blob: 24ccfbd584e02badaa264f578a01411a408d5c4a [file] [log] [blame]
/*
** 2012 Jan 11
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
*/
/* TODO(shess): THIS MODULE IS STILL EXPERIMENTAL. DO NOT USE IT. */
/* Implements a virtual table "recover" which can be used to recover
* data from a corrupt table. The table is walked manually, with
* corrupt items skipped. Additionally, any errors while reading will
* be skipped.
*
* Given a table with this definition:
*
* CREATE TABLE Stuff (
* name TEXT PRIMARY KEY,
* value TEXT NOT NULL
* );
*
* to recover the data from teh table, you could do something like:
*
* -- Attach another database, the original is not trustworthy.
* ATTACH DATABASE '/tmp/db.db' AS rdb;
* -- Create a new version of the table.
* CREATE TABLE rdb.Stuff (
* name TEXT PRIMARY KEY,
* value TEXT NOT NULL
* );
* -- This will read the original table's data.
* CREATE VIRTUAL TABLE temp.recover_Stuff using recover(
* main.Stuff,
* name TEXT STRICT NOT NULL, -- only real TEXT data allowed
* value TEXT STRICT NOT NULL
* );
* -- Corruption means the UNIQUE constraint may no longer hold for
* -- Stuff, so either OR REPLACE or OR IGNORE must be used.
* INSERT OR REPLACE INTO rdb.Stuff (rowid, name, value )
* SELECT rowid, name, value FROM temp.recover_Stuff;
* DROP TABLE temp.recover_Stuff;
* DETACH DATABASE rdb;
* -- Move db.db to replace original db in filesystem.
*
*
* Usage
*
* Given the goal of dealing with corruption, it would not be safe to
* create a recovery table in the database being recovered. So
* recovery tables must be created in the temp database. They are not
* appropriate to persist, in any case. [As a bonus, sqlite_master
* tables can be recovered. Perhaps more cute than useful, though.]
*
* The parameters are a specifier for the table to read, and a column
* definition for each bit of data stored in that table. The named
* table must be convertable to a root page number by reading the
* sqlite_master table. Bare table names are assumed to be in
* database 0 ("main"), other databases can be specified in db.table
* fashion.
*
* Column definitions are similar to BUT NOT THE SAME AS those
* provided to CREATE statements:
* column-def: column-name [type-name [STRICT] [NOT NULL]]
* type-name: (ANY|ROWID|INTEGER|FLOAT|NUMERIC|TEXT|BLOB)
*
* Only those exact type names are accepted, there is no type
* intuition. The only constraints accepted are STRICT (see below)
* and NOT NULL. Anything unexpected will cause the create to fail.
*
* ANY is a convenience to indicate that manifest typing is desired.
* It is equivalent to not specifying a type at all. The results for
* such columns will have the type of the data's storage. The exposed
* schema will contain no type for that column.
*
* ROWID is used for columns representing aliases to the rowid
* (INTEGER PRIMARY KEY, with or without AUTOINCREMENT), to make the
* concept explicit. Such columns are actually stored as NULL, so
* they cannot be simply ignored. The exposed schema will be INTEGER
* for that column.
*
* NOT NULL causes rows with a NULL in that column to be skipped. It
* also adds NOT NULL to the column in the exposed schema. If the
* table has ever had columns added using ALTER TABLE, then those
* columns implicitly contain NULL for rows which have not been
* updated. [Workaround using COALESCE() in your SELECT statement.]
*
* The created table is read-only, with no indices. Any SELECT will
* be a full-table scan, returning each valid row read from the
* storage of the backing table. The rowid will be the rowid of the
* row from the backing table. "Valid" means:
* - The cell metadata for the row is well-formed. Mainly this means that
* the cell header info describes a payload of the size indicated by
* the cell's payload size.
* - The cell does not run off the page.
* - The cell does not overlap any other cell on the page.
* - The cell contains doesn't contain too many columns.
* - The types of the serialized data match the indicated types (see below).
*
*
* Type affinity versus type storage.
*
* http://www.sqlite.org/datatype3.html describes SQLite's type
* affinity system. The system provides for automated coercion of
* types in certain cases, transparently enough that many developers
* do not realize that it is happening. Importantly, it implies that
* the raw data stored in the database may not have the obvious type.
*
* Differences between the stored data types and the expected data
* types may be a signal of corruption. This module makes some
* allowances for automatic coercion. It is important to be concious
* of the difference between the schema exposed by the module, and the
* data types read from storage. The following table describes how
* the module interprets things:
*
* type schema data STRICT
* ---- ------ ---- ------
* ANY <none> any any
* ROWID INTEGER n/a n/a
* INTEGER INTEGER integer integer
* FLOAT FLOAT integer or float float
* NUMERIC NUMERIC integer, float, or text integer or float
* TEXT TEXT text or blob text
* BLOB BLOB blob blob
*
* type is the type provided to the recover module, schema is the
* schema exposed by the module, data is the acceptable types of data
* decoded from storage, and STRICT is a modification of that.
*
* A very loose recovery system might use ANY for all columns, then
* use the appropriate sqlite3_column_*() calls to coerce to expected
* types. This doesn't provide much protection if a page from a
* different table with the same column count is linked into an
* inappropriate btree.
*
* A very tight recovery system might use STRICT to enforce typing on
* all columns, preferring to skip rows which are valid at the storage
* level but don't contain the right types. Note that FLOAT STRICT is
* almost certainly not appropriate, since integral values are
* transparently stored as integers, when that is more efficient.
*
* Another option is to use ANY for all columns and inspect each
* result manually (using sqlite3_column_*). This should only be
* necessary in cases where developers have used manifest typing (test
* to make sure before you decide that you aren't using manifest
* typing!).
*
*
* Caveats
*
* Leaf pages not referenced by interior nodes will not be found.
*
* Leaf pages referenced from interior nodes of other tables will not
* be resolved.
*
* Rows referencing invalid overflow pages will be skipped.
*
* SQlite rows have a header which describes how to interpret the rest
* of the payload. The header can be valid in cases where the rest of
* the record is actually corrupt (in the sense that the data is not
* the intended data). This can especially happen WRT overflow pages,
* as lack of atomic updates between pages is the primary form of
* corruption I have seen in the wild.
*/
/* The implementation is via a series of cursors. The cursor
* implementations follow the pattern:
*
* // Creates the cursor using various initialization info.
* int cursorCreate(...);
*
* // Returns 1 if there is no more data, 0 otherwise.
* int cursorEOF(Cursor *pCursor);
*
* // Various accessors can be used if not at EOF.
*
* // Move to the next item.
* int cursorNext(Cursor *pCursor);
*
* // Destroy the memory associated with the cursor.
* void cursorDestroy(Cursor *pCursor);
*
* References in the following are to sections at
* http://www.sqlite.org/fileformat2.html .
*
* RecoverLeafCursor iterates the records in a leaf table node
* described in section 1.5 "B-tree Pages". When the node is
* exhausted, an interior cursor is used to get the next leaf node,
* and iteration continues there.
*
* RecoverInteriorCursor iterates the child pages in an interior table
* node described in section 1.5 "B-tree Pages". When the node is
* exhausted, a parent interior cursor is used to get the next
* interior node at the same level, and iteration continues there.
*
* Together these record the path from the leaf level to the root of
* the tree. Iteration happens from the leaves rather than the root
* both for efficiency and putting the special case at the front of
* the list is easier to implement.
*
* RecoverCursor uses a RecoverLeafCursor to iterate the rows of a
* table, returning results via the SQLite virtual table interface.
*/
/* TODO(shess): It might be useful to allow DEFAULT in types to
* specify what to do for NULL when an ALTER TABLE case comes up.
* Unfortunately, simply adding it to the exposed schema and using
* sqlite3_result_null() does not cause the default to be generate.
* Handling it ourselves seems hard, unfortunately.
*/
#include <assert.h>
#include <ctype.h>
#include <stdio.h>
#include <string.h>
/* Internal SQLite things that are used:
* u32, u64, i64 types.
* Btree, Pager, and DbPage structs.
* DbPage.pData, .pPager, and .pgno
* sqlite3 struct.
* sqlite3BtreePager() and sqlite3BtreeGetPageSize()
* sqlite3PagerAcquire() and sqlite3PagerUnref()
* getVarint().
