHeader = reinterpret_cast<BasicObjectHeader*>(headerAddress);
ASSERT(basicHeader->size() < blinkPagePayloadSize());
if (basicHeader->isFree()) {
headerAddress += basicHeader->size();
continue;
}
// At this point we know this is a valid object of type Header
Header* header = static_cast<Header*>(basicHeader);
if (!header->isMarked()) {
// For ASAN we unpoison the specific object when calling the finalizer and
// poison it again when done to allow the object's own finalizer to operate
// on the object, but not have other finalizers be allowed to access it.
ASAN_UNPOISON_MEMORY_REGION(header->payload(), header->payloadSize());
finalize(header);
ASAN_POISON_MEMORY_REGION(header->payload(), header->payloadSize());
headerAddress += header->size();
continue;
}
if (startOfGap != headerAddress)
heap()->addToFreeList(startOfGap, headerAddress - startOfGap);
header->unmark();
headerAddress += header->size();
heap()->stats().increaseObjectSpace(header->payloadSize());
startOfGap = headerAddress;
}
if (startOfGap != end())
heap()->addToFreeList(startOfGap, end() - startOfGap);
}
template<typename Header>
void HeapPage<Header>::clearMarks()
{
for (Address headerAddress = payload(); headerAddress < end();) {
Header* header = reinterpret_cast<Header*>(headerAddress);
ASSERT(header->size() < blinkPagePayloadSize());
if (!header->isFree())
header->unmark();
headerAddress += header->size();
}
}
template<typename Header>
void HeapPage<Header>::populateObjectStartBitMap()
{
memset(&m_objectStartBitMap, 0, objectStartBitMapSize);
Address start = payload();
for (Address headerAddress = start; headerAddress < end();) {
Header* header = reinterpret_cast<Header*>(headerAddress);
size_t objectOffset = headerAddress - start;
ASSERT(!(objectOffset & allocationMask));
size_t objectStartNumber = objectOffset / allocationGranularity;
size_t mapIndex = objectStartNumber / 8;
ASSERT(mapIndex < objectStartBitMapSize);
m_objectStartBitMap[mapIndex] |= (1 << (objectStartNumber & 7));
headerAddress += header->size();
ASSERT(headerAddress <= end());
}
m_objectStartBitMapComputed = true;
}
template<typename Header>
void HeapPage<Header>::clearObjectStartBitMap()
{
m_objectStartBitMapComputed = false;
}
static int numberOfLeadingZeroes(uint8_t byte)
{
if (!byte)
return 8;
int result = 0;
if (byte <= 0x0F) {
result += 4;
byte = byte << 4;
}
if (byte <= 0x3F) {
result += 2;
byte = byte << 2;
}
if (byte <= 0x7F)
result++;
return result;
}
template<typename Header>
Header* HeapPage<Header>::findHeaderFromAddress(Address address)
{
if (address < payload())
return 0;
if (!isObjectStartBitMapComputed())
populateObjectStartBitMap();
size_t objectOffset = address - payload();
size_t objectStartNumber = objectOffset / allocationGranularity;
size_t mapIndex = objectStartNumber / 8;
ASSERT(mapIndex < objectStartBitMapSize);
size_t bit = objectStartNumber & 7;
uint8_t byte = m_objectStartBitMap[mapIndex] & ((1 << (bit + 1)) - 1);
while (!byte) {
ASSERT(mapIndex > 0);
byte = m_objectStartBitMap[--mapIndex];
}
int leadingZeroes = numberOfLeadingZeroes(byte);
objectStartNumber = (mapIndex * 8) + 7 - leadingZeroes;
objectOffset = objectStartNumber * allocationGranularity;
Address objectAddress = objectOffset + payload();
Header* header = reinterpret_cast<Header*>(objectAddress);
if (header->isFree())
return 0;
return header;
}
template<typename Header>
void HeapPage<Header>::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(contains(address));
Header* header = findHeaderFromAddress(address);
