blob: 1e6f47316466e5eca10c1f33d17514cdbb8f1ffa [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <assert.h>
#include <math.h>
#include <ppapi/c/pp_point.h>
#include <ppapi/c/ppb_input_event.h>
#include <ppapi/cpp/completion_callback.h>
#include <ppapi/cpp/graphics_2d.h>
#include <ppapi/cpp/image_data.h>
#include <ppapi/cpp/input_event.h>
#include <ppapi/cpp/instance.h>
#include <ppapi/cpp/module.h>
#include <ppapi/cpp/rect.h>
#include <ppapi/cpp/size.h>
#include <ppapi/cpp/var.h>
#include <ppapi/cpp/var_array.h>
#include <ppapi/cpp/var_array_buffer.h>
#include <ppapi/cpp/var_dictionary.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <unistd.h>
#include <algorithm>
#include <string>
#include "sdk_util/macros.h"
#include "sdk_util/thread_pool.h"
using namespace sdk_util; // For sdk_util::ThreadPool
// Global properties used to setup Earth demo.
namespace {
const float kHugeZ = 1.0e38f;
const float kPI = M_PI;
const float kTwoPI = kPI * 2.0f;
const float kOneOverPI = 1.0f / kPI;
const float kOneOver2PI = 1.0f / kTwoPI;
const float kOneOver255 = 1.0f / 255.0f;
const int kArcCosineTableSize = 4096;
const int kFramesToBenchmark = 100;
const float kZoomMin = 1.0f;
const float kZoomMax = 50.0f;
const float kWheelSpeed = 2.0f;
const float kLightMin = 0.0f;
const float kLightMax = 2.0f;
const int kFrameTimeBufferSize = 512;
// Timer helper for benchmarking. Returns seconds elapsed since program start,
// as a double.
timeval start_tv;
int start_tv_retv = gettimeofday(&start_tv, NULL);
inline double getseconds() {
const double usec_to_sec = 0.000001;
timeval tv;
if ((0 == start_tv_retv) && (0 == gettimeofday(&tv, NULL)))
return (tv.tv_sec - start_tv.tv_sec) + tv.tv_usec * usec_to_sec;
return 0.0;
}
// RGBA helper functions.
inline float ExtractR(uint32_t c) {
return static_cast<float>(c & 0xFF) * kOneOver255;
}
inline float ExtractG(uint32_t c) {
return static_cast<float>((c & 0xFF00) >> 8) * kOneOver255;
}
inline float ExtractB(uint32_t c) {
return static_cast<float>((c & 0xFF0000) >> 16) * kOneOver255;
}
inline uint32_t MakeRGBA(uint32_t r, uint32_t g, uint32_t b, uint32_t a) {
return (((a) << 24) | ((r) << 16) | ((g) << 8) | (b));
}
// simple container for earth texture
struct Texture {
int width, height;
uint32_t* pixels;
Texture(int w, int h) : width(w), height(h) {
pixels = new uint32_t[w * h];
memset(pixels, 0, sizeof(uint32_t) * w * h);
}
explicit Texture(int w, int h, uint32_t* p) : width(w), height(h) {
pixels = new uint32_t[w * h];
memcpy(pixels, p, sizeof(uint32_t) * w * h);
}
~Texture() { delete[] pixels; }
DISALLOW_COPY_AND_ASSIGN(Texture);
};
struct ArcCosine {
// slightly larger table so we can interpolate beyond table size
float table[kArcCosineTableSize + 2];
float TableLerp(float x);
ArcCosine();
};
ArcCosine::ArcCosine() {
// build a slightly larger table to allow for numeric imprecision
for (int i = 0; i < (kArcCosineTableSize + 2); ++i) {
float f = static_cast<float>(i) / kArcCosineTableSize;
f = f * 2.0f - 1.0f;
table[i] = acos(f);
}
}
// looks up acos(f) using a table and lerping between entries
// (it is expected that input f is between -1 and 1)
float ArcCosine::TableLerp(float f) {
float x = (f + 1.0f) * 0.5f;
x = x * kArcCosineTableSize;
int ix = static_cast<int>(x);
float fx = static_cast<float>(ix);
float dx = x - fx;
float af = table[ix];
float af2 = table[ix + 1];
return af + (af2 - af) * dx;
}
// Helper functions for quick but approximate sqrt.