*/
#include "sqliteInt.h"
/* For debugging. */
#if 0
#define FNENTRY() fprintf(stderr, "In %s\n", __FUNCTION__)
#else
#define FNENTRY()
#endif
/* Generic constants and helper functions. */
static const unsigned char kTableLeafPage = 0x0D;
static const unsigned char kTableInteriorPage = 0x05;
/* From section 1.5. */
static const unsigned kiPageTypeOffset = 0;
static const unsigned kiPageFreeBlockOffset = 1;
static const unsigned kiPageCellCountOffset = 3;
static const unsigned kiPageCellContentOffset = 5;
static const unsigned kiPageFragmentedBytesOffset = 7;
static const unsigned knPageLeafHeaderBytes = 8;
/* Interior pages contain an additional field. */
static const unsigned kiPageRightChildOffset = 8;
static const unsigned kiPageInteriorHeaderBytes = 12;
/* Accepted types are specified by a mask. */
#define MASK_ROWID (1<<0)
#define MASK_INTEGER (1<<1)
#define MASK_FLOAT (1<<2)
#define MASK_TEXT (1<<3)
#define MASK_BLOB (1<<4)
#define MASK_NULL (1<<5)
/* Helpers to decode fixed-size fields. */
static u32 decodeUnsigned16(const unsigned char *pData){
return (pData[0]<<8) + pData[1];
}
static u32 decodeUnsigned32(const unsigned char *pData){
return (decodeUnsigned16(pData)<<16) + decodeUnsigned16(pData+2);
}
static i64 decodeSigned(const unsigned char *pData, unsigned nBytes){
i64 r = (char)(*pData);
while( --nBytes ){
r <<= 8;
r += *(++pData);
}
return r;
}
/* Derived from vdbeaux.c, sqlite3VdbeSerialGet(), case 7. */
/* TODO(shess): Determine if swapMixedEndianFloat() applies. */
static double decodeFloat64(const unsigned char *pData){
#if !defined(NDEBUG)
static const u64 t1 = ((u64)0x3ff00000)<<32;
static const double r1 = 1.0;
u64 t2 = t1;
assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
#endif
i64 x = decodeSigned(pData, 8);
double d;
memcpy(&d, &x, sizeof(x));
return d;
}
/* Return true if a varint can safely be read from pData/nData. */
/* TODO(shess): DbPage points into the middle of a buffer which
* contains the page data before DbPage. So code should always be
* able to read a small number of varints safely. Consider whether to
* trust that or not.
*/
static int checkVarint(const unsigned char *pData, unsigned nData){
unsigned i;
/* In the worst case the decoder takes all 8 bits of the 9th byte. */
if( nData>=9 ){
return 1;
}
/* Look for a high-bit-clear byte in what's left. */
for( i=0; i<nData; ++i ){
if( !(pData[i]&0x80) ){
return 1;
}
}
/* Cannot decode in the space given. */
return 0;
}
/* Return 1 if n varints can be read from pData/nData. */
static int checkVarints(const unsigned char *pData, unsigned nData,
unsigned n){
unsigned nCur = 0; /* Byte offset within current varint. */
unsigned nFound = 0; /* Number of varints found. */
unsigned i;
/* In the worst case the decoder takes all 8 bits of the 9th byte. */
if( nData>=9*n ){
return 1;
}
for( i=0; nFound<n && i<nData; ++i ){
nCur++;
if( nCur==9 || !(pData[i]&0x80) ){
nFound++;
nCur = 0;
}
}
return nFound==n;
}
/* ctype and str[n]casecmp() can be affected by locale (eg, tr_TR).
* These versions consider only the ASCII space.
*/
/* TODO(shess): It may be reasonable to just remove the need for these
* entirely. The module could require "TEXT STRICT NOT NULL", not
* "Text Strict Not Null" or whatever the developer felt like typing
* that day. Handling corrupt data is a PERFECT place to be pedantic.
*/
static int ascii_isspace(char c){
/* From fts3_expr.c */
return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f';
}
static int ascii_isalnum(int x){
/* From fts3_tokenizer1.c */
return (x>='0' && x<='9') || (x>='A' && x<='Z') || (x>='a' && x<='z');
}
static int ascii_tolower(int x){
/* From fts3_tokenizer1.c */
return (x>='A' && x<='Z') ? x-'A'+'a' : x;
}
/* TODO(shess): Consider sqlite3_strnicmp() */
static int ascii_strncasecmp(const char *s1, const char *s2, size_t n){
const unsigned char *us1 = (const unsigned char *)s1;
const unsigned char *us2 = (const unsigned char *)s2;
while( *us1 && *us2 && n && ascii_tolower(*us1)==ascii_tolower(*us2) ){
us1++, us2++, n--;
}
return n ? ascii_tolower(*us1)-ascii_tolower(*us2) : 0;
}
static int ascii_strcasecmp(const char *s1, const char *s2){
/* If s2 is equal through strlen(s1), will exit while() due to s1's
* trailing NUL, and return NUL-s2[strlen(s1)].
*/
return ascii_strncasecmp(s1, s2, strlen(s1)+1);
}
/* For some reason I kept making mistakes with offset calculations. */
static const unsigned char *PageData(DbPage *pPage, unsigned iOffset){
assert( iOffset<=pPage->nPageSize );
return (unsigned char *)pPage->pData + iOffset;
}
/* The first page in the file contains a file header in the first 100
* bytes. The page's header information comes after that. Note that
* the offsets in the page's header information are relative to the
* beginning of the page, NOT the end of the page header.
*/
static const unsigned char *PageHeader(DbPage *pPage){
if( pPage->pgno==1 ){
const unsigned nDatabaseHeader = 100;
return PageData(pPage, nDatabaseHeader);
}else{
return PageData(pPage, 0);
}
}
/* Helper to fetch the pager and page size for the named database. */
static int GetPager(sqlite3 *db, const char *zName,
Pager **pPager, unsigned *pnPageSize){
Btree *pBt = NULL;
int i;
for( i=0; i<db->nDb; ++i ){
if( ascii_strcasecmp(db->aDb[i].zName, zName)==0 ){
pBt = db->aDb[i].pBt;
break;
}
}
if( !pBt ){
return SQLITE_ERROR;
}
*pPager = sqlite3BtreePager(pBt);
*pnPageSize = sqlite3BtreeGetPageSize(pBt) - sqlite3BtreeGetReserve(pBt);
return SQLITE_OK;
}
/* iSerialType is a type read from a record header. See "2.1 Record Format".
*/
/* Storage size of iSerialType in bytes. My interpretation of SQLite
* documentation is that text and blob fields can have 32-bit length.
* Values past 2^31-12 will need more than 32 bits to encode, which is
* why iSerialType is u64.
*/
static u32 SerialTypeLength(u64 iSerialType){
switch( iSerialType ){
case 0 : return 0; /* NULL */
case 1 : return 1; /* Various integers. */
case 2 : return 2;
case 3 : return 3;
case 4 : return 4;
case 5 : return 6;
case 6 : return 8;
case 7 : return 8; /* 64-bit float. */
case 8 : return 0; /* Constant 0. */
case 9 : return 0; /* Constant 1. */
case 10 : case 11 : assert( !"RESERVED TYPE"); return 0;
}
return (u32)((iSerialType>>1) - 6);
}
/* True if iSerialType refers to a blob. */
static int SerialTypeIsBlob(u64 iSerialType){
assert( iSerialType>=12 );
return (iSerialType%2)==0;
}
/* Returns true if the serialized type represented by iSerialType is
* compatible with the given type mask.
*/
static int SerialTypeIsCompatible(u64 iSerialType, unsigned char mask){
switch( iSerialType ){
case 0 : return (mask&MASK_NULL)!=0;
case 1 : return (mask&MASK_INTEGER)!=0;
case 2 : return (mask&MASK_INTEGER)!=0;
case 3 : return (mask&MASK_INTEGER)!=0;
case 4 : return (mask&MASK_INTEGER)!=0;
case 5 : return (mask&MASK_INTEGER)!=0;
case 6 : return (mask&MASK_INTEGER)!=0;
case 7 : return (mask&MASK_FLOAT)!=0;
case 8 : return (mask&MASK_INTEGER)!=0;
case 9 : return (mask&MASK_INTEGER)!=0;
case 10 : assert( !"RESERVED TYPE"); return 0;
case 11 : assert( !"RESERVED TYPE"); return 0;
}
return (mask&(SerialTypeIsBlob(iSerialType) ? MASK_BLOB : MASK_TEXT));
}
/* Versions of strdup() with return values appropriate for
* sqlite3_free(). malloc.c has sqlite3DbStrDup()/NDup(), but those
* need sqlite3DbFree(), which seems intrusive.
*/
static char *sqlite3_strndup(const char *z, unsigned n){
char *zNew;
if( z==NULL ){
return NULL;
}
zNew = sqlite3_malloc(n+1);
if( zNew!=NULL ){
memcpy(zNew, z, n);
zNew[n] = '\0';
}
return zNew;
}
static char *sqlite3_strdup(const char *z){
if( z==NULL ){
return NULL;
}
return sqlite3_strndup(z, strlen(z));
}
/* Fetch the page number of zTable in zDb from sqlite_master in zDb,
* and put it in *piRootPage.