if (!header)
return;
#if ENABLE(GC_TRACING)
visitor->setHostInfo(&address, "stack");
#endif
if (hasVTable(header) && !vTableInitialized(header->payload()))
visitor->markConservatively(header);
else
visitor->mark(header, traceCallback(header));
}
#if ENABLE(GC_TRACING)
template<typename Header>
const GCInfo* HeapPage<Header>::findGCInfo(Address address)
{
if (address < payload())
return 0;
if (gcInfo()) // for non FinalizedObjectHeader
return gcInfo();
Header* header = findHeaderFromAddress(address);
if (!header)
return 0;
return header->gcInfo();
}
#endif
#if defined(ADDRESS_SANITIZER)
template<typename Header>
void HeapPage<Header>::poisonUnmarkedObjects()
{
for (Address headerAddress = payload(); headerAddress < end(); ) {
Header* header = reinterpret_cast<Header*>(headerAddress);
ASSERT(header->size() < blinkPagePayloadSize());
if (!header->isFree() && !header->isMarked())
ASAN_POISON_MEMORY_REGION(header->payload(), header->payloadSize());
headerAddress += header->size();
}
}
#endif
template<>
inline void HeapPage<FinalizedHeapObjectHeader>::finalize(FinalizedHeapObjectHeader* header)
{
header->finalize();
}
template<>
inline void HeapPage<HeapObjectHeader>::finalize(HeapObjectHeader* header)
{
ASSERT(gcInfo());
HeapObjectHeader::finalize(gcInfo(), header->payload(), header->payloadSize());
}
template<>
inline TraceCallback HeapPage<HeapObjectHeader>::traceCallback(HeapObjectHeader* header)
{
ASSERT(gcInfo());
return gcInfo()->m_trace;
}
template<>
inline TraceCallback HeapPage<FinalizedHeapObjectHeader>::traceCallback(FinalizedHeapObjectHeader* header)
{
return header->traceCallback();
}
template<>
inline bool HeapPage<HeapObjectHeader>::hasVTable(HeapObjectHeader* header)
{
ASSERT(gcInfo());
return gcInfo()->hasVTable();
}
template<>
inline bool HeapPage<FinalizedHeapObjectHeader>::hasVTable(FinalizedHeapObjectHeader* header)
{
return header->hasVTable();
}
template<typename Header>
void LargeHeapObject<Header>::getStats(HeapStats& stats)
{
stats.increaseAllocatedSpace(size());
stats.increaseObjectSpace(payloadSize());
}
template<typename Entry>
void HeapExtentCache<Entry>::flush()
{
if (m_hasEntries) {
for (int i = 0; i < numberOfEntries; i++)
m_entries[i] = Entry();
m_hasEntries = false;
}
}
template<typename Entry>
size_t HeapExtentCache<Entry>::hash(Address address)
{
size_t value = (reinterpret_cast<size_t>(address) >> blinkPageSizeLog2);
value ^= value >> numberOfEntriesLog2;
value ^= value >> (numberOfEntriesLog2 * 2);
value &= numberOfEntries - 1;
return value & ~1; // Returns only even number.
}
template<typename Entry>
typename Entry::LookupResult HeapExtentCache<Entry>::lookup(Address address)
{
size_t index = hash(address);
ASSERT(!(index & 1));
Address cachePage = roundToBlinkPageStart(address);
if (m_entries[index].address() == cachePage)
return m_entries[index].result();
if (m_entries[index + 1].address() == cachePage)
return m_entries[index + 1].result();
return 0;
}
template<typename Entry>
void HeapExtentCache<Entry>::addEntry(Address address, typename Entry::LookupResult entry)
{
m_hasEntries = true;
size_t index = hash(address);
ASSERT(!(index & 1));
Address cachePage = roundToBlinkPageStart(address);
m_entries[index + 1] = m_entries[index];
m_entries[index] = Entry(cachePage, entry);
}
// These should not be needed, but it seems impossible to persuade clang to
// instantiate the template functions and export them from a shared library, so
// we add these in the non-templated subclass, which does not have that issue.