union Convert {
float f;
int i;
Convert(int x) { i = x; }
Convert(float x) { f = x; }
int AsInt() { return i; }
float AsFloat() { return f; }
};
inline const int AsInteger(const float f) {
Convert u(f);
return u.AsInt();
}
inline const float AsFloat(const int i) {
Convert u(i);
return u.AsFloat();
}
const long int kOneAsInteger = AsInteger(1.0f);
const float kScaleUp = float(0x00800000);
const float kScaleDown = 1.0f / kScaleUp;
inline float inline_quick_sqrt(float x) {
int i;
i = (AsInteger(x) >> 1) + (kOneAsInteger >> 1);
return AsFloat(i);
}
inline float inline_sqrt(float x) {
float y;
y = inline_quick_sqrt(x);
y = (y * y + x) / (2.0f * y);
y = (y * y + x) / (2.0f * y);
return y;
}
// takes a -0..1+ color, clamps it to 0..1 and maps it to 0..255 integer
inline uint32_t Clamp255(float x) {
if (x < 0.0f) {
x = 0.0f;
} else if (x > 1.0f) {
x = 1.0f;
}
return static_cast<uint32_t>(x * 255.0f);
}
} // namespace
// The main object that runs the Earth demo.
class Planet : public pp::Instance {
public:
explicit Planet(PP_Instance instance);
virtual ~Planet();
virtual bool Init(uint32_t argc, const char* argn[], const char* argv[]);
virtual void DidChangeView(const pp::Rect& position, const pp::Rect& clip);
// Catch events.
virtual bool HandleInputEvent(const pp::InputEvent& event);
// Catch messages posted from Javascript.
virtual void HandleMessage(const pp::Var& message);
private:
// Methods prefixed with 'w' are run on worker threads.
uint32_t* wGetAddr(int x, int y);
void wRenderPixelSpan(int x0, int x1, int y);
void wMakeRect(int r, int *x, int *y, int *w, int *h);
void wRenderRect(int x0, int y0, int x1, int y1);
void wRenderRegion(int region);
static void wRenderRegionEntry(int region, void *thiz);
// These methods are only called by the main thread.
void CacheCalcs();
void SetPlanetXYZR(float x, float y, float z, float r);
void SetPlanetPole(float x, float y, float z);
void SetPlanetEquator(float x, float y, float z);
void SetPlanetSpin(float x, float y);
void SetEyeXYZ(float x, float y, float z);
void SetLightXYZ(float x, float y, float z);
void SetAmbientRGB(float r, float g, float b);
void SetDiffuseRGB(float r, float g, float b);
void SetZoom(float zoom);
void SetLight(float zoom);
void SetTexture(const std::string& name, int width, int height,
uint32_t* pixels);
void Reset();
void PostInit(int32_t result);
void UpdateSim();
void Render();
void Draw();
void StartBenchmark();
void EndBenchmark();
// Runs a tick of the simulations, updating all buffers. Flushes the
// contents of |image_data_| to the 2D graphics context.
void Update();
// Post a small key-value message to update JS.
void PostUpdateMessage(const char* message_name, double value);
// Create and initialize the 2D context used for drawing.
void CreateContext(const pp::Size& size);
// Destroy the 2D drawing context.
void DestroyContext();
// Push the pixels to the browser, then attempt to flush the 2D context.
void FlushPixelBuffer();
static void FlushCallback(void* data, int32_t result);
// User Interface settings. These settings are controlled via html
// controls or via user input.
float ui_light_;
float ui_zoom_;
float ui_spin_x_;
float ui_spin_y_;
// Various settings for position & orientation of planet. Do not change
// these variables, instead use SetPlanet*() functions.
float planet_radius_;
float planet_spin_x_;
float planet_spin_y_;
float planet_x_, planet_y_, planet_z_;
float planet_pole_x_, planet_pole_y_, planet_pole_z_;
float planet_equator_x_, planet_equator_y_, planet_equator_z_;
// Observer's eye. Do not change these variables, instead use SetEyeXYZ().
float eye_x_, eye_y_, eye_z_;
// Light position, ambient and diffuse settings. Do not change these
// variables, instead use SetLightXYZ(), SetAmbientRGB() and SetDiffuseRGB().
float light_x_, light_y_, light_z_;
float diffuse_r_, diffuse_g_, diffuse_b_;
float ambient_r_, ambient_g_, ambient_b_;
// Cached calculations. Do not change these variables - they are updated by
// CacheCalcs() function.
float planet_xyz_;
float planet_pole_x_equator_x_;
float planet_pole_x_equator_y_;
float planet_pole_x_equator_z_;
float planet_radius2_;
float planet_one_over_radius_;
float eye_xyz_;
// Source texture (earth map).