*/
static int getRootPage(sqlite3 *db, const char *zDb, const char *zTable,
u32 *piRootPage){
char *zSql; /* SQL selecting root page of named element. */
sqlite3_stmt *pStmt;
int rc;
if( strcmp(zTable, "sqlite_master")==0 ){
*piRootPage = 1;
return SQLITE_OK;
}
zSql = sqlite3_mprintf("SELECT rootpage FROM %s.sqlite_master "
"WHERE type = 'table' AND tbl_name = %Q",
zDb, zTable);
if( !zSql ){
return SQLITE_NOMEM;
}
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc!=SQLITE_OK ){
return rc;
}
/* Require a result. */
rc = sqlite3_step(pStmt);
if( rc==SQLITE_DONE ){
rc = SQLITE_CORRUPT;
}else if( rc==SQLITE_ROW ){
*piRootPage = sqlite3_column_int(pStmt, 0);
/* Require only one result. */
rc = sqlite3_step(pStmt);
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
}else if( rc==SQLITE_ROW ){
rc = SQLITE_CORRUPT;
}
}
sqlite3_finalize(pStmt);
return rc;
}
static int getEncoding(sqlite3 *db, const char *zDb, int* piEncoding){
sqlite3_stmt *pStmt;
int rc;
char *zSql = sqlite3_mprintf("PRAGMA %s.encoding", zDb);
if( !zSql ){
return SQLITE_NOMEM;
}
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
sqlite3_free(zSql);
if( rc!=SQLITE_OK ){
return rc;
}
/* Require a result. */
rc = sqlite3_step(pStmt);
if( rc==SQLITE_DONE ){
/* This case should not be possible. */
rc = SQLITE_CORRUPT;
}else if( rc==SQLITE_ROW ){
if( sqlite3_column_type(pStmt, 0)==SQLITE_TEXT ){
const char* z = (const char *)sqlite3_column_text(pStmt, 0);
/* These strings match the literals in pragma.c. */
if( !strcmp(z, "UTF-16le") ){
*piEncoding = SQLITE_UTF16LE;
}else if( !strcmp(z, "UTF-16be") ){
*piEncoding = SQLITE_UTF16BE;
}else if( !strcmp(z, "UTF-8") ){
*piEncoding = SQLITE_UTF8;
}else{
/* This case should not be possible. */
*piEncoding = SQLITE_UTF8;
}
}else{
/* This case should not be possible. */
*piEncoding = SQLITE_UTF8;
}
/* Require only one result. */
rc = sqlite3_step(pStmt);
if( rc==SQLITE_DONE ){
rc = SQLITE_OK;
}else if( rc==SQLITE_ROW ){
/* This case should not be possible. */
rc = SQLITE_CORRUPT;
}
}
sqlite3_finalize(pStmt);
return rc;
}
/* Cursor for iterating interior nodes. Interior page cells contain a
* child page number and a rowid. The child page contains items left
* of the rowid (less than). The rightmost page of the subtree is
* stored in the page header.
*
* interiorCursorDestroy - release all resources associated with the
* cursor and any parent cursors.
* interiorCursorCreate - create a cursor with the given parent and page.
* interiorCursorEOF - returns true if neither the cursor nor the
* parent cursors can return any more data.
* interiorCursorNextPage - fetch the next child page from the cursor.
*
* Logically, interiorCursorNextPage() returns the next child page
* number from the page the cursor is currently reading, calling the
* parent cursor as necessary to get new pages to read, until done.
* SQLITE_ROW if a page is returned, SQLITE_DONE if out of pages,
* error otherwise. Unfortunately, if the table is corrupted
* unexpected pages can be returned. If any unexpected page is found,
* leaf or otherwise, it is returned to the caller for processing,
* with the interior cursor left empty. The next call to
* interiorCursorNextPage() will recurse to the parent cursor until an
* interior page to iterate is returned.
*
* Note that while interiorCursorNextPage() will refuse to follow
* loops, it does not keep track of pages returned for purposes of
* preventing duplication.
*
* Note that interiorCursorEOF() could return false (not at EOF), and
* interiorCursorNextPage() could still return SQLITE_DONE. This
* could happen if there are more cells to iterate in an interior
* page, but those cells refer to invalid pages.
*/
typedef struct RecoverInteriorCursor RecoverInteriorCursor;
struct RecoverInteriorCursor {
RecoverInteriorCursor *pParent; /* Parent node to this node. */
DbPage *pPage; /* Reference to leaf page. */
unsigned nPageSize; /* Size of page. */
unsigned nChildren; /* Number of children on the page. */
unsigned iChild; /* Index of next child to return. */
};
static void interiorCursorDestroy(RecoverInteriorCursor *pCursor){
/* Destroy all the cursors to the root. */
while( pCursor ){
RecoverInteriorCursor *p = pCursor;
pCursor = pCursor->pParent;
if( p->pPage ){
sqlite3PagerUnref(p->pPage);
p->pPage = NULL;
}
memset(p, 0xA5, sizeof(*p));
sqlite3_free(p);
}
}
/* Internal helper. Reset storage in preparation for iterating pPage. */
static void interiorCursorSetPage(RecoverInteriorCursor *pCursor,
DbPage *pPage){
assert( PageHeader(pPage)[kiPageTypeOffset]==kTableInteriorPage );
if( pCursor->pPage ){
sqlite3PagerUnref(pCursor->pPage);
pCursor->pPage = NULL;
}
pCursor->pPage = pPage;
pCursor->iChild = 0;
/* A child for each cell, plus one in the header. */
/* TODO(shess): Sanity-check the count? Page header plus per-cell
* cost of 16-bit offset, 32-bit page number, and one varint
* (minimum 1 byte).
*/
pCursor->nChildren = decodeUnsigned16(PageHeader(pPage) +
kiPageCellCountOffset) + 1;
}
static int interiorCursorCreate(RecoverInteriorCursor *pParent,
DbPage *pPage, int nPageSize,
RecoverInteriorCursor **ppCursor){
RecoverInteriorCursor *pCursor =
sqlite3_malloc(sizeof(RecoverInteriorCursor));
if( !pCursor ){
return SQLITE_NOMEM;
}
memset(pCursor, 0, sizeof(*pCursor));
pCursor->pParent = pParent;
pCursor->nPageSize = nPageSize;
interiorCursorSetPage(pCursor, pPage);
*ppCursor = pCursor;
return SQLITE_OK;
}
/* Internal helper. Return the child page number at iChild. */
static unsigned interiorCursorChildPage(RecoverInteriorCursor *pCursor){
const unsigned char *pPageHeader; /* Header of the current page. */
const unsigned char *pCellOffsets; /* Offset to page's cell offsets. */
unsigned iCellOffset; /* Offset of target cell. */
assert( pCursor->iChild<pCursor->nChildren );
/* Rightmost child is in the header. */
pPageHeader = PageHeader(pCursor->pPage);
if( pCursor->iChild==pCursor->nChildren-1 ){
return decodeUnsigned32(pPageHeader + kiPageRightChildOffset);
}
/* Each cell is a 4-byte integer page number and a varint rowid
* which is greater than the rowid of items in that sub-tree (this
* module ignores ordering). The offset is from the beginning of the
* page, not from the page header.
*/
pCellOffsets = pPageHeader + kiPageInteriorHeaderBytes;
iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iChild*2);
if( iCellOffset<=pCursor->nPageSize-4 ){
return decodeUnsigned32(PageData(pCursor->pPage, iCellOffset));
}
/* TODO(shess): Check for cell overlaps? Cells require 4 bytes plus
* a varint. Check could be identical to leaf check (or even a
* shared helper testing for "Cells starting in this range"?).
*/
/* If the offset is broken, return an invalid page number. */
return 0;
}
static int interiorCursorEOF(RecoverInteriorCursor *pCursor){
/* Find a parent with remaining children. EOF if none found. */
while( pCursor && pCursor->iChild>=pCursor->nChildren ){
pCursor = pCursor->pParent;
}
return pCursor==NULL;
}
/* Internal helper. Used to detect if iPage would cause a loop. */
static int interiorCursorPageInUse(RecoverInteriorCursor *pCursor,
unsigned iPage){
/* Find any parent using the indicated page. */
while( pCursor && pCursor->pPage->pgno!=iPage ){
pCursor = pCursor->pParent;
}
return pCursor!=NULL;
}
/* Get the next page from the interior cursor at *ppCursor. Returns
* SQLITE_ROW with the page in *ppPage, or SQLITE_DONE if out of
* pages, or the error SQLite returned.
*
* If the tree is uneven, then when the cursor attempts to get a new
* interior page from the parent cursor, it may get a non-interior
* page. In that case, the new page is returned, and *ppCursor is
* updated to point to the parent cursor (this cursor is freed).
*/
/* TODO(shess): I've tried to avoid recursion in most of this code,
* but this case is more challenging because the recursive call is in
* the middle of operation. One option for converting it without
* adding memory management would be to retain the head pointer and
* use a helper to "back up" as needed. Another option would be to
* reverse the list during traversal.
*/
static int interiorCursorNextPage(RecoverInteriorCursor **ppCursor,
DbPage **ppPage){
RecoverInteriorCursor *pCursor = *ppCursor;
while( 1 ){
int rc;
const unsigned char *pPageHeader; /* Header of found page. */
/* Find a valid child page which isn't on the stack. */
while( pCursor->iChild<pCursor->nChildren ){
const unsigned iPage = interiorCursorChildPage(pCursor);
pCursor->iChild++;
if( interiorCursorPageInUse(pCursor, iPage) ){
fprintf(stderr, "Loop detected at %d\n", iPage);
}else{
int rc = sqlite3PagerAcquire(pCursor->pPage->pPager, iPage, ppPage, 0);
if( rc==SQLITE_OK ){
return SQLITE_ROW;
}
}
}
/* This page has no more children. Get next page from parent. */
if( !pCursor->pParent ){
return SQLITE_DONE;
}
rc = interiorCursorNextPage(&pCursor->pParent, ppPage);
if( rc!=SQLITE_ROW ){
return rc;
}
/* If a non-interior page is received, that either means that the
* tree is uneven, or that a child was re-used (say as an overflow
* page). Remove this cursor and let the caller handle the page.