void HeapContainsCache::addEntry(Address address, BaseHeapPage* page)
{
HeapExtentCache<PositiveEntry>::addEntry(address, page);
}
BaseHeapPage* HeapContainsCache::lookup(Address address)
{
return HeapExtentCache<PositiveEntry>::lookup(address);
}
void Heap::flushHeapDoesNotContainCache()
{
s_heapDoesNotContainCache->flush();
}
void CallbackStack::init(CallbackStack** first)
{
// The stacks are chained, so we start by setting this to null as terminator.
*first = 0;
*first = new CallbackStack(first);
}
void CallbackStack::shutdown(CallbackStack** first)
{
CallbackStack* next;
for (CallbackStack* current = *first; current; current = next) {
next = current->m_next;
delete current;
}
*first = 0;
}
CallbackStack::~CallbackStack()
{
#ifndef NDEBUG
clearUnused();
#endif
}
void CallbackStack::clearUnused()
{
ASSERT(m_current == &(m_buffer[0]));
for (size_t i = 0; i < bufferSize; i++)
m_buffer[i] = Item(0, 0);
}
void CallbackStack::assertIsEmpty()
{
ASSERT(m_current == &(m_buffer[0]));
ASSERT(!m_next);
}
bool CallbackStack::popAndInvokeCallback(CallbackStack** first, Visitor* visitor)
{
if (m_current == &(m_buffer[0])) {
if (!m_next) {
#ifndef NDEBUG
clearUnused();
#endif
return false;
}
CallbackStack* nextStack = m_next;
*first = nextStack;
delete this;
return nextStack->popAndInvokeCallback(first, visitor);
}
Item* item = --m_current;
VisitorCallback callback = item->callback();
#if ENABLE(GC_TRACING)
if (ThreadState::isAnyThreadInGC()) // weak-processing will also use popAndInvokeCallback
visitor->setHostInfo(item->object(), classOf(item->object()));
#endif
callback(visitor, item->object());
return true;
}
class MarkingVisitor : public Visitor {
public:
#if ENABLE(GC_TRACING)
typedef HashSet<uintptr_t> LiveObjectSet;
typedef HashMap<String, LiveObjectSet> LiveObjectMap;
typedef HashMap<uintptr_t, std::pair<uintptr_t, String> > ObjectGraph;
#endif
inline void visitHeader(HeapObjectHeader* header, const void* objectPointer, TraceCallback callback)
{
ASSERT(header);
ASSERT(objectPointer);
if (header->isMarked())
return;
header->mark();
#if ENABLE(GC_TRACING)
MutexLocker locker(objectGraphMutex());
String className(classOf(objectPointer));
{
LiveObjectMap::AddResult result = currentlyLive().add(className, LiveObjectSet());
result.storedValue->value.add(reinterpret_cast<uintptr_t>(objectPointer));
}
ObjectGraph::AddResult result = objectGraph().add(reinterpret_cast<uintptr_t>(objectPointer), std::make_pair(reinterpret_cast<uintptr_t>(m_hostObject), m_hostName));
ASSERT(result.isNewEntry);
// fprintf(stderr, "%s[%p] -> %s[%p]\n", m_hostName.ascii().data(), m_hostObject, className.ascii().data(), objectPointer);
#endif
if (callback)
Heap::pushTraceCallback(const_cast<void*>(objectPointer), callback);
}
virtual void mark(HeapObjectHeader* header, TraceCallback callback) OVERRIDE
{
// We need both the HeapObjectHeader and FinalizedHeapObjectHeader
// version to correctly find the payload.
visitHeader(header, header->payload(), callback);
}
virtual void mark(FinalizedHeapObjectHeader* header, TraceCallback callback) OVERRIDE
{
// We need both the HeapObjectHeader and FinalizedHeapObjectHeader
// version to correctly find the payload.
visitHeader(header, header->payload(), callback);
}
virtual void mark(const void* objectPointer, TraceCallback callback) OVERRIDE
{
if (!objectPointer)
return;
FinalizedHeapObjectHeader* header = FinalizedHeapObjectHeader::fromPayload(objectPointer);
visitHeader(header, header->payload(), callback);
}
inline void visitConservatively(HeapObjectHeader* header, void* objectPointer, size_t objectSize)
{
ASSERT(header);
ASSERT(objectPointer);
if (header->isMarked())
return;
header->mark();
// Scan through the object's fields and visit them conservatively.
