blob: 9cf4634f7d5da1cb3a1204c1afd17c3e04c775b6 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/tile_priority.h"
#include "base/values.h"
#include "cc/base/math_util.h"
namespace {
// TODO(qinmin): modify ui/range/Range.h to support template so that we
// don't need to define this.
struct Range {
Range(float start, float end) : start_(start), end_(end) {}
bool IsEmpty();
float start_;
float end_;
};
bool Range::IsEmpty() {
return start_ >= end_;
}
inline void IntersectNegativeHalfplane(Range* out,
float previous,
float current,
float target,
float time_delta) {
float time_per_dist = time_delta / (current - previous);
float t = (target - current) * time_per_dist;
if (time_per_dist > 0.0f)
out->start_ = std::max(out->start_, t);
else
out->end_ = std::min(out->end_, t);
}
inline void IntersectPositiveHalfplane(Range* out,
float previous,
float current,
float target,
float time_delta) {
float time_per_dist = time_delta / (current - previous);
float t = (target - current) * time_per_dist;
if (time_per_dist < 0.0f)
out->start_ = std::max(out->start_, t);
else
out->end_ = std::min(out->end_, t);
}
} // namespace
namespace cc {
scoped_ptr<base::Value> WhichTreeAsValue(WhichTree tree) {
switch (tree) {
case ACTIVE_TREE:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ACTIVE_TREE"));
case PENDING_TREE:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"PENDING_TREE"));
default:
DCHECK(false) << "Unrecognized WhichTree value " << tree;
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown WhichTree value>"));
}
}
scoped_ptr<base::Value> TileResolutionAsValue(
TileResolution resolution) {
switch (resolution) {
case LOW_RESOLUTION:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"LOW_RESOLUTION"));
case HIGH_RESOLUTION:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"HIGH_RESOLUTION"));
case NON_IDEAL_RESOLUTION:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"NON_IDEAL_RESOLUTION"));
}
DCHECK(false) << "Unrecognized TileResolution value " << resolution;
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown TileResolution value>"));
}
scoped_ptr<base::Value> TilePriority::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->Set("resolution", TileResolutionAsValue(resolution).release());
state->Set("time_to_visible_in_seconds",
MathUtil::AsValueSafely(time_to_visible_in_seconds).release());
state->Set("distance_to_visible_in_pixels",
MathUtil::AsValueSafely(distance_to_visible_in_pixels).release());
return state.PassAs<base::Value>();
}
float TilePriority::TimeForBoundsToIntersect(const gfx::RectF& previous_bounds,
const gfx::RectF& current_bounds,
float time_delta,
const gfx::RectF& target_bounds) {
// Perform an intersection test explicitly between current and target.
if (current_bounds.x() < target_bounds.right() &&
current_bounds.y() < target_bounds.bottom() &&
target_bounds.x() < current_bounds.right() &&
target_bounds.y() < current_bounds.bottom())
return 0.0f;
const float kMaxTimeToVisibleInSeconds =
std::numeric_limits<float>::infinity();
if (time_delta == 0.0f)
return kMaxTimeToVisibleInSeconds;
// As we are trying to solve the case of both scaling and scrolling, using
// a single coordinate with velocity is not enough. The logic here is to
// calculate the velocity for each edge. Then we calculate the time range that
// each edge will stay on the same side of the target bounds. If there is an
// overlap between these time ranges, the bounds must have intersect with
// each other during that period of time.
Range range(0.0f, kMaxTimeToVisibleInSeconds);
IntersectPositiveHalfplane(
&range, previous_bounds.x(), current_bounds.x(),
target_bounds.right(), time_delta);
IntersectNegativeHalfplane(
&range, previous_bounds.right(), current_bounds.right(),
target_bounds.x(), time_delta);
IntersectPositiveHalfplane(
&range, previous_bounds.y(), current_bounds.y(),
target_bounds.bottom(), time_delta);
IntersectNegativeHalfplane(
&range, previous_bounds.bottom(), current_bounds.bottom(),
target_bounds.y(), time_delta);
return range.IsEmpty() ? kMaxTimeToVisibleInSeconds : range.start_;
}
scoped_ptr<base::Value> TileMemoryLimitPolicyAsValue(
TileMemoryLimitPolicy policy) {
switch (policy) {
case ALLOW_NOTHING:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_NOTHING"));
case ALLOW_ABSOLUTE_MINIMUM:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_ABSOLUTE_MINIMUM"));
case ALLOW_PREPAINT_ONLY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_PREPAINT_ONLY"));
case ALLOW_ANYTHING:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"ALLOW_ANYTHING"));
default:
DCHECK(false) << "Unrecognized policy value";
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown>"));
}
}
scoped_ptr<base::Value> TreePriorityAsValue(TreePriority prio) {
switch (prio) {
case SAME_PRIORITY_FOR_BOTH_TREES:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"SAME_PRIORITY_FOR_BOTH_TREES"));
case SMOOTHNESS_TAKES_PRIORITY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"SMOOTHNESS_TAKES_PRIORITY"));
case NEW_CONTENT_TAKES_PRIORITY:
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"NEW_CONTENT_TAKES_PRIORITY"));
}
DCHECK(false) << "Unrecognized priority value " << prio;
return scoped_ptr<base::Value>(base::Value::CreateStringValue(
"<unknown>"));
}
scoped_ptr<base::Value> GlobalStateThatImpactsTilePriority::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->Set("memory_limit_policy",
TileMemoryLimitPolicyAsValue(memory_limit_policy).release());
state->SetInteger("memory_limit_in_bytes", memory_limit_in_bytes);
state->SetInteger("unused_memory_limit_in_bytes",
unused_memory_limit_in_bytes);
state->SetInteger("num_resources_limit", num_resources_limit);
state->Set("tree_priority", TreePriorityAsValue(tree_priority).release());
return state.PassAs<base::Value>();
}
} // namespace cc