*/
pPageHeader = PageHeader(*ppPage);
if( pPageHeader[kiPageTypeOffset]!=kTableInteriorPage ){
*ppCursor = pCursor->pParent;
pCursor->pParent = NULL;
interiorCursorDestroy(pCursor);
return SQLITE_ROW;
}
/* Iterate the new page. */
interiorCursorSetPage(pCursor, *ppPage);
*ppPage = NULL;
}
assert(NULL); /* NOTREACHED() */
return SQLITE_CORRUPT;
}
/* Large rows are spilled to overflow pages. The row's main page
* stores the overflow page number after the local payload, with a
* linked list forward from there as necessary. overflowMaybeCreate()
* and overflowGetSegment() provide an abstraction for accessing such
* data while centralizing the code.
*
* overflowDestroy - releases all resources associated with the structure.
* overflowMaybeCreate - create the overflow structure if it is needed
* to represent the given record. See function comment.
* overflowGetSegment - fetch a segment from the record, accounting
* for overflow pages. Segments which are not
* entirely contained with a page are constructed
* into a buffer which is returned. See function comment.
*/
typedef struct RecoverOverflow RecoverOverflow;
struct RecoverOverflow {
RecoverOverflow *pNextOverflow;
DbPage *pPage;
unsigned nPageSize;
};
static void overflowDestroy(RecoverOverflow *pOverflow){
while( pOverflow ){
RecoverOverflow *p = pOverflow;
pOverflow = p->pNextOverflow;
if( p->pPage ){
sqlite3PagerUnref(p->pPage);
p->pPage = NULL;
}
memset(p, 0xA5, sizeof(*p));
sqlite3_free(p);
}
}
/* Internal helper. Used to detect if iPage would cause a loop. */
static int overflowPageInUse(RecoverOverflow *pOverflow, unsigned iPage){
while( pOverflow && pOverflow->pPage->pgno!=iPage ){
pOverflow = pOverflow->pNextOverflow;
}
return pOverflow!=NULL;
}
/* Setup to access an nRecordBytes record beginning at iRecordOffset
* in pPage. If nRecordBytes can be satisfied entirely from pPage,
* then no overflow pages are needed an *pnLocalRecordBytes is set to
* nRecordBytes. Otherwise, *ppOverflow is set to the head of a list
* of overflow pages, and *pnLocalRecordBytes is set to the number of
* bytes local to pPage.
*
* overflowGetSegment() will do the right thing regardless of whether
* those values are set to be in-page or not.
*/
static int overflowMaybeCreate(DbPage *pPage, unsigned nPageSize,
unsigned iRecordOffset, unsigned nRecordBytes,
unsigned *pnLocalRecordBytes,
RecoverOverflow **ppOverflow){
unsigned nLocalRecordBytes; /* Record bytes in the leaf page. */
unsigned iNextPage; /* Next page number for record data. */
unsigned nBytes; /* Maximum record bytes as of current page. */
int rc;
RecoverOverflow *pFirstOverflow; /* First in linked list of pages. */
RecoverOverflow *pLastOverflow; /* End of linked list. */
/* Calculations from the "Table B-Tree Leaf Cell" part of section
* 1.5 of http://www.sqlite.org/fileformat2.html . maxLocal and
* minLocal to match naming in btree.c.
*/
const unsigned maxLocal = nPageSize - 35;
const unsigned minLocal = ((nPageSize-12)*32/255)-23; /* m */
/* Always fit anything smaller than maxLocal. */
if( nRecordBytes<=maxLocal ){
*pnLocalRecordBytes = nRecordBytes;
*ppOverflow = NULL;
return SQLITE_OK;
}
/* Calculate the remainder after accounting for minLocal on the leaf
* page and what packs evenly into overflow pages. If the remainder
* does not fit into maxLocal, then a partially-full overflow page
* will be required in any case, so store as little as possible locally.
*/
nLocalRecordBytes = minLocal+((nRecordBytes-minLocal)%(nPageSize-4));
if( maxLocal<nLocalRecordBytes ){
nLocalRecordBytes = minLocal;
}
/* Don't read off the end of the page. */
if( iRecordOffset+nLocalRecordBytes+4>nPageSize ){
return SQLITE_CORRUPT;
}
/* First overflow page number is after the local bytes. */
iNextPage =
decodeUnsigned32(PageData(pPage, iRecordOffset + nLocalRecordBytes));
nBytes = nLocalRecordBytes;
/* While there are more pages to read, and more bytes are needed,
* get another page.
*/
pFirstOverflow = pLastOverflow = NULL;
rc = SQLITE_OK;
while( iNextPage && nBytes<nRecordBytes ){
RecoverOverflow *pOverflow; /* New overflow page for the list. */
rc = sqlite3PagerAcquire(pPage->pPager, iNextPage, &pPage, 0);
if( rc!=SQLITE_OK ){
break;
}
pOverflow = sqlite3_malloc(sizeof(RecoverOverflow));
if( !pOverflow ){
sqlite3PagerUnref(pPage);
rc = SQLITE_NOMEM;
break;
}
memset(pOverflow, 0, sizeof(*pOverflow));
pOverflow->pPage = pPage;
pOverflow->nPageSize = nPageSize;
if( !pFirstOverflow ){
pFirstOverflow = pOverflow;
}else{
pLastOverflow->pNextOverflow = pOverflow;
}
pLastOverflow = pOverflow;
iNextPage = decodeUnsigned32(pPage->pData);
nBytes += nPageSize-4;
/* Avoid loops. */
if( overflowPageInUse(pFirstOverflow, iNextPage) ){
fprintf(stderr, "Overflow loop detected at %d\n", iNextPage);
rc = SQLITE_CORRUPT;
break;
}
}
/* If there were not enough pages, or too many, things are corrupt.
* Not having enough pages is an obvious problem, all the data
* cannot be read. Too many pages means that the contents of the
* row between the main page and the overflow page(s) is
* inconsistent (most likely one or more of the overflow pages does
* not really belong to this row).
*/
if( rc==SQLITE_OK && (nBytes<nRecordBytes || iNextPage) ){
rc = SQLITE_CORRUPT;
}
if( rc==SQLITE_OK ){
*ppOverflow = pFirstOverflow;
*pnLocalRecordBytes = nLocalRecordBytes;
}else if( pFirstOverflow ){
overflowDestroy(pFirstOverflow);
}
return rc;
}
/* Use in concert with overflowMaybeCreate() to efficiently read parts
* of a potentially-overflowing record. pPage and iRecordOffset are
* the values passed into overflowMaybeCreate(), nLocalRecordBytes and
* pOverflow are the values returned by that call.
*
* On SQLITE_OK, *ppBase points to nRequestBytes of data at
* iRequestOffset within the record. If the data exists contiguously
* in a page, a direct pointer is returned, otherwise a buffer from
* sqlite3_malloc() is returned with the data. *pbFree is set true if
* sqlite3_free() should be called on *ppBase.
*/
/* Operation of this function is subtle. At any time, pPage is the
* current page, with iRecordOffset and nLocalRecordBytes being record
* data within pPage, and pOverflow being the overflow page after
* pPage. This allows the code to handle both the initial leaf page
* and overflow pages consistently by adjusting the values
* appropriately.
*/
static int overflowGetSegment(DbPage *pPage, unsigned iRecordOffset,
unsigned nLocalRecordBytes,
RecoverOverflow *pOverflow,
unsigned iRequestOffset, unsigned nRequestBytes,
unsigned char **ppBase, int *pbFree){
unsigned nBase; /* Amount of data currently collected. */
unsigned char *pBase; /* Buffer to collect record data into. */
/* Skip to the page containing the start of the data. */
while( iRequestOffset>=nLocalRecordBytes && pOverflow ){
/* Factor out current page's contribution. */
iRequestOffset -= nLocalRecordBytes;
/* Move forward to the next page in the list. */
pPage = pOverflow->pPage;
iRecordOffset = 4;
nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
pOverflow = pOverflow->pNextOverflow;
}
/* If the requested data is entirely within this page, return a
* pointer into the page.
*/
if( iRequestOffset+nRequestBytes<=nLocalRecordBytes ){
/* TODO(shess): "assignment discards qualifiers from pointer target type"
* Having ppBase be const makes sense, but sqlite3_free() takes non-const.
*/
*ppBase = (unsigned char *)PageData(pPage, iRecordOffset + iRequestOffset);
*pbFree = 0;
return SQLITE_OK;
}
/* The data range would require additional pages. */
if( !pOverflow ){
/* Should never happen, the range is outside the nRecordBytes
* passed to overflowMaybeCreate().
*/
assert(NULL); /* NOTREACHED */
return SQLITE_ERROR;
}
/* Get a buffer to construct into. */
nBase = 0;
pBase = sqlite3_malloc(nRequestBytes);
if( !pBase ){
return SQLITE_NOMEM;
}
while( nBase<nRequestBytes ){
/* Copy over data present on this page. */
unsigned nCopyBytes = nRequestBytes - nBase;
if( nLocalRecordBytes-iRequestOffset<nCopyBytes ){
nCopyBytes = nLocalRecordBytes - iRequestOffset;
}
memcpy(pBase + nBase, PageData(pPage, iRecordOffset + iRequestOffset),
nCopyBytes);
nBase += nCopyBytes;
if( pOverflow ){
/* Copy from start of record data in future pages. */
iRequestOffset = 0;
/* Move forward to the next page in the list. Should match
* first while() loop.
*/
pPage = pOverflow->pPage;
iRecordOffset = 4;
nLocalRecordBytes = pOverflow->nPageSize - iRecordOffset;
pOverflow = pOverflow->pNextOverflow;
}else if( nBase<nRequestBytes ){
/* Ran out of overflow pages with data left to deliver. Not
* possible if the requested range fits within nRecordBytes
* passed to overflowMaybeCreate() when creating pOverflow.