Address* objectFields = reinterpret_cast<Address*>(objectPointer);
for (size_t i = 0; i < objectSize / sizeof(Address); ++i)
Heap::checkAndMarkPointer(this, objectFields[i]);
}
virtual void markConservatively(HeapObjectHeader* header)
{
// We need both the HeapObjectHeader and FinalizedHeapObjectHeader
// version to correctly find the payload.
visitConservatively(header, header->payload(), header->payloadSize());
}
virtual void markConservatively(FinalizedHeapObjectHeader* header)
{
// We need both the HeapObjectHeader and FinalizedHeapObjectHeader
// version to correctly find the payload.
visitConservatively(header, header->payload(), header->payloadSize());
}
virtual void registerWeakMembers(const void* closure, const void* containingObject, WeakPointerCallback callback) OVERRIDE
{
Heap::pushWeakObjectPointerCallback(const_cast<void*>(closure), const_cast<void*>(containingObject), callback);
}
virtual bool isMarked(const void* objectPointer) OVERRIDE
{
return FinalizedHeapObjectHeader::fromPayload(objectPointer)->isMarked();
}
// This macro defines the necessary visitor methods for typed heaps
#define DEFINE_VISITOR_METHODS(Type) \
virtual void mark(const Type* objectPointer, TraceCallback callback) OVERRIDE \
{ \
if (!objectPointer) \
return; \
HeapObjectHeader* header = \
HeapObjectHeader::fromPayload(objectPointer); \
visitHeader(header, header->payload(), callback); \
} \
virtual bool isMarked(const Type* objectPointer) OVERRIDE \
{ \
return HeapObjectHeader::fromPayload(objectPointer)->isMarked(); \
}
FOR_EACH_TYPED_HEAP(DEFINE_VISITOR_METHODS)
#undef DEFINE_VISITOR_METHODS
#if ENABLE(GC_TRACING)
void reportStats()
{
fprintf(stderr, "\n---------- AFTER MARKING -------------------\n");
for (LiveObjectMap::iterator it = currentlyLive().begin(), end = currentlyLive().end(); it != end; ++it) {
fprintf(stderr, "%s %u", it->key.ascii().data(), it->value.size());
if (it->key == "WebCore::Document")
reportStillAlive(it->value, previouslyLive().get(it->key));
fprintf(stderr, "\n");
}
previouslyLive().swap(currentlyLive());
currentlyLive().clear();
for (HashSet<uintptr_t>::iterator it = objectsToFindPath().begin(), end = objectsToFindPath().end(); it != end; ++it) {
dumpPathToObjectFromObjectGraph(objectGraph(), *it);
}
}
static void reportStillAlive(LiveObjectSet current, LiveObjectSet previous)
{
int count = 0;
fprintf(stderr, " [previously %u]", previous.size());
for (LiveObjectSet::iterator it = current.begin(), end = current.end(); it != end; ++it) {
if (previous.find(*it) == previous.end())
continue;
count++;
}
if (!count)
return;
fprintf(stderr, " {survived 2GCs %d: ", count);
for (LiveObjectSet::iterator it = current.begin(), end = current.end(); it != end; ++it) {
if (previous.find(*it) == previous.end())
continue;
fprintf(stderr, "%ld", *it);
if (--count)
fprintf(stderr, ", ");
}