Texture* base_tex_;
Texture* night_tex_;
int width_for_tex_;
int height_for_tex_;
std::string name_for_tex_;
// Quick ArcCos helper.
ArcCosine acos_;
// Misc.
pp::Graphics2D* graphics_2d_context_;
pp::ImageData* image_data_;
bool initial_did_change_view_;
int num_threads_;
int num_regions_;
ThreadPool* workers_;
int width_;
int height_;
uint32_t stride_in_pixels_;
uint32_t* pixel_buffer_;
int benchmark_frame_counter_;
bool benchmarking_;
double benchmark_start_time_;
double benchmark_end_time_;
};
bool Planet::Init(uint32_t argc, const char* argn[], const char* argv[]) {
// Request PPAPI input events for mouse & keyboard.
RequestInputEvents(PP_INPUTEVENT_CLASS_MOUSE);
RequestInputEvents(PP_INPUTEVENT_CLASS_WHEEL);
RequestInputEvents(PP_INPUTEVENT_CLASS_KEYBOARD);
// Request a set of images from JS. After images are loaded by JS, a
// message from JS -> NaCl will arrive containing the pixel data. See
// HandleMessage() method in this file.
pp::VarDictionary message;
message.Set("message", "request_textures");
pp::VarArray names;
names.Set(0, "earth.jpg");
names.Set(1, "earthnight.jpg");
message.Set("names", names);
PostMessage(message);
return true;
}
void Planet::Reset() {
// Reset has to first fill in all variables with valid floats, so
// CacheCalcs() doesn't potentially propagate NaNs when calling Set*()
// functions further below.
planet_radius_ = 1.0f;
planet_spin_x_ = 0.0f;
planet_spin_y_ = 0.0f;
planet_x_ = 0.0f;
planet_y_ = 0.0f;
planet_z_ = 0.0f;
planet_pole_x_ = 0.0f;
planet_pole_y_ = 0.0f;
planet_pole_z_ = 0.0f;
planet_equator_x_ = 0.0f;
planet_equator_y_ = 0.0f;
planet_equator_z_ = 0.0f;
eye_x_ = 0.0f;
eye_y_ = 0.0f;
eye_z_ = 0.0f;
light_x_ = 0.0f;
light_y_ = 0.0f;
light_z_ = 0.0f;
diffuse_r_ = 0.0f;
diffuse_g_ = 0.0f;
diffuse_b_ = 0.0f;
ambient_r_ = 0.0f;
ambient_g_ = 0.0f;
ambient_b_ = 0.0f;
planet_xyz_ = 0.0f;
planet_pole_x_equator_x_ = 0.0f;
planet_pole_x_equator_y_ = 0.0f;
planet_pole_x_equator_z_ = 0.0f;
planet_radius2_ = 0.0f;
planet_one_over_radius_ = 0.0f;
eye_xyz_ = 0.0f;
ui_zoom_ = 14.0f;
ui_light_ = 1.0f;
ui_spin_x_ = 0.01f;
ui_spin_y_ = 0.0f;
// Set up reasonable default values.
SetPlanetXYZR(0.0f, 0.0f, 48.0f, 4.0f);
SetEyeXYZ(0.0f, 0.0f, -ui_zoom_);
SetLightXYZ(-60.0f, -30.0f, 0.0f);
SetAmbientRGB(0.05f, 0.05f, 0.05f);
SetDiffuseRGB(0.8f, 0.8f, 0.8f);
SetPlanetPole(0.0f, 1.0f, 0.0f);
SetPlanetEquator(1.0f, 0.0f, 0.0f);
SetPlanetSpin(kPI / 2.0f, kPI / 2.0f);
SetZoom(ui_zoom_);
SetLight(ui_light_);
// Send UI values to JS to reset html sliders.
PostUpdateMessage("set_zoom", ui_zoom_);
PostUpdateMessage("set_light", ui_light_);
}
Planet::Planet(PP_Instance instance) : pp::Instance(instance),
graphics_2d_context_(NULL),
image_data_(NULL),
initial_did_change_view_(true),
num_regions_(256) {
width_ = 0;
height_ = 0;
stride_in_pixels_ = 0;
pixel_buffer_ = NULL;
benchmark_frame_counter_ = 0;
benchmarking_ = false;
base_tex_ = NULL;
night_tex_ = NULL;
name_for_tex_ = "";
Reset();
// By default, render from the dispatch thread.
num_threads_ = 0;
workers_ = new ThreadPool(num_threads_);
}
Planet::~Planet() {
delete workers_;
DestroyContext();
}
// Given a region r, derive a rectangle.
