blob: 915274a13d371934a408e189f4d5f2c09c8008ba [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/basictypes.h"
#include "base/logging.h"
#include "net/quic/congestion_control/cubic.h"
#include "net/quic/quic_connection_stats.h"
#include "net/quic/test_tools/mock_clock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace test {
const float kBeta = 0.7f; // Default Cubic backoff factor.
const uint32 kNumConnections = 2;
const float kNConnectionBeta = (kNumConnections - 1 + kBeta) / kNumConnections;
const float kNConnectionAlpha = 3 * kNumConnections * kNumConnections *
(1 - kNConnectionBeta) / (1 + kNConnectionBeta);
class CubicTest : public ::testing::Test {
protected:
CubicTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
hundred_ms_(QuicTime::Delta::FromMilliseconds(100)),
cubic_(&clock_, &stats_) {
}
const QuicTime::Delta one_ms_;
const QuicTime::Delta hundred_ms_;
MockClock clock_;
QuicConnectionStats stats_;
Cubic cubic_;
};
TEST_F(CubicTest, AboveOrigin) {
// Convex growth.
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 10;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min));
current_cwnd = expected_cwnd;
// Normal TCP phase.
for (int i = 0; i < 48; ++i) {
for (uint32 n = 1; n < current_cwnd / kNConnectionAlpha; ++n) {
// Call once per ACK.
EXPECT_NEAR(current_cwnd,
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min), 1);
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
EXPECT_NEAR(expected_cwnd, current_cwnd, 1);
expected_cwnd++;
}
// Cubic phase.
for (int i = 0; i < 52; ++i) {
for (uint32 n = 1; n < current_cwnd; ++n) {
// Call once per ACK.
EXPECT_EQ(current_cwnd,
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min));
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
}
// Total time elapsed so far; add min_rtt (0.1s) here as well.
float elapsed_time_s = 10.0f + 0.1f;
// |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4.
expected_cwnd = 11 + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410)
/ 1024;
EXPECT_EQ(expected_cwnd, current_cwnd);
}
TEST_F(CubicTest, CwndIncreaseStatsDuringConvexRegion) {
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 10;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize controller state.
clock_.AdvanceTime(one_ms_);
expected_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
current_cwnd = expected_cwnd;
// Testing Reno mode increase.
for (int i = 0; i < 48; ++i) {
for (uint32 n = 1; n < current_cwnd / kNConnectionAlpha; ++n) {
// Call once per ACK, causing cwnd growth in Reno mode.
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
}
// Advance current time so that cwnd update is allowed to happen by Cubic.
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
EXPECT_NEAR(expected_cwnd - 10, stats_.cwnd_increase_congestion_avoidance,
1);
EXPECT_NEAR(1u, stats_.cwnd_increase_cubic_mode, 1);
expected_cwnd++;
}
uint32 old_cwnd = current_cwnd;
stats_.cwnd_increase_cubic_mode = 0;
stats_.cwnd_increase_congestion_avoidance = 0;
// Testing Cubic mode increase.
for (int i = 0; i < 52; ++i) {
for (uint32 n = 1; n < current_cwnd; ++n) {
// Call once per ACK.
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
}
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
}
// Total time elapsed so far; add min_rtt (0.1s) here as well.
float elapsed_time_s = 10.0f + 0.1f;
// |expected_cwnd| is initial value of cwnd + K * t^3, where K = 0.4.
expected_cwnd = 11 + (elapsed_time_s * elapsed_time_s * elapsed_time_s * 410)
/ 1024;
EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_cubic_mode);
EXPECT_EQ(expected_cwnd - old_cwnd,
stats_.cwnd_increase_congestion_avoidance);
}
TEST_F(CubicTest, LossEvents) {
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 422;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min));
expected_cwnd = static_cast<int>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
expected_cwnd = static_cast<int>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
}
TEST_F(CubicTest, BelowOrigin) {
// Concave growth.
const QuicTime::Delta rtt_min = hundred_ms_;
uint32 current_cwnd = 422;
uint32 expected_cwnd = current_cwnd + 1;
// Initialize the state.
clock_.AdvanceTime(one_ms_);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min));
expected_cwnd = static_cast<int>(current_cwnd * kNConnectionBeta);
EXPECT_EQ(expected_cwnd,
cubic_.CongestionWindowAfterPacketLoss(current_cwnd));
current_cwnd = expected_cwnd;
// First update after loss to initialize the epoch.
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
uint32 old_cwnd = current_cwnd;
// Cubic phase.
stats_.cwnd_increase_cubic_mode = 0;
stats_.cwnd_increase_congestion_avoidance = 0;
for (int i = 0; i < 40 ; ++i) {
clock_.AdvanceTime(hundred_ms_);
current_cwnd = cubic_.CongestionWindowAfterAck(current_cwnd, rtt_min);
}
expected_cwnd = 422;
EXPECT_EQ(expected_cwnd, current_cwnd);
EXPECT_EQ(expected_cwnd - old_cwnd, stats_.cwnd_increase_cubic_mode);
EXPECT_EQ(expected_cwnd - old_cwnd,
stats_.cwnd_increase_congestion_avoidance);
}
} // namespace test
} // namespace net