blob: 7d60dcafc6b6b72839790e8b4f13e976c9f09730 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/picture_pile_base.h"
#include <algorithm>
#include <set>
#include <vector>
#include "base/logging.h"
#include "base/values.h"
#include "cc/base/math_util.h"
#include "cc/debug/traced_value.h"
#include "third_party/skia/include/core/SkColor.h"
#include "ui/gfx/rect_conversions.h"
namespace {
// Dimensions of the tiles in this picture pile as well as the dimensions of
// the base picture in each tile.
const int kBasePictureSize = 512;
const int kTileGridBorderPixels = 1;
#ifdef NDEBUG
const bool kDefaultClearCanvasSetting = false;
#else
const bool kDefaultClearCanvasSetting = true;
#endif
// Invalidation frequency settings. kInvalidationFrequencyThreshold is a value
// between 0 and 1 meaning invalidation frequency between 0% and 100% that
// indicates when to stop invalidating offscreen regions.
// kFrequentInvalidationDistanceThreshold defines what it means to be
// "offscreen" in terms of distance to visible in css pixels.
const float kInvalidationFrequencyThreshold = 0.75f;
const int kFrequentInvalidationDistanceThreshold = 512;
} // namespace
namespace cc {
PicturePileBase::PicturePileBase()
: min_contents_scale_(0),
background_color_(SkColorSetARGBInline(0, 0, 0, 0)),
slow_down_raster_scale_factor_for_debug_(0),
contents_opaque_(false),
show_debug_picture_borders_(false),
clear_canvas_with_debug_color_(kDefaultClearCanvasSetting),
num_raster_threads_(0) {
tiling_.SetMaxTextureSize(gfx::Size(kBasePictureSize, kBasePictureSize));
tile_grid_info_.fTileInterval.setEmpty();
tile_grid_info_.fMargin.setEmpty();
tile_grid_info_.fOffset.setZero();
}
PicturePileBase::PicturePileBase(const PicturePileBase* other)
: picture_map_(other->picture_map_),
tiling_(other->tiling_),
recorded_region_(other->recorded_region_),
min_contents_scale_(other->min_contents_scale_),
tile_grid_info_(other->tile_grid_info_),
background_color_(other->background_color_),
slow_down_raster_scale_factor_for_debug_(
other->slow_down_raster_scale_factor_for_debug_),
contents_opaque_(other->contents_opaque_),
show_debug_picture_borders_(other->show_debug_picture_borders_),
clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
num_raster_threads_(other->num_raster_threads_) {
}
PicturePileBase::PicturePileBase(
const PicturePileBase* other, unsigned thread_index)
: tiling_(other->tiling_),
recorded_region_(other->recorded_region_),
min_contents_scale_(other->min_contents_scale_),
tile_grid_info_(other->tile_grid_info_),
background_color_(other->background_color_),
slow_down_raster_scale_factor_for_debug_(
other->slow_down_raster_scale_factor_for_debug_),
contents_opaque_(other->contents_opaque_),
show_debug_picture_borders_(other->show_debug_picture_borders_),
clear_canvas_with_debug_color_(other->clear_canvas_with_debug_color_),
num_raster_threads_(other->num_raster_threads_) {
for (PictureMap::const_iterator it = other->picture_map_.begin();
it != other->picture_map_.end();
++it) {
picture_map_[it->first] = it->second.CloneForThread(thread_index);
}
}
PicturePileBase::~PicturePileBase() {
}
void PicturePileBase::Resize(gfx::Size new_size) {
if (size() == new_size)
return;
gfx::Size old_size = size();
tiling_.SetTotalSize(new_size);
// Find all tiles that contain any pixels outside the new size.
std::vector<PictureMapKey> to_erase;
int min_toss_x = tiling_.FirstBorderTileXIndexFromSrcCoord(
std::min(old_size.width(), new_size.width()));
int min_toss_y = tiling_.FirstBorderTileYIndexFromSrcCoord(
std::min(old_size.height(), new_size.height()));
for (PictureMap::const_iterator it = picture_map_.begin();
it != picture_map_.end();
++it) {
const PictureMapKey& key = it->first;
if (key.first < min_toss_x && key.second < min_toss_y)
continue;
to_erase.push_back(key);
}
for (size_t i = 0; i < to_erase.size(); ++i)
picture_map_.erase(to_erase[i]);
}
void PicturePileBase::SetMinContentsScale(float min_contents_scale) {
DCHECK(min_contents_scale);
if (min_contents_scale_ == min_contents_scale)
return;
// Picture contents are played back scaled. When the final contents scale is
// less than 1 (i.e. low res), then multiple recorded pixels will be used
// to raster one final pixel. To avoid splitting a final pixel across
// pictures (which would result in incorrect rasterization due to blending), a
// buffer margin is added so that any picture can be snapped to integral
// final pixels.