*/
assert(NULL); /* NOTREACHED */
sqlite3_free(pBase);
return SQLITE_ERROR;
}
}
assert( nBase==nRequestBytes );
*ppBase = pBase;
*pbFree = 1;
return SQLITE_OK;
}
/* Primary structure for iterating the contents of a table.
*
* leafCursorDestroy - release all resources associated with the cursor.
* leafCursorCreate - create a cursor to iterate items from tree at
* the provided root page.
* leafCursorNextValidCell - get the cursor ready to access data from
* the next valid cell in the table.
* leafCursorCellRowid - get the current cell's rowid.
* leafCursorCellColumns - get current cell's column count.
* leafCursorCellColInfo - get type and data for a column in current cell.
*
* leafCursorNextValidCell skips cells which fail simple integrity
* checks, such as overlapping other cells, or being located at
* impossible offsets, or where header data doesn't correctly describe
* payload data. Returns SQLITE_ROW if a valid cell is found,
* SQLITE_DONE if all pages in the tree were exhausted.
*
* leafCursorCellColInfo() accounts for overflow pages in the style of
* overflowGetSegment().
*/
typedef struct RecoverLeafCursor RecoverLeafCursor;
struct RecoverLeafCursor {
RecoverInteriorCursor *pParent; /* Parent node to this node. */
DbPage *pPage; /* Reference to leaf page. */
unsigned nPageSize; /* Size of pPage. */
unsigned nCells; /* Number of cells in pPage. */
unsigned iCell; /* Current cell. */
/* Info parsed from data in iCell. */
i64 iRowid; /* rowid parsed. */
unsigned nRecordCols; /* how many items in the record. */
u64 iRecordOffset; /* offset to record data. */
/* TODO(shess): nRecordBytes and nRecordHeaderBytes are used in
* leafCursorCellColInfo() to prevent buffer overruns.
* leafCursorCellDecode() already verified that the cell is valid, so
* those checks should be redundant.
*/
u64 nRecordBytes; /* Size of record data. */
unsigned nLocalRecordBytes; /* Amount of record data in-page. */
unsigned nRecordHeaderBytes; /* Size of record header data. */
unsigned char *pRecordHeader; /* Pointer to record header data. */
int bFreeRecordHeader; /* True if record header requires free. */
RecoverOverflow *pOverflow; /* Cell overflow info, if needed. */
};
/* Internal helper shared between next-page and create-cursor. If
* pPage is a leaf page, it will be stored in the cursor and state
* initialized for reading cells.
*
* If pPage is an interior page, a new parent cursor is created and
* injected on the stack. This is necessary to handle trees with
* uneven depth, but also is used during initial setup.
*
* If pPage is not a table page at all, it is discarded.
*
* If SQLITE_OK is returned, the caller no longer owns pPage,
* otherwise the caller is responsible for discarding it.
*/
static int leafCursorLoadPage(RecoverLeafCursor *pCursor, DbPage *pPage){
const unsigned char *pPageHeader; /* Header of *pPage */
/* Release the current page. */
if( pCursor->pPage ){
sqlite3PagerUnref(pCursor->pPage);
pCursor->pPage = NULL;
pCursor->iCell = pCursor->nCells = 0;
}
/* If the page is an unexpected interior node, inject a new stack
* layer and try again from there.
*/
pPageHeader = PageHeader(pPage);
if( pPageHeader[kiPageTypeOffset]==kTableInteriorPage ){
RecoverInteriorCursor *pParent;
int rc = interiorCursorCreate(pCursor->pParent, pPage, pCursor->nPageSize,
&pParent);
if( rc!=SQLITE_OK ){
return rc;
}
pCursor->pParent = pParent;
return SQLITE_OK;
}
/* Not a leaf page, skip it. */
if( pPageHeader[kiPageTypeOffset]!=kTableLeafPage ){
sqlite3PagerUnref(pPage);
return SQLITE_OK;
}
/* Take ownership of the page and start decoding. */
pCursor->pPage = pPage;
pCursor->iCell = 0;
pCursor->nCells = decodeUnsigned16(pPageHeader + kiPageCellCountOffset);
return SQLITE_OK;
}
/* Get the next leaf-level page in the tree. Returns SQLITE_ROW when
* a leaf page is found, SQLITE_DONE when no more leaves exist, or any
* error which occurred.
*/
static int leafCursorNextPage(RecoverLeafCursor *pCursor){
if( !pCursor->pParent ){
return SQLITE_DONE;
}
/* Repeatedly load the parent's next child page until a leaf is found. */
do {
DbPage *pNextPage;
int rc = interiorCursorNextPage(&pCursor->pParent, &pNextPage);
if( rc!=SQLITE_ROW ){
assert( rc==SQLITE_DONE );
return rc;
}
rc = leafCursorLoadPage(pCursor, pNextPage);
if( rc!=SQLITE_OK ){
sqlite3PagerUnref(pNextPage);
return rc;
}
} while( !pCursor->pPage );
return SQLITE_ROW;
}
static void leafCursorDestroyCellData(RecoverLeafCursor *pCursor){
if( pCursor->bFreeRecordHeader ){
sqlite3_free(pCursor->pRecordHeader);
}
pCursor->bFreeRecordHeader = 0;
pCursor->pRecordHeader = NULL;
if( pCursor->pOverflow ){
overflowDestroy(pCursor->pOverflow);
pCursor->pOverflow = NULL;
}
}
static void leafCursorDestroy(RecoverLeafCursor *pCursor){
leafCursorDestroyCellData(pCursor);
if( pCursor->pParent ){
interiorCursorDestroy(pCursor->pParent);
pCursor->pParent = NULL;
}
if( pCursor->pPage ){
sqlite3PagerUnref(pCursor->pPage);
pCursor->pPage = NULL;
}
memset(pCursor, 0xA5, sizeof(*pCursor));
sqlite3_free(pCursor);
}
/* Create a cursor to iterate the rows from the leaf pages of a table
* rooted at iRootPage.
*/
/* TODO(shess): recoverOpen() calls this to setup the cursor, and I
* think that recoverFilter() may make a hard assumption that the
* cursor returned will turn up at least one valid cell.
*
* The cases I can think of which break this assumption are:
* - pPage is a valid leaf page with no valid cells.
* - pPage is a valid interior page with no valid leaves.
* - pPage is a valid interior page who's leaves contain no valid cells.
* - pPage is not a valid leaf or interior page.
*/
static int leafCursorCreate(Pager *pPager, unsigned nPageSize,
u32 iRootPage, RecoverLeafCursor **ppCursor){
DbPage *pPage; /* Reference to page at iRootPage. */
RecoverLeafCursor *pCursor; /* Leaf cursor being constructed. */
int rc;
/* Start out with the root page. */
rc = sqlite3PagerAcquire(pPager, iRootPage, &pPage, 0);
if( rc!=SQLITE_OK ){
return rc;
}
pCursor = sqlite3_malloc(sizeof(RecoverLeafCursor));
if( !pCursor ){
sqlite3PagerUnref(pPage);
return SQLITE_NOMEM;
}
memset(pCursor, 0, sizeof(*pCursor));
pCursor->nPageSize = nPageSize;
rc = leafCursorLoadPage(pCursor, pPage);
if( rc!=SQLITE_OK ){
sqlite3PagerUnref(pPage);
leafCursorDestroy(pCursor);
return rc;
}
/* pPage wasn't a leaf page, find the next leaf page. */
if( !pCursor->pPage ){
rc = leafCursorNextPage(pCursor);
if( rc!=SQLITE_DONE && rc!=SQLITE_ROW ){
leafCursorDestroy(pCursor);
return rc;
}
}
*ppCursor = pCursor;
return SQLITE_OK;
}
/* Useful for setting breakpoints. */
static int ValidateError(){
return SQLITE_ERROR;
}
/* Setup the cursor for reading the information from cell iCell. */
static int leafCursorCellDecode(RecoverLeafCursor *pCursor){
const unsigned char *pPageHeader; /* Header of current page. */
const unsigned char *pCellOffsets; /* Pointer to page's cell offsets. */
unsigned iCellOffset; /* Offset of current cell (iCell). */
const unsigned char *pCell; /* Pointer to data at iCellOffset. */
unsigned nCellMaxBytes; /* Maximum local size of iCell. */
unsigned iEndOffset; /* End of iCell's in-page data. */
u64 nRecordBytes; /* Expected size of cell, w/overflow. */
u64 iRowid; /* iCell's rowid (in table). */
unsigned nRead; /* Amount of cell read. */
unsigned nRecordHeaderRead; /* Header data read. */
u64 nRecordHeaderBytes; /* Header size expected. */
unsigned nRecordCols; /* Columns read from header. */
u64 nRecordColBytes; /* Bytes in payload for those columns. */
unsigned i;
int rc;
assert( pCursor->iCell<pCursor->nCells );
leafCursorDestroyCellData(pCursor);
/* Find the offset to the row. */
pPageHeader = PageHeader(pCursor->pPage);
pCellOffsets = pPageHeader + knPageLeafHeaderBytes;
iCellOffset = decodeUnsigned16(pCellOffsets + pCursor->iCell*2);
if( iCellOffset>=pCursor->nPageSize ){
return ValidateError();
}
pCell = PageData(pCursor->pPage, iCellOffset);
nCellMaxBytes = pCursor->nPageSize - iCellOffset;
/* B-tree leaf cells lead with varint record size, varint rowid and
* varint header size.