// This rectangle shouldn't overlap with work being done by other workers.
// If multithreading, this function is only called by the worker threads.
void Planet::wMakeRect(int r, int *x, int *y, int *w, int *h) {
int dy = height_ / num_regions_;
*x = 0;
*w = width_;
*y = r * dy;
*h = dy;
}
inline uint32_t* Planet::wGetAddr(int x, int y) {
assert(pixel_buffer_);
return (pixel_buffer_ + y * stride_in_pixels_) + x;
}
// This is the meat of the ray tracer. Given a pixel span (x0, x1) on
// scanline y, shoot rays into the scene and render what they hit. Use
// scanline coherence to do a few optimizations
void Planet::wRenderPixelSpan(int x0, int x1, int y) {
if (!base_tex_ || !night_tex_)
return;
const int kColorBlack = MakeRGBA(0, 0, 0, 0xFF);
float min_dim = width_ < height_ ? width_ : height_;
float offset_x = width_ < height_ ? 0 : (width_ - min_dim) * 0.5f;
float offset_y = width_ < height_ ? (height_ - min_dim) * 0.5f : 0;
float y0 = eye_y_;
float z0 = eye_z_;
float y1 = (static_cast<float>(y - offset_y) / min_dim) * 2.0f - 1.0f;
float z1 = 0.0f;
float dy = (y1 - y0);
float dz = (z1 - z0);
float dy_dy_dz_dz = dy * dy + dz * dz;
float two_dy_y0_y_two_dz_z0_z = 2.0f * dy * (y0 - planet_y_) +
2.0f * dz * (z0 - planet_z_);
float planet_xyz_eye_xyz = planet_xyz_ + eye_xyz_;
float y_y0_z_z0 = planet_y_ * y0 + planet_z_ * z0;
float oowidth = 1.0f / min_dim;
uint32_t* pixels = this->wGetAddr(x0, y);
for (int x = x0; x <= x1; ++x) {
// scan normalized screen -1..1
float x1 = (static_cast<float>(x - offset_x) * oowidth) * 2.0f - 1.0f;
// eye
float x0 = eye_x_;
// delta from screen to eye
float dx = (x1 - x0);
// build a, b, c
float a = dx * dx + dy_dy_dz_dz;
float b = 2.0f * dx * (x0 - planet_x_) + two_dy_y0_y_two_dz_z0_z;
float c = planet_xyz_eye_xyz +
-2.0f * (planet_x_ * x0 + y_y0_z_z0) - (planet_radius2_);
// calculate discriminant
float disc = b * b - 4.0f * a * c;
// Did ray hit the sphere?
if (disc < 0.0f) {
*pixels = kColorBlack;
++pixels;
continue;
}
// calc parametric t value
float t = (-b - inline_sqrt(disc)) / (2.0f * a);
float px = x0 + t * dx;
float py = y0 + t * dy;
float pz = z0 + t * dz;
float nx = (px - planet_x_) * planet_one_over_radius_;
float ny = (py - planet_y_) * planet_one_over_radius_;
float nz = (pz - planet_z_) * planet_one_over_radius_;
// Misc raytrace calculations.
float Lx = (light_x_ - px);
float Ly = (light_y_ - py);
float Lz = (light_z_ - pz);
float Lq = 1.0f / inline_quick_sqrt(Lx * Lx + Ly * Ly + Lz * Lz);
Lx *= Lq;
Ly *= Lq;
Lz *= Lq;
float d = (Lx * nx + Ly * ny + Lz * nz);
float pr = (diffuse_r_ * d) + ambient_r_;
float pg = (diffuse_g_ * d) + ambient_g_;
float pb = (diffuse_b_ * d) + ambient_b_;
float ds = -(nx * planet_pole_x_ +
ny * planet_pole_y_ +
nz * planet_pole_z_);
float ang = acos_.TableLerp(ds);
float v = ang * kOneOverPI;
float dp = planet_equator_x_ * nx +
planet_equator_y_ * ny +
planet_equator_z_ * nz;
float w = dp / sin(ang);
if (w > 1.0f) w = 1.0f;
if (w < -1.0f) w = -1.0f;
float th = acos_.TableLerp(w) * kOneOver2PI;
float dps = planet_pole_x_equator_x_ * nx +
planet_pole_x_equator_y_ * ny +
planet_pole_x_equator_z_ * nz;
float u;
if (dps < 0.0f)
u = th;
else
u = 1.0f - th;
// Look up daylight texel.
