blob: e928a4a678a7225ebede5fdc70ad40e228829d6a [file] [log] [blame]
/* Copyright 2014 The Chromium Authors. All rights reserved.
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "ppapi/c/pp_resource.h"
#include "ppapi/c/ppb_core.h"
#include "ppapi/c/ppb_fullscreen.h"
#include "ppapi/c/ppb_graphics_2d.h"
#include "ppapi/c/ppb_image_data.h"
#include "ppapi/c/ppb_input_event.h"
#include "ppapi/c/ppb_instance.h"
#include "ppapi/c/ppb_view.h"
#include "ppapi_simple/ps_event.h"
#include "ppapi_simple/ps_main.h"
PPB_Core* g_pCore;
PPB_Fullscreen* g_pFullscreen;
PPB_Graphics2D* g_pGraphics2D;
PPB_ImageData* g_pImageData;
PPB_Instance* g_pInstance;
PPB_View* g_pView;
PPB_InputEvent* g_pInputEvent;
PPB_KeyboardInputEvent* g_pKeyboardInput;
PPB_MouseInputEvent* g_pMouseInput;
PPB_TouchInputEvent* g_pTouchInput;
struct {
PP_Resource ctx;
struct PP_Size size;
int bound;
uint8_t* cell_in;
uint8_t* cell_out;
int32_t cell_stride;
} g_Context;
const unsigned int kInitialRandSeed = 0xC0DE533D;
const int kCellAlignment = 0x10;
#define INLINE inline __attribute__((always_inline))
/* BGRA helper macro, for constructing a pixel for a BGRA buffer. */
#define MakeBGRA(b, g, r, a) \
(((a) << 24) | ((r) << 16) | ((g) << 8) | (b))
/* 128 bit vector types */
typedef uint8_t u8x16_t __attribute__ ((vector_size (16)));
/* Helper function to broadcast x across 16 element vector. */
INLINE u8x16_t broadcast(uint8_t x) {
u8x16_t r = {x, x, x, x, x, x, x, x, x, x, x, x, x, x, x, x};
return r;
}
/*
* Convert a count value into a live (green) or dead color value.
*/
const uint32_t kNeighborColors[] = {
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0xFF, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
MakeBGRA(0x00, 0x00, 0x00, 0xFF),
};
/*
* These represent the new health value of a cell based on its neighboring
* values. The health is binary: either alive or dead.
*/
const uint8_t kIsAlive[] = {
0, 0, 0, 0, 0, 1, 1, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0
};
void UpdateContext(uint32_t width, uint32_t height) {
int stride = (width + kCellAlignment - 1) & ~kCellAlignment;
if (width != g_Context.size.width || height != g_Context.size.height) {
size_t size = stride * height;
size_t index;
free(g_Context.cell_in);
free(g_Context.cell_out);
/* Create a new context */
void* in_buffer = NULL;
void* out_buffer = NULL;
/* alloc buffers aligned on 16 bytes */
posix_memalign(&in_buffer, kCellAlignment, size);
posix_memalign(&out_buffer, kCellAlignment, size);
g_Context.cell_in = (uint8_t*) in_buffer;
g_Context.cell_out = (uint8_t*) out_buffer;
memset(g_Context.cell_out, 0, size);
for (index = 0; index < size; index++) {
g_Context.cell_in[index] = rand() & 1;
}
}
/* Recreate the graphics context on a view change */
g_pCore->ReleaseResource(g_Context.ctx);
g_Context.size.width = width;
g_Context.size.height = height;
g_Context.cell_stride = stride;
g_Context.ctx =
g_pGraphics2D->Create(PSGetInstanceId(), &g_Context.size, PP_TRUE);
g_Context.bound =
g_pInstance->BindGraphics(PSGetInstanceId(), g_Context.ctx);
}
void DrawCell(int32_t x, int32_t y) {
int32_t width = g_Context.size.width;
int32_t height = g_Context.size.height;
int32_t stride = g_Context.cell_stride;
if (!g_Context.cell_in) return;
if (x > 0 && x < width - 1 && y > 0 && y < height - 1) {
g_Context.cell_in[x - 1 + y * stride] = 1;
g_Context.cell_in[x + 1 + y * stride] = 1;