*/
/* TODO(shess): The smallest page size is 512 bytes, which has an m
* of 39. Three varints need at most 27 bytes to encode. I think.
*/
if( !checkVarints(pCell, nCellMaxBytes, 3) ){
return ValidateError();
}
nRead = getVarint(pCell, &nRecordBytes);
assert( iCellOffset+nRead<=pCursor->nPageSize );
pCursor->nRecordBytes = nRecordBytes;
nRead += getVarint(pCell + nRead, &iRowid);
assert( iCellOffset+nRead<=pCursor->nPageSize );
pCursor->iRowid = (i64)iRowid;
pCursor->iRecordOffset = iCellOffset + nRead;
/* Start overflow setup here because nLocalRecordBytes is needed to
* check cell overlap.
*/
rc = overflowMaybeCreate(pCursor->pPage, pCursor->nPageSize,
pCursor->iRecordOffset, pCursor->nRecordBytes,
&pCursor->nLocalRecordBytes,
&pCursor->pOverflow);
if( rc!=SQLITE_OK ){
return ValidateError();
}
/* Check that no other cell starts within this cell. */
iEndOffset = pCursor->iRecordOffset + pCursor->nLocalRecordBytes;
for( i=0; i<pCursor->nCells; ++i ){
const unsigned iOtherOffset = decodeUnsigned16(pCellOffsets + i*2);
if( iOtherOffset>iCellOffset && iOtherOffset<iEndOffset ){
return ValidateError();
}
}
nRecordHeaderRead = getVarint(pCell + nRead, &nRecordHeaderBytes);
assert( nRecordHeaderBytes<=nRecordBytes );
pCursor->nRecordHeaderBytes = nRecordHeaderBytes;
/* Large headers could overflow if pages are small. */
rc = overflowGetSegment(pCursor->pPage,
pCursor->iRecordOffset, pCursor->nLocalRecordBytes,
pCursor->pOverflow, 0, nRecordHeaderBytes,
&pCursor->pRecordHeader, &pCursor->bFreeRecordHeader);
if( rc!=SQLITE_OK ){
return ValidateError();
}
/* Tally up the column count and size of data. */
nRecordCols = 0;
nRecordColBytes = 0;
while( nRecordHeaderRead<nRecordHeaderBytes ){
u64 iSerialType; /* Type descriptor for current column. */
if( !checkVarint(pCursor->pRecordHeader + nRecordHeaderRead,
nRecordHeaderBytes - nRecordHeaderRead) ){
return ValidateError();
}
nRecordHeaderRead += getVarint(pCursor->pRecordHeader + nRecordHeaderRead,
&iSerialType);
if( iSerialType==10 || iSerialType==11 ){
return ValidateError();
}
nRecordColBytes += SerialTypeLength(iSerialType);
nRecordCols++;
}
pCursor->nRecordCols = nRecordCols;
/* Parsing the header used as many bytes as expected. */
if( nRecordHeaderRead!=nRecordHeaderBytes ){
return ValidateError();
}
/* Calculated record is size of expected record. */
if( nRecordHeaderBytes+nRecordColBytes!=nRecordBytes ){
return ValidateError();
}
return SQLITE_OK;
}
static i64 leafCursorCellRowid(RecoverLeafCursor *pCursor){
return pCursor->iRowid;
}
static unsigned leafCursorCellColumns(RecoverLeafCursor *pCursor){
return pCursor->nRecordCols;
}
/* Get the column info for the cell. Pass NULL for ppBase to prevent
* retrieving the data segment. If *pbFree is true, *ppBase must be
* freed by the caller using sqlite3_free().
*/
static int leafCursorCellColInfo(RecoverLeafCursor *pCursor,
unsigned iCol, u64 *piColType,
unsigned char **ppBase, int *pbFree){
const unsigned char *pRecordHeader; /* Current cell's header. */
u64 nRecordHeaderBytes; /* Bytes in pRecordHeader. */
unsigned nRead; /* Bytes read from header. */
u64 iColEndOffset; /* Offset to end of column in cell. */
unsigned nColsSkipped; /* Count columns as procesed. */
u64 iSerialType; /* Type descriptor for current column. */
/* Implicit NULL for columns past the end. This case happens when
* rows have not been updated since an ALTER TABLE added columns.
* It is more convenient to address here than in callers.
*/
if( iCol>=pCursor->nRecordCols ){
*piColType = 0;
if( ppBase ){
*ppBase = 0;
*pbFree = 0;
}
return SQLITE_OK;
}
/* Must be able to decode header size. */
pRecordHeader = pCursor->pRecordHeader;
if( !checkVarint(pRecordHeader, pCursor->nRecordHeaderBytes) ){
return SQLITE_CORRUPT;
}
/* Rather than caching the header size and how many bytes it took,
* decode it every time.
*/
nRead = getVarint(pRecordHeader, &nRecordHeaderBytes);
assert( nRecordHeaderBytes==pCursor->nRecordHeaderBytes );
/* Scan forward to the indicated column. Scans to _after_ column
* for later range checking.
*/
/* TODO(shess): This could get expensive for very wide tables. An
* array of iSerialType could be built in leafCursorCellDecode(), but
* the number of columns is dynamic per row, so it would add memory
* management complexity. Enough info to efficiently forward
* iterate could be kept, if all clients forward iterate
* (recoverColumn() may not).
*/
iColEndOffset = 0;
nColsSkipped = 0;
while( nColsSkipped<=iCol && nRead<nRecordHeaderBytes ){
if( !checkVarint(pRecordHeader + nRead, nRecordHeaderBytes - nRead) ){
return SQLITE_CORRUPT;
}
nRead += getVarint(pRecordHeader + nRead, &iSerialType);
iColEndOffset += SerialTypeLength(iSerialType);
nColsSkipped++;
}
/* Column's data extends past record's end. */
if( nRecordHeaderBytes+iColEndOffset>pCursor->nRecordBytes ){
return SQLITE_CORRUPT;
}
*piColType = iSerialType;
if( ppBase ){
const u32 nColBytes = SerialTypeLength(iSerialType);
/* Offset from start of record to beginning of column. */
const unsigned iColOffset = nRecordHeaderBytes+iColEndOffset-nColBytes;
return overflowGetSegment(pCursor->pPage, pCursor->iRecordOffset,
pCursor->nLocalRecordBytes, pCursor->pOverflow,
iColOffset, nColBytes, ppBase, pbFree);
}
return SQLITE_OK;
}
static int leafCursorNextValidCell(RecoverLeafCursor *pCursor){
while( 1 ){
int rc;
/* Move to the next cell. */
pCursor->iCell++;
/* No more cells, get the next leaf. */
if( pCursor->iCell>=pCursor->nCells ){
rc = leafCursorNextPage(pCursor);
if( rc!=SQLITE_ROW ){
return rc;
}
assert( pCursor->iCell==0 );
}
/* If the cell is valid, indicate that a row is available. */
rc = leafCursorCellDecode(pCursor);
if( rc==SQLITE_OK ){
return SQLITE_ROW;
}
/* Iterate until done or a valid row is found. */
/* TODO(shess): Remove debugging output. */
fprintf(stderr, "Skipping invalid cell\n");
}
return SQLITE_ERROR;
}
typedef struct Recover Recover;
struct Recover {
sqlite3_vtab base;
sqlite3 *db; /* Host database connection */
char *zDb; /* Database containing target table */
char *zTable; /* Target table */
unsigned nCols; /* Number of columns in target table */
unsigned char *pTypes; /* Types of columns in target table */
};
/* Internal helper for deleting the module. */
static void recoverRelease(Recover *pRecover){
sqlite3_free(pRecover->zDb);
sqlite3_free(pRecover->zTable);
sqlite3_free(pRecover->pTypes);
memset(pRecover, 0xA5, sizeof(*pRecover));
sqlite3_free(pRecover);
}
/* Helper function for initializing the module. Forward-declared so
* recoverCreate() and recoverConnect() can see it.