ASSERT(!count);
fprintf(stderr, "}");
}
static void dumpPathToObjectFromObjectGraph(const ObjectGraph& graph, uintptr_t target)
{
ObjectGraph::const_iterator it = graph.find(target);
if (it == graph.end())
return;
fprintf(stderr, "Path to %lx of %s\n", target, classOf(reinterpret_cast<const void*>(target)).ascii().data());
while (it != graph.end()) {
fprintf(stderr, "<- %lx of %s\n", it->value.first, it->value.second.utf8().data());
it = graph.find(it->value.first);
}
fprintf(stderr, "\n");
}
static void dumpPathToObjectOnNextGC(void* p)
{
objectsToFindPath().add(reinterpret_cast<uintptr_t>(p));
}
static Mutex& objectGraphMutex()
{
AtomicallyInitializedStatic(Mutex&, mutex = *new Mutex);
return mutex;
}
static LiveObjectMap& previouslyLive()
{
DEFINE_STATIC_LOCAL(LiveObjectMap, map, ());
return map;
}
static LiveObjectMap& currentlyLive()
{
DEFINE_STATIC_LOCAL(LiveObjectMap, map, ());
return map;
}
static ObjectGraph& objectGraph()
{
DEFINE_STATIC_LOCAL(ObjectGraph, graph, ());
return graph;
}
static HashSet<uintptr_t>& objectsToFindPath()
{
DEFINE_STATIC_LOCAL(HashSet<uintptr_t>, set, ());
return set;
}
#endif
protected:
virtual void registerWeakCell(void** cell, WeakPointerCallback callback) OVERRIDE
{
Heap::pushWeakCellPointerCallback(cell, callback);
}
};
void Heap::init()
{
ThreadState::init();
CallbackStack::init(&s_markingStack);
CallbackStack::init(&s_weakCallbackStack);
s_heapDoesNotContainCache = new HeapDoesNotContainCache();
s_markingVisitor = new MarkingVisitor();
}
void Heap::shutdown()
{
s_shutdownCalled = true;
ThreadState::shutdownHeapIfNecessary();
}
void Heap::doShutdown()
{
// We don't want to call doShutdown() twice.
if (!s_markingVisitor)
return;
ASSERT(!ThreadState::isAnyThreadInGC());
ASSERT(!ThreadState::attachedThreads().size());
delete s_markingVisitor;
s_markingVisitor = 0;
delete s_heapDoesNotContainCache;
s_heapDoesNotContainCache = 0;
CallbackStack::shutdown(&s_weakCallbackStack);
CallbackStack::shutdown(&s_markingStack);
ThreadState::shutdown();
}
BaseHeapPage* Heap::contains(Address address)
{
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
for (ThreadState::AttachedThreadStateSet::iterator it = threads.begin(), end = threads.end(); it != end; ++it) {
BaseHeapPage* page = (*it)->contains(address);
if (page)
return page;
}
return 0;
}
Address Heap::checkAndMarkPointer(Visitor* visitor, Address address)
{
ASSERT(ThreadState::isAnyThreadInGC());
#ifdef NDEBUG
if (s_heapDoesNotContainCache->lookup(address))
return 0;
#endif
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
for (ThreadState::AttachedThreadStateSet::iterator it = threads.begin(), end = threads.end(); it != end; ++it) {
if ((*it)->checkAndMarkPointer(visitor, address)) {
// Pointer was in a page of that thread. If it actually pointed
// into an object then that object was found and marked.