g_Context.cell_in[x + (y - 1) * stride] = 1;
g_Context.cell_in[x + (y + 1) * stride] = 1;
}
}
void ProcessTouchEvent(PSEvent* event) {
uint32_t count = g_pTouchInput->GetTouchCount(event->as_resource,
PP_TOUCHLIST_TYPE_TOUCHES);
uint32_t i, j;
for (i = 0; i < count; i++) {
struct PP_TouchPoint touch = g_pTouchInput->GetTouchByIndex(
event->as_resource, PP_TOUCHLIST_TYPE_TOUCHES, i);
int radius = (int)touch.radius.x;
int x = (int)touch.position.x;
int y = (int)touch.position.y;
/* num = 1/100th the area of touch point */
int num = (int)(M_PI * radius * radius / 100.0f);
for (j = 0; j < num; j++) {
int dx = rand() % (radius * 2) - radius;
int dy = rand() % (radius * 2) - radius;
/* only plot random cells within the touch area */
if (dx * dx + dy * dy <= radius * radius)
DrawCell(x + dx, y + dy);
}
}
}
void ProcessEvent(PSEvent* event) {
switch(event->type) {
/* If the view updates, build a new Graphics 2D Context */
case PSE_INSTANCE_DIDCHANGEVIEW: {
struct PP_Rect rect;
g_pView->GetRect(event->as_resource, &rect);
UpdateContext(rect.size.width, rect.size.height);
break;
}
case PSE_INSTANCE_HANDLEINPUT: {
PP_InputEvent_Type type = g_pInputEvent->GetType(event->as_resource);
PP_InputEvent_Modifier modifiers =
g_pInputEvent->GetModifiers(event->as_resource);
switch(type) {
case PP_INPUTEVENT_TYPE_MOUSEDOWN:
case PP_INPUTEVENT_TYPE_MOUSEMOVE: {
struct PP_Point location =
g_pMouseInput->GetPosition(event->as_resource);
/* If the button is down, draw */
if (modifiers & PP_INPUTEVENT_MODIFIER_LEFTBUTTONDOWN) {
DrawCell(location.x, location.y);
}
break;
}
case PP_INPUTEVENT_TYPE_TOUCHSTART:
case PP_INPUTEVENT_TYPE_TOUCHMOVE:
ProcessTouchEvent(event);
break;
case PP_INPUTEVENT_TYPE_KEYDOWN: {
PP_Bool fullscreen = g_pFullscreen->IsFullscreen(PSGetInstanceId());
g_pFullscreen->SetFullscreen(PSGetInstanceId(),
fullscreen ? PP_FALSE : PP_TRUE);
break;
}
default:
break;
}
/* case PSE_INSTANCE_HANDLEINPUT */
break;
}
default:
break;
}
}
void Stir() {
int32_t width = g_Context.size.width;
int32_t height = g_Context.size.height;
int32_t stride = g_Context.cell_stride;
int32_t i;
if (g_Context.cell_in == NULL || g_Context.cell_out == NULL)
return;
for (i = 0; i < width; ++i) {
g_Context.cell_in[i] = rand() & 1;
g_Context.cell_in[i + (height - 1) * stride] = rand() & 1;
}
for (i = 0; i < height; ++i) {
g_Context.cell_in[i * stride] = rand() & 1;
g_Context.cell_in[i * stride + (width - 1)] = rand() & 1;
}
}
void Render() {
struct PP_Size* psize = &g_Context.size;
PP_ImageDataFormat format = PP_IMAGEDATAFORMAT_BGRA_PREMUL;
/*
* Create a buffer to draw into. Since we are waiting until the next flush
* chrome has an opportunity to cache this buffer see ppb_graphics_2d.h.
*/
PP_Resource image =
g_pImageData->Create(PSGetInstanceId(), format, psize, PP_FALSE);
uint8_t* pixels = g_pImageData->Map(image);
struct PP_ImageDataDesc desc;
uint8_t* cell_temp;
uint32_t x, y;
/* If we somehow have not allocated these pointers yet, skip this frame. */
if (!g_Context.cell_in || !g_Context.cell_out) return;
/* Get the pixel stride. */
g_pImageData->Describe(image, &desc);
/* Stir up the edges to prevent the simulation from reaching steady state. */
Stir();
/*
* Do neighbor summation; apply rules, output pixel color. Note that a 1 cell
* wide perimeter is excluded from the simulation update; only cells from
* x = 1 to x < width - 1 and y = 1 to y < height - 1 are updated.