*/
static int recoverInit(
sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **
);
static int recoverCreate(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
FNENTRY();
return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
}
/* This should never be called. */
static int recoverConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
FNENTRY();
return recoverInit(db, pAux, argc, argv, ppVtab, pzErr);
}
/* No indices supported. */
static int recoverBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
FNENTRY();
return SQLITE_OK;
}
/* Logically, this should never be called. */
static int recoverDisconnect(sqlite3_vtab *pVtab){
FNENTRY();
recoverRelease((Recover*)pVtab);
return SQLITE_OK;
}
static int recoverDestroy(sqlite3_vtab *pVtab){
FNENTRY();
recoverRelease((Recover*)pVtab);
return SQLITE_OK;
}
typedef struct RecoverCursor RecoverCursor;
struct RecoverCursor {
sqlite3_vtab_cursor base;
RecoverLeafCursor *pLeafCursor;
int iEncoding;
int bEOF;
};
static int recoverOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
Recover *pRecover = (Recover*)pVTab;
u32 iRootPage; /* Root page of the backing table. */
int iEncoding; /* UTF encoding for backing database. */
unsigned nPageSize; /* Size of pages in backing database. */
Pager *pPager; /* Backing database pager. */
RecoverLeafCursor *pLeafCursor; /* Cursor to read table's leaf pages. */
RecoverCursor *pCursor; /* Cursor to read rows from leaves. */
int rc;
FNENTRY();
iRootPage = 0;
rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable,
&iRootPage);
if( rc!=SQLITE_OK ){
return rc;
}
iEncoding = 0;
rc = getEncoding(pRecover->db, pRecover->zDb, &iEncoding);
if( rc!=SQLITE_OK ){
return rc;
}
rc = GetPager(pRecover->db, pRecover->zDb, &pPager, &nPageSize);
if( rc!=SQLITE_OK ){
return rc;
}
rc = leafCursorCreate(pPager, nPageSize, iRootPage, &pLeafCursor);
if( rc!=SQLITE_OK ){
return rc;
}
pCursor = sqlite3_malloc(sizeof(RecoverCursor));
if( !pCursor ){
leafCursorDestroy(pLeafCursor);
return SQLITE_NOMEM;
}
memset(pCursor, 0, sizeof(*pCursor));
pCursor->base.pVtab = pVTab;
pCursor->pLeafCursor = pLeafCursor;
pCursor->iEncoding = iEncoding;
/* If no leaf pages were found, empty result set. */
/* TODO(shess): leafCursorNextValidCell() would return SQLITE_ROW or
* SQLITE_DONE to indicate whether there is further data to consider.
*/
pCursor->bEOF = (pLeafCursor->pPage==NULL);
*ppCursor = (sqlite3_vtab_cursor*)pCursor;
return SQLITE_OK;
}
static int recoverClose(sqlite3_vtab_cursor *cur){
RecoverCursor *pCursor = (RecoverCursor*)cur;
FNENTRY();
if( pCursor->pLeafCursor ){
leafCursorDestroy(pCursor->pLeafCursor);
pCursor->pLeafCursor = NULL;
}
memset(pCursor, 0xA5, sizeof(*pCursor));
sqlite3_free(cur);
return SQLITE_OK;
}
/* Helpful place to set a breakpoint. */
static int RecoverInvalidCell(){
return SQLITE_ERROR;
}
/* Returns SQLITE_OK if the cell has an appropriate number of columns
* with the appropriate types of data.
*/
static int recoverValidateLeafCell(Recover *pRecover, RecoverCursor *pCursor){
unsigned i;
/* If the row's storage has too many columns, skip it. */
if( leafCursorCellColumns(pCursor->pLeafCursor)>pRecover->nCols ){
return RecoverInvalidCell();
}
/* Skip rows with unexpected types. */
for( i=0; i<pRecover->nCols; ++i ){
u64 iType; /* Storage type of column i. */
int rc;
/* ROWID alias. */
if( (pRecover->pTypes[i]&MASK_ROWID) ){
continue;
}
rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iType, NULL, NULL);
assert( rc==SQLITE_OK );
if( rc!=SQLITE_OK || !SerialTypeIsCompatible(iType, pRecover->pTypes[i]) ){
return RecoverInvalidCell();
}
}
return SQLITE_OK;
}
static int recoverNext(sqlite3_vtab_cursor *pVtabCursor){
RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
Recover *pRecover = (Recover*)pCursor->base.pVtab;
int rc;
FNENTRY();
/* Scan forward to the next cell with valid storage, then check that
* the stored data matches the schema.
*/
while( (rc = leafCursorNextValidCell(pCursor->pLeafCursor))==SQLITE_ROW ){
if( recoverValidateLeafCell(pRecover, pCursor)==SQLITE_OK ){
return SQLITE_OK;
}
}
if( rc==SQLITE_DONE ){
pCursor->bEOF = 1;
return SQLITE_OK;
}
assert( rc!=SQLITE_OK );
return rc;
}
static int recoverFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
Recover *pRecover = (Recover*)pCursor->base.pVtab;
int rc;
FNENTRY();
/* There were no valid leaf pages in the table. */
if( pCursor->bEOF ){
return SQLITE_OK;
}
/* Load the first cell, and iterate forward if it's not valid. If no cells at
* all are valid, recoverNext() sets bEOF and returns appropriately.
*/
rc = leafCursorCellDecode(pCursor->pLeafCursor);
if( rc!=SQLITE_OK || recoverValidateLeafCell(pRecover, pCursor)!=SQLITE_OK ){
return recoverNext(pVtabCursor);
}
return SQLITE_OK;
}
static int recoverEof(sqlite3_vtab_cursor *pVtabCursor){
RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
FNENTRY();
return pCursor->bEOF;
}
static int recoverColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
RecoverCursor *pCursor = (RecoverCursor*)cur;
Recover *pRecover = (Recover*)pCursor->base.pVtab;
u64 iColType; /* Storage type of column i. */
unsigned char *pColData; /* Column i's data. */
int shouldFree; /* Non-zero if pColData should be freed. */
int rc;
FNENTRY();
if( i>=pRecover->nCols ){
return SQLITE_ERROR;
}
/* ROWID alias. */
if( (pRecover->pTypes[i]&MASK_ROWID) ){
sqlite3_result_int64(ctx, leafCursorCellRowid(pCursor->pLeafCursor));
return SQLITE_OK;
}
pColData = NULL;
shouldFree = 0;
rc = leafCursorCellColInfo(pCursor->pLeafCursor, i, &iColType,
&pColData, &shouldFree);
if( rc!=SQLITE_OK ){
return rc;
}
/* recoverValidateLeafCell() should guarantee that this will never
* occur.
*/
if( !SerialTypeIsCompatible(iColType, pRecover->pTypes[i]) ){
if( shouldFree ){
sqlite3_free(pColData);
}
return SQLITE_ERROR;
}
switch( iColType ){
case 0 : sqlite3_result_null(ctx); break;
case 1 : sqlite3_result_int64(ctx, decodeSigned(pColData, 1)); break;
case 2 : sqlite3_result_int64(ctx, decodeSigned(pColData, 2)); break;
case 3 : sqlite3_result_int64(ctx, decodeSigned(pColData, 3)); break;
case 4 : sqlite3_result_int64(ctx, decodeSigned(pColData, 4)); break;
case 5 : sqlite3_result_int64(ctx, decodeSigned(pColData, 6)); break;
case 6 : sqlite3_result_int64(ctx, decodeSigned(pColData, 8)); break;
case 7 : sqlite3_result_double(ctx, decodeFloat64(pColData)); break;
case 8 : sqlite3_result_int(ctx, 0); break;
case 9 : sqlite3_result_int(ctx, 1); break;
case 10 : assert( iColType!=10 ); break;
case 11 : assert( iColType!=11 ); break;
default : {
u32 l = SerialTypeLength(iColType);
/* If pColData was already allocated, arrange to pass ownership. */
sqlite3_destructor_type pFn = SQLITE_TRANSIENT;
if( shouldFree ){
pFn = sqlite3_free;
shouldFree = 0;
}
if( SerialTypeIsBlob(iColType) ){
sqlite3_result_blob(ctx, pColData, l, pFn);
}else{
if( pCursor->iEncoding==SQLITE_UTF16LE ){
sqlite3_result_text16le(ctx, (const void*)pColData, l, pFn);
}else if( pCursor->iEncoding==SQLITE_UTF16BE ){
sqlite3_result_text16be(ctx, (const void*)pColData, l, pFn);
}else{
sqlite3_result_text(ctx, (const char*)pColData, l, pFn);
}
}
} break;
}
if( shouldFree ){
sqlite3_free(pColData);
}
return SQLITE_OK;
}
static int recoverRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
RecoverCursor *pCursor = (RecoverCursor*)pVtabCursor;
FNENTRY();
*pRowid = leafCursorCellRowid(pCursor->pLeafCursor);
return SQLITE_OK;
}
static sqlite3_module recoverModule = {
0, /* iVersion */
recoverCreate, /* xCreate - create a table */
recoverConnect, /* xConnect - connect to an existing table */
recoverBestIndex, /* xBestIndex - Determine search strategy */
recoverDisconnect, /* xDisconnect - Disconnect from a table */
recoverDestroy, /* xDestroy - Drop a table */
recoverOpen, /* xOpen - open a cursor */
recoverClose, /* xClose - close a cursor */
recoverFilter, /* xFilter - configure scan constraints */
recoverNext, /* xNext - advance a cursor */
recoverEof, /* xEof */
recoverColumn, /* xColumn - read data */
recoverRowid, /* xRowid - read data */
0, /* xUpdate - write data */
0, /* xBegin - begin transaction */
0, /* xSync - sync transaction */
0, /* xCommit - commit transaction */
0, /* xRollback - rollback transaction */
0, /* xFindFunction - function overloading */
0, /* xRename - rename the table */
};
int recoverVtableInit(sqlite3 *db){
return sqlite3_create_module_v2(db, "recover", &recoverModule, NULL, 0);
}
/* This section of code is for parsing the create input and
* initializing the module.
*/
/* Find the next word in zText and place the endpoints in pzWord*.
* Returns true if the word is non-empty. "Word" is defined as
* ASCII alphanumeric plus '_' at this time.
*/
static int findWord(const char *zText,
const char **pzWordStart, const char **pzWordEnd){
int r;
while( ascii_isspace(*zText) ){
zText++;
}
*pzWordStart = zText;
while( ascii_isalnum(*zText) || *zText=='_' ){
zText++;
}
r = zText>*pzWordStart; /* In case pzWordStart==pzWordEnd */
*pzWordEnd = zText;
return r;
}
/* Return true if the next word in zText is zWord, also setting
* *pzContinue to the character after the word.