ASSERT(!s_heapDoesNotContainCache->lookup(address));
s_lastGCWasConservative = true;
return address;
}
}
#ifdef NDEBUG
s_heapDoesNotContainCache->addEntry(address, true);
#else
if (!s_heapDoesNotContainCache->lookup(address))
s_heapDoesNotContainCache->addEntry(address, true);
#endif
return 0;
}
#if ENABLE(GC_TRACING)
const GCInfo* Heap::findGCInfo(Address address)
{
return ThreadState::findGCInfoFromAllThreads(address);
}
void Heap::dumpPathToObjectOnNextGC(void* p)
{
static_cast<MarkingVisitor*>(s_markingVisitor)->dumpPathToObjectOnNextGC(p);
}
String Heap::createBacktraceString()
{
int framesToShow = 3;
int stackFrameSize = 16;
ASSERT(stackFrameSize >= framesToShow);
typedef void* FramePointer;
FramePointer* stackFrame = static_cast<FramePointer*>(alloca(sizeof(FramePointer) * stackFrameSize));
WTFGetBacktrace(stackFrame, &stackFrameSize);
StringBuilder builder;
builder.append("Persistent");
bool didAppendFirstName = false;
// Skip frames before/including "WebCore::Persistent".
bool didSeePersistent = false;
for (int i = 0; i < stackFrameSize && framesToShow > 0; ++i) {
FrameToNameScope frameToName(stackFrame[i]);
if (!frameToName.nullableName())
continue;
if (strstr(frameToName.nullableName(), "WebCore::Persistent")) {
didSeePersistent = true;
continue;
}
if (!didSeePersistent)
continue;
if (!didAppendFirstName) {
didAppendFirstName = true;
builder.append(" ... Backtrace:");
}
builder.append("\n\t");
builder.append(frameToName.nullableName());
--framesToShow;
}
return builder.toString().replace("WebCore::", "");
}
#endif
void Heap::pushTraceCallback(void* object, TraceCallback callback)
{
ASSERT(Heap::contains(object));
CallbackStack::Item* slot = s_markingStack->allocateEntry(&s_markingStack);
*slot = CallbackStack::Item(object, callback);
}
bool Heap::popAndInvokeTraceCallback(Visitor* visitor)
{
return s_markingStack->popAndInvokeCallback(&s_markingStack, visitor);
}
void Heap::pushWeakCellPointerCallback(void** cell, WeakPointerCallback callback)
{
ASSERT(Heap::contains(cell));
CallbackStack::Item* slot = s_weakCallbackStack->allocateEntry(&s_weakCallbackStack);
*slot = CallbackStack::Item(cell, callback);
}
void Heap::pushWeakObjectPointerCallback(void* closure, void* object, WeakPointerCallback callback)
{
ASSERT(Heap::contains(object));
BaseHeapPage* heapPageForObject = reinterpret_cast<BaseHeapPage*>(pageHeaderAddress(reinterpret_cast<Address>(object)));
ASSERT(Heap::contains(object) == heapPageForObject);
ThreadState* state = heapPageForObject->threadState();
state->pushWeakObjectPointerCallback(closure, callback);
}
bool Heap::popAndInvokeWeakPointerCallback(Visitor* visitor)
{
return s_weakCallbackStack->popAndInvokeCallback(&s_weakCallbackStack, visitor);
}
void Heap::prepareForGC()
{
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
for (ThreadState::AttachedThreadStateSet::iterator it = threads.begin(), end = threads.end(); it != end; ++it)
(*it)->prepareForGC();
}
void Heap::collectGarbage(ThreadState::StackState stackState)
{
ThreadState* state = ThreadState::current();
state->clearGCRequested();
GCScope gcScope(stackState);
// Check if we successfully parked the other threads. If not we bail out of the GC.
if (!gcScope.allThreadsParked()) {
ThreadState::current()->setGCRequested();
return;
}
s_lastGCWasConservative = false;
TRACE_EVENT0("Blink", "Heap::collectGarbage");
TRACE_EVENT_SCOPED_SAMPLING_STATE("Blink", "BlinkGC");
double timeStamp = WTF::currentTimeMS();
#if ENABLE(GC_TRACING)
static_cast<MarkingVisitor*>(s_markingVisitor)->objectGraph().clear();
#endif
// Disallow allocation during garbage collection (but not
// during the finalization that happens when the gcScope is
// torn down).