*/
for (y = 1; y < g_Context.size.height - 1; ++y) {
uint8_t *src0 = (g_Context.cell_in + (y - 1) * g_Context.cell_stride);
uint8_t *src1 = src0 + g_Context.cell_stride;
uint8_t *src2 = src1 + g_Context.cell_stride;
uint8_t *dst = (g_Context.cell_out + y * g_Context.cell_stride) + 1;
uint32_t *pixel_line = (uint32_t*) (pixels + y * desc.stride);
const u8x16_t kOne = broadcast(1);
const u8x16_t kFour = broadcast(4);
const u8x16_t kEight = broadcast(8);
const u8x16_t kZero255 = {0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
/* Prime the src */
u8x16_t src00 = *(u8x16_t*)&src0[0];
u8x16_t src01 = *(u8x16_t*)&src0[16];
u8x16_t src10 = *(u8x16_t*)&src1[0];
u8x16_t src11 = *(u8x16_t*)&src1[16];
u8x16_t src20 = *(u8x16_t*)&src2[0];
u8x16_t src21 = *(u8x16_t*)&src2[16];
/* This inner loop is SIMD - each loop iteration will process 16 cells. */
for (x = 1; (x + 15) < (g_Context.size.width - 1); x += 16) {
/*
* Construct jittered source temps, using __builtin_shufflevector(..) to
* extract a shifted 16 element vector from the 32 element concatenation
* of two source vectors.
*/
u8x16_t src0j0 = src00;
u8x16_t src0j1 = __builtin_shufflevector(src00, src01,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src0j2 = __builtin_shufflevector(src00, src01,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
u8x16_t src1j0 = src10;
u8x16_t src1j1 = __builtin_shufflevector(src10, src11,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src1j2 = __builtin_shufflevector(src10, src11,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
u8x16_t src2j0 = src20;
u8x16_t src2j1 = __builtin_shufflevector(src20, src21,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16);
u8x16_t src2j2 = __builtin_shufflevector(src20, src21,
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17);
/* Sum the jittered sources to construct neighbor count. */
u8x16_t count = src0j0 + src0j1 + src0j2 +
src1j0 + + src1j2 +
src2j0 + src2j1 + src2j2;
/* Add the center cell. */
count = count + count + src1j1;
/* If count > 4 and < 8, center cell will be alive in the next frame. */
u8x16_t alive1 = count > kFour;
u8x16_t alive2 = count < kEight;
/* Intersect the two comparisons from above. */
u8x16_t alive = alive1 & alive2;
/*
* At this point, alive[x] will be one of two values:
* 0x00 for a dead cell
* 0xFF for an alive cell.
*
* Next, convert alive cells to green pixel color.
* Use __builtin_shufflevector(..) to construct output pixels from
* concantination of alive vector and kZero255 const vector.
* Indices 0..15 select the 16 cells from alive vector.
* Index 16 is zero constant from kZero255 constant vector.
* Index 17 is 255 constant from kZero255 constant vector.
* Output pixel color values are in BGRABGRABGRABGRA order.
* Since each pixel needs 4 bytes of color information, 16 cells will
* need to expand to 4 seperate 16 byte pixel splats.