*/
static int expectWord(const char *zText, const char *zWord,
const char **pzContinue){
const char *zWordStart, *zWordEnd;
if( findWord(zText, &zWordStart, &zWordEnd) &&
ascii_strncasecmp(zWord, zWordStart, zWordEnd - zWordStart)==0 ){
*pzContinue = zWordEnd;
return 1;
}
return 0;
}
/* Parse the name and type information out of parameter. In case of
* success, *pzNameStart/End contain the name of the column,
* *pzTypeStart/End contain the top-level type, and *pTypeMask has the
* type mask to use for the column.
*/
static int findNameAndType(const char *parameter,
const char **pzNameStart, const char **pzNameEnd,
const char **pzTypeStart, const char **pzTypeEnd,
unsigned char *pTypeMask){
unsigned nNameLen; /* Length of found name. */
const char *zEnd; /* Current end of parsed column information. */
int bNotNull; /* Non-zero if NULL is not allowed for name. */
int bStrict; /* Non-zero if column requires exact type match. */
const char *zDummy; /* Dummy parameter, result unused. */
unsigned i;
/* strictMask is used for STRICT, strictMask|otherMask if STRICT is
* not supplied. zReplace provides an alternate type to expose to
* the caller.
*/
static struct {
const char *zName;
unsigned char strictMask;
unsigned char otherMask;
const char *zReplace;
} kTypeInfo[] = {
{ "ANY",
MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL,
0, "",
},
{ "ROWID", MASK_INTEGER | MASK_ROWID, 0, "INTEGER", },
{ "INTEGER", MASK_INTEGER | MASK_NULL, 0, NULL, },
{ "FLOAT", MASK_FLOAT | MASK_NULL, MASK_INTEGER, NULL, },
{ "NUMERIC", MASK_INTEGER | MASK_FLOAT | MASK_NULL, MASK_TEXT, NULL, },
{ "TEXT", MASK_TEXT | MASK_NULL, MASK_BLOB, NULL, },
{ "BLOB", MASK_BLOB | MASK_NULL, 0, NULL, },
};
if( !findWord(parameter, pzNameStart, pzNameEnd) ){
return SQLITE_MISUSE;
}
/* Manifest typing, accept any storage type. */
if( !findWord(*pzNameEnd, pzTypeStart, pzTypeEnd) ){
*pzTypeEnd = *pzTypeStart = "";
*pTypeMask = MASK_INTEGER | MASK_FLOAT | MASK_BLOB | MASK_TEXT | MASK_NULL;
return SQLITE_OK;
}
nNameLen = *pzTypeEnd - *pzTypeStart;
for( i=0; i<ArraySize(kTypeInfo); ++i ){
if( ascii_strncasecmp(kTypeInfo[i].zName, *pzTypeStart, nNameLen)==0 ){
break;
}
}
if( i==ArraySize(kTypeInfo) ){
return SQLITE_MISUSE;
}
zEnd = *pzTypeEnd;
bStrict = 0;
if( expectWord(zEnd, "STRICT", &zEnd) ){
/* TODO(shess): Ick. But I don't want another single-purpose
* flag, either.
*/
if( kTypeInfo[i].zReplace && !kTypeInfo[i].zReplace[0] ){
return SQLITE_MISUSE;
}
bStrict = 1;
}
bNotNull = 0;
if( expectWord(zEnd, "NOT", &zEnd) ){
if( expectWord(zEnd, "NULL", &zEnd) ){
bNotNull = 1;
}else{
/* Anything other than NULL after NOT is an error. */
return SQLITE_MISUSE;
}
}
/* Anything else is an error. */
if( findWord(zEnd, &zDummy, &zDummy) ){
return SQLITE_MISUSE;
}
*pTypeMask = kTypeInfo[i].strictMask;
if( !bStrict ){
*pTypeMask |= kTypeInfo[i].otherMask;
}
if( bNotNull ){
*pTypeMask &= ~MASK_NULL;
}
if( kTypeInfo[i].zReplace ){
*pzTypeStart = kTypeInfo[i].zReplace;
*pzTypeEnd = *pzTypeStart + strlen(*pzTypeStart);
}
return SQLITE_OK;
}
/* Parse the arguments, placing type masks in *pTypes and the exposed
* schema in *pzCreateSql (for sqlite3_declare_vtab).
*/
static int ParseColumnsAndGenerateCreate(unsigned nCols,
const char *const *pCols,
char **pzCreateSql,
unsigned char *pTypes,
char **pzErr){
unsigned i;
char *zCreateSql = sqlite3_mprintf("CREATE TABLE x(");
if( !zCreateSql ){
return SQLITE_NOMEM;
}
for( i=0; i<nCols; i++ ){
const char *zSep = (i < nCols - 1 ? ", " : ")");
const char *zNotNull = "";
const char *zNameStart, *zNameEnd;
const char *zTypeStart, *zTypeEnd;
int rc = findNameAndType(pCols[i],
&zNameStart, &zNameEnd,
&zTypeStart, &zTypeEnd,
&pTypes[i]);
if( rc!=SQLITE_OK ){
*pzErr = sqlite3_mprintf("unable to parse column %d", i);
sqlite3_free(zCreateSql);
return rc;
}
if( !(pTypes[i]&MASK_NULL) ){
zNotNull = " NOT NULL";
}
/* Add name and type to the create statement. */
zCreateSql = sqlite3_mprintf("%z%.*s %.*s%s%s",
zCreateSql,
zNameEnd - zNameStart, zNameStart,
zTypeEnd - zTypeStart, zTypeStart,
zNotNull, zSep);
if( !zCreateSql ){
return SQLITE_NOMEM;
}
}
*pzCreateSql = zCreateSql;
return SQLITE_OK;
}
/* Helper function for initializing the module. */
/* argv[0] module name
* argv[1] db name for virtual table
* argv[2] virtual table name
* argv[3] backing table name
* argv[4] columns
*/
/* TODO(shess): Since connect isn't supported, could inline into
* recoverCreate().
*/
/* TODO(shess): Explore cases where it would make sense to set *pzErr. */
static int recoverInit(
sqlite3 *db, /* Database connection */
void *pAux, /* unused */
int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
sqlite3_vtab **ppVtab, /* OUT: New virtual table */
char **pzErr /* OUT: Error message, if any */
){
const unsigned kTypeCol = 4; /* First argument with column type info. */
Recover *pRecover; /* Virtual table structure being created. */
char *zDot; /* Any dot found in "db.table" backing. */
u32 iRootPage; /* Root page of backing table. */
char *zCreateSql; /* Schema of created virtual table. */
int rc;
/* Require to be in the temp database. */
if( ascii_strcasecmp(argv[1], "temp")!=0 ){
*pzErr = sqlite3_mprintf("recover table must be in temp database");
return SQLITE_MISUSE;
}
/* Need the backing table and at least one column. */
if( argc<=kTypeCol ){
*pzErr = sqlite3_mprintf("no columns specified");
return SQLITE_MISUSE;
}
pRecover = sqlite3_malloc(sizeof(Recover));
if( !pRecover ){
return SQLITE_NOMEM;
}
memset(pRecover, 0, sizeof(*pRecover));
pRecover->base.pModule = &recoverModule;
pRecover->db = db;
/* Parse out db.table, assuming main if no dot. */
zDot = strchr(argv[3], '.');
if( !zDot ){
pRecover->zDb = sqlite3_strdup(db->aDb[0].zName);
pRecover->zTable = sqlite3_strdup(argv[3]);
}else if( zDot>argv[3] && zDot[1]!='\0' ){
pRecover->zDb = sqlite3_strndup(argv[3], zDot - argv[3]);
pRecover->zTable = sqlite3_strdup(zDot + 1);
}else{
/* ".table" or "db." not allowed. */
*pzErr = sqlite3_mprintf("ill-formed table specifier");
recoverRelease(pRecover);
return SQLITE_ERROR;
}
pRecover->nCols = argc - kTypeCol;
pRecover->pTypes = sqlite3_malloc(pRecover->nCols);
if( !pRecover->zDb || !pRecover->zTable || !pRecover->pTypes ){
recoverRelease(pRecover);
return SQLITE_NOMEM;
}
/* Require the backing table to exist. */
/* TODO(shess): Be more pedantic about the form of the descriptor
* string. This already fails for poorly-formed strings, simply
* because there won't be a root page, but it would make more sense
* to be explicit.
*/
rc = getRootPage(pRecover->db, pRecover->zDb, pRecover->zTable, &iRootPage);
if( rc!=SQLITE_OK ){
*pzErr = sqlite3_mprintf("unable to find backing table");
recoverRelease(pRecover);
return rc;
}
/* Parse the column definitions. */
rc = ParseColumnsAndGenerateCreate(pRecover->nCols, argv + kTypeCol,
&zCreateSql, pRecover->pTypes, pzErr);
if( rc!=SQLITE_OK ){
recoverRelease(pRecover);
return rc;
}
rc = sqlite3_declare_vtab(db, zCreateSql);
sqlite3_free(zCreateSql);
if( rc!=SQLITE_OK ){
recoverRelease(pRecover);
return rc;
}
*ppVtab = (sqlite3_vtab *)pRecover;
return SQLITE_OK;
}