//
// For example, if a 1/4 contents scale is used, then that would be 3 buffer
// pixels, since that's the minimum number of pixels to add so that resulting
// content can be snapped to a four pixel aligned grid.
int buffer_pixels = static_cast<int>(ceil(1 / min_contents_scale) - 1);
buffer_pixels = std::max(0, buffer_pixels);
SetBufferPixels(buffer_pixels);
min_contents_scale_ = min_contents_scale;
}
// static
void PicturePileBase::ComputeTileGridInfo(
gfx::Size tile_grid_size,
SkTileGridPicture::TileGridInfo* info) {
DCHECK(info);
info->fTileInterval.set(tile_grid_size.width() - 2 * kTileGridBorderPixels,
tile_grid_size.height() - 2 * kTileGridBorderPixels);
DCHECK_GT(info->fTileInterval.width(), 0);
DCHECK_GT(info->fTileInterval.height(), 0);
info->fMargin.set(kTileGridBorderPixels, kTileGridBorderPixels);
// Offset the tile grid coordinate space to take into account the fact
// that the top-most and left-most tiles do not have top and left borders
// respectively.
info->fOffset.set(-kTileGridBorderPixels, -kTileGridBorderPixels);
}
void PicturePileBase::SetTileGridSize(gfx::Size tile_grid_size) {
ComputeTileGridInfo(tile_grid_size, &tile_grid_info_);
}
void PicturePileBase::SetBufferPixels(int new_buffer_pixels) {
if (new_buffer_pixels == buffer_pixels())
return;
Clear();
tiling_.SetBorderTexels(new_buffer_pixels);
}
void PicturePileBase::Clear() {
picture_map_.clear();
}
void PicturePileBase::UpdateRecordedRegion() {
recorded_region_.Clear();
for (PictureMap::const_iterator it = picture_map_.begin();
it != picture_map_.end();
++it) {
if (it->second.GetPicture()) {
const PictureMapKey& key = it->first;
recorded_region_.Union(tile_bounds(key.first, key.second));
}
}
}
bool PicturePileBase::HasRecordingAt(int x, int y) {
PictureMap::const_iterator found = picture_map_.find(PictureMapKey(x, y));
if (found == picture_map_.end())
return false;
return !!found->second.GetPicture();
}
bool PicturePileBase::CanRaster(float contents_scale, gfx::Rect content_rect) {
if (tiling_.total_size().IsEmpty())
return false;
gfx::Rect layer_rect = gfx::ScaleToEnclosingRect(
content_rect, 1.f / contents_scale);
layer_rect.Intersect(gfx::Rect(tiling_.total_size()));
return recorded_region_.Contains(layer_rect);
}
gfx::Rect PicturePileBase::PaddedRect(const PictureMapKey& key) {
gfx::Rect tile = tiling_.TileBounds(key.first, key.second);
return PadRect(tile);
}
gfx::Rect PicturePileBase::PadRect(gfx::Rect rect) {
gfx::Rect padded_rect = rect;
padded_rect.Inset(
-buffer_pixels(), -buffer_pixels(), -buffer_pixels(), -buffer_pixels());
return padded_rect;
}
scoped_ptr<base::Value> PicturePileBase::AsValue() const {
scoped_ptr<base::ListValue> pictures(new base::ListValue());
gfx::Rect layer_rect(tiling_.total_size());
std::set<void*> appended_pictures;
for (TilingData::Iterator tile_iter(&tiling_, layer_rect);
tile_iter; ++tile_iter) {
PictureMap::const_iterator map_iter = picture_map_.find(tile_iter.index());
if (map_iter == picture_map_.end())
continue;
Picture* picture = map_iter->second.GetPicture();
if (picture && (appended_pictures.count(picture) == 0)) {
appended_pictures.insert(picture);
pictures->Append(TracedValue::CreateIDRef(picture).release());
}
}
return pictures.PassAs<base::Value>();
}
PicturePileBase::PictureInfo::PictureInfo() : last_frame_number_(0) {}
PicturePileBase::PictureInfo::~PictureInfo() {}
void PicturePileBase::PictureInfo::AdvanceInvalidationHistory(
int frame_number) {
DCHECK_GE(frame_number, last_frame_number_);
if (frame_number == last_frame_number_)
return;
invalidation_history_ <<= (frame_number - last_frame_number_);
last_frame_number_ = frame_number;
}
bool PicturePileBase::PictureInfo::Invalidate(int frame_number) {
AdvanceInvalidationHistory(frame_number);
invalidation_history_.set(0);
bool did_invalidate = !!picture_;
picture_ = NULL;
return did_invalidate;
}
bool PicturePileBase::PictureInfo::NeedsRecording(int frame_number,
int distance_to_visible) {
AdvanceInvalidationHistory(frame_number);
// We only need recording if we don't have a picture. Furthermore, we only
// need a recording if we're within frequent invalidation distance threshold
// or the invalidation is not frequent enough (below invalidation frequency
// threshold).
return !picture_ &&
((distance_to_visible <= kFrequentInvalidationDistanceThreshold) ||
(GetInvalidationFrequency() < kInvalidationFrequencyThreshold));
}
void PicturePileBase::PictureInfo::SetPicture(scoped_refptr<Picture> picture) {
picture_ = picture;
}
Picture* PicturePileBase::PictureInfo::GetPicture() const {
return picture_.get();
}
PicturePileBase::PictureInfo PicturePileBase::PictureInfo::CloneForThread(
int thread_index) const {
PictureInfo info = *this;
if (picture_.get())
info.picture_ = picture_->GetCloneForDrawingOnThread(thread_index);
return info;
}
float PicturePileBase::PictureInfo::GetInvalidationFrequency() const {
return invalidation_history_.count() /
static_cast<float>(INVALIDATION_FRAMES_TRACKED);
}
} // namespace cc