*/
u8x16_t pixel0_3 = __builtin_shufflevector(alive, kZero255,
16, 0, 16, 17, 16, 1, 16, 17, 16, 2, 16, 17, 16, 3, 16, 17);
u8x16_t pixel4_7 = __builtin_shufflevector(alive, kZero255,
16, 4, 16, 17, 16, 5, 16, 17, 16, 6, 16, 17, 16, 7, 16, 17);
u8x16_t pixel8_11 = __builtin_shufflevector(alive, kZero255,
16, 8, 16, 17, 16, 9, 16, 17, 16, 10, 16, 17, 16, 11, 16, 17);
u8x16_t pixel12_15 = __builtin_shufflevector(alive, kZero255,
16, 12, 16, 17, 16, 13, 16, 17, 16, 14, 16, 17, 16, 15, 16, 17);
/* Write 16 pixels to output pixel buffer. */
*(u8x16_t*)(pixel_line + 0) = pixel0_3;
*(u8x16_t*)(pixel_line + 4) = pixel4_7;
*(u8x16_t*)(pixel_line + 8) = pixel8_11;
*(u8x16_t*)(pixel_line + 12) = pixel12_15;
/* Convert alive mask to 1 or 0 and store in destination cell array. */
*(u8x16_t*)dst = alive & kOne;
/* Increment pointers. */
pixel_line += 16;
dst += 16;
src0 += 16;
src1 += 16;
src2 += 16;
/* Shift source over by 16 cells and read the next 16 cells. */
src00 = src01;
src01 = *(u8x16_t*)&src0[16];
src10 = src11;
src11 = *(u8x16_t*)&src1[16];
src20 = src21;
src21 = *(u8x16_t*)&src2[16];
}
/*
* The SIMD loop above does 16 cells at a time. The loop below is the
* regular version which processes one cell at a time. It is used to
* finish the remainder of the scanline not handled by the SIMD loop.
*/
for (; x < (g_Context.size.width - 1); ++x) {
/* Sum the jittered sources to construct neighbor count. */
int count = src0[0] + src0[1] + src0[2] +
src1[0] + + src1[2] +
src2[0] + src2[1] + src2[2];
/* Add the center cell. */
count = count + count + src1[1];
/* Use table lookup indexed by count to determine pixel & alive state. */
uint32_t color = kNeighborColors[count];
*pixel_line++ = color;
*dst++ = kIsAlive[count];
++src0;
++src1;
++src2;
}
}
cell_temp = g_Context.cell_in;
g_Context.cell_in = g_Context.cell_out;
g_Context.cell_out = cell_temp;
/* Unmap the range, we no longer need it. */
g_pImageData->Unmap(image);
/* Replace the contexts, and block until it's on the screen. */
g_pGraphics2D->ReplaceContents(g_Context.ctx, image);
g_pGraphics2D->Flush(g_Context.ctx, PP_BlockUntilComplete());
/* Release the image data, we no longer need it. */
g_pCore->ReleaseResource(image);
}
/*
* Starting point for the module. We do not use main since it would
* collide with main in libppapi_cpp.
*/
int example_main(int argc, char *argv[]) {
fprintf(stdout,"Started main.\n");
g_pCore = (PPB_Core*)PSGetInterface(PPB_CORE_INTERFACE);
g_pFullscreen = (PPB_Fullscreen*)PSGetInterface(PPB_FULLSCREEN_INTERFACE);
g_pGraphics2D = (PPB_Graphics2D*)PSGetInterface(PPB_GRAPHICS_2D_INTERFACE);
g_pInstance = (PPB_Instance*)PSGetInterface(PPB_INSTANCE_INTERFACE);
g_pImageData = (PPB_ImageData*)PSGetInterface(PPB_IMAGEDATA_INTERFACE);
g_pView = (PPB_View*)PSGetInterface(PPB_VIEW_INTERFACE);
g_pInputEvent =
(PPB_InputEvent*) PSGetInterface(PPB_INPUT_EVENT_INTERFACE);
g_pKeyboardInput = (PPB_KeyboardInputEvent*)
PSGetInterface(PPB_KEYBOARD_INPUT_EVENT_INTERFACE);
g_pMouseInput =
(PPB_MouseInputEvent*) PSGetInterface(PPB_MOUSE_INPUT_EVENT_INTERFACE);
g_pTouchInput =
(PPB_TouchInputEvent*) PSGetInterface(PPB_TOUCH_INPUT_EVENT_INTERFACE);
PSEventSetFilter(PSE_ALL);
while (1) {
/* Process all waiting events without blocking */
PSEvent* event;
while ((event = PSEventTryAcquire()) != NULL) {
ProcessEvent(event);
PSEventRelease(event);
}
/* Render a frame, blocking until complete. */
if (g_Context.bound) {
Render();
}
}
return 0;
}
/*
* Register the function to call once the Instance Object is initialized.
* see: pappi_simple/ps_main.h
*/
PPAPI_SIMPLE_REGISTER_MAIN(example_main);