NoAllocationScope<AnyThread> noAllocationScope;
prepareForGC();
ThreadState::visitRoots(s_markingVisitor);
// Recursively mark all objects that are reachable from the roots.
while (popAndInvokeTraceCallback(s_markingVisitor)) { }
// Call weak callbacks on objects that may now be pointing to dead
// objects.
while (popAndInvokeWeakPointerCallback(s_markingVisitor)) { }
// It is not permitted to trace pointers of live objects in the weak
// callback phase, so the marking stack should still be empty here.
s_markingStack->assertIsEmpty();
#if ENABLE(GC_TRACING)
static_cast<MarkingVisitor*>(s_markingVisitor)->reportStats();
#endif
if (blink::Platform::current()) {
uint64_t objectSpaceSize;
uint64_t allocatedSpaceSize;
getHeapSpaceSize(&objectSpaceSize, &allocatedSpaceSize);
blink::Platform::current()->histogramCustomCounts("BlinkGC.CollectGarbage", WTF::currentTimeMS() - timeStamp, 0, 10 * 1000, 50);
blink::Platform::current()->histogramCustomCounts("BlinkGC.TotalObjectSpace", objectSpaceSize / 1024, 0, 4 * 1024 * 1024, 50);
blink::Platform::current()->histogramCustomCounts("BlinkGC.TotalAllocatedSpace", allocatedSpaceSize / 1024, 0, 4 * 1024 * 1024, 50);
}
}
void Heap::collectAllGarbage()
{
// FIXME: oilpan: we should perform a single GC and everything
// should die. Unfortunately it is not the case for all objects
// because the hierarchy was not completely moved to the heap and
// some heap allocated objects own objects that contain persistents
// pointing to other heap allocated objects.
for (int i = 0; i < 5; i++)
collectGarbage(ThreadState::NoHeapPointersOnStack);
}
void Heap::setForcePreciseGCForTesting()
{
ThreadState::current()->setForcePreciseGCForTesting(true);
}
void Heap::getHeapSpaceSize(uint64_t* objectSpaceSize, uint64_t* allocatedSpaceSize)
{
*objectSpaceSize = 0;
*allocatedSpaceSize = 0;
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
typedef ThreadState::AttachedThreadStateSet::iterator ThreadStateIterator;
for (ThreadStateIterator it = threads.begin(), end = threads.end(); it != end; ++it) {
*objectSpaceSize += (*it)->stats().totalObjectSpace();
*allocatedSpaceSize += (*it)->stats().totalAllocatedSpace();
}
}
void Heap::getStats(HeapStats* stats)
{
stats->clear();
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
typedef ThreadState::AttachedThreadStateSet::iterator ThreadStateIterator;
for (ThreadStateIterator it = threads.begin(), end = threads.end(); it != end; ++it) {
HeapStats temp;
(*it)->getStats(temp);
stats->add(&temp);
}
}
bool Heap::isConsistentForGC()
{
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
for (ThreadState::AttachedThreadStateSet::iterator it = threads.begin(), end = threads.end(); it != end; ++it) {
if (!(*it)->isConsistentForGC())
return false;
}
return true;
}
void Heap::makeConsistentForGC()
{
ASSERT(ThreadState::isAnyThreadInGC());
ThreadState::AttachedThreadStateSet& threads = ThreadState::attachedThreads();
for (ThreadState::AttachedThreadStateSet::iterator it = threads.begin(), end = threads.end(); it != end; ++it)
(*it)->makeConsistentForGC();
}
// Force template instantiations for the types that we need.
template class HeapPage<FinalizedHeapObjectHeader>;
template class HeapPage<HeapObjectHeader>;
template class ThreadHeap<FinalizedHeapObjectHeader>;
template class ThreadHeap<HeapObjectHeader>;
Visitor* Heap::s_markingVisitor;
CallbackStack* Heap::s_markingStack;
CallbackStack* Heap::s_weakCallbackStack;
HeapDoesNotContainCache* Heap::s_heapDoesNotContainCache;
bool Heap::s_shutdownCalled = false;
bool Heap::s_lastGCWasConservative = false;
}