int tx = static_cast<int>(u * base_tex_->width);
int ty = static_cast<int>(v * base_tex_->height);
int offset = tx + ty * base_tex_->width;
uint32_t base_texel = base_tex_->pixels[offset];
float tr = ExtractR(base_texel);
float tg = ExtractG(base_texel);
float tb = ExtractB(base_texel);
float ipr = 1.0f - pr;
if (ipr < 0.0f) ipr = 0.0f;
float ipg = 1.0f - pg;
if (ipg < 0.0f) ipg = 0.0f;
float ipb = 1.0f - pb;
if (ipb < 0.0f) ipb = 0.0f;
// Look up night texel.
int nix = static_cast<int>(u * night_tex_->width);
int niy = static_cast<int>(v * night_tex_->height);
int noffset = nix + niy * night_tex_->width;
uint32_t night_texel = night_tex_->pixels[noffset];
float nr = ExtractR(night_texel);
float ng = ExtractG(night_texel);
float nb = ExtractB(night_texel);
// Final color value is lerp between day and night texels.
unsigned int ir = Clamp255(pr * tr + nr * ipr);
unsigned int ig = Clamp255(pg * tg + ng * ipg);
unsigned int ib = Clamp255(pb * tb + nb * ipb);
unsigned int color = MakeRGBA(ir, ig, ib, 0xFF);
*pixels = color;
++pixels;
}
}
// Renders a rectangular area of the screen, scan line at a time
void Planet::wRenderRect(int x, int y, int w, int h) {
for (int j = y; j < (y + h); ++j) {
this->wRenderPixelSpan(x, x + w - 1, j);
}
}
// If multithreading, this function is only called by the worker threads.
void Planet::wRenderRegion(int region) {
// convert region # into x0, y0, x1, y1 rectangle
int x, y, w, h;
wMakeRect(region, &x, &y, &w, &h);
// render this rectangle
wRenderRect(x, y, w, h);
}
// Entry point for worker thread. Can't pass a member function around, so we
// have to do this little round-about.
void Planet::wRenderRegionEntry(int region, void* thiz) {
static_cast<Planet*>(thiz)->wRenderRegion(region);
}
// Renders the planet, dispatching the work to multiple threads.
// Note: This Dispatch() is from the main PPAPI thread, so care must be taken
// not to attempt PPAPI calls from the worker threads, since Dispatch() will
// block here until all work is complete. The worker threads are compute only
// and do not make any PPAPI calls.
void Planet::Render() {
workers_->Dispatch(num_regions_, wRenderRegionEntry, this);
}
// Pre-calculations to make inner loops faster.
void Planet::CacheCalcs() {
planet_xyz_ = planet_x_ * planet_x_ +
planet_y_ * planet_y_ +
planet_z_ * planet_z_;
planet_radius2_ = planet_radius_ * planet_radius_;
planet_one_over_radius_ = 1.0f / planet_radius_;
eye_xyz_ = eye_x_ * eye_x_ + eye_y_ * eye_y_ + eye_z_ * eye_z_;
// spin vector from center->equator
planet_equator_x_ = cos(planet_spin_x_);
planet_equator_y_ = 0.0f;
planet_equator_z_ = sin(planet_spin_x_);
// cache cross product of pole & equator
planet_pole_x_equator_x_ = planet_pole_y_ * planet_equator_z_ -
planet_pole_z_ * planet_equator_y_;
planet_pole_x_equator_y_ = planet_pole_z_ * planet_equator_x_ -
planet_pole_x_ * planet_equator_z_;
planet_pole_x_equator_z_ = planet_pole_x_ * planet_equator_y_ -
planet_pole_y_ * planet_equator_x_;
}
void Planet::SetPlanetXYZR(float x, float y, float z, float r) {
planet_x_ = x;
planet_y_ = y;
planet_z_ = z;
planet_radius_ = r;
CacheCalcs();
}
void Planet::SetEyeXYZ(float x, float y, float z) {
eye_x_ = x;
eye_y_ = y;
eye_z_ = z;
CacheCalcs();
}
void Planet::SetLightXYZ(float x, float y, float z) {
light_x_ = x;
light_y_ = y;
light_z_ = z;
CacheCalcs();
}
void Planet::SetAmbientRGB(float r, float g, float b) {
ambient_r_ = r;
ambient_g_ = g;
ambient_b_ = b;
CacheCalcs();
}
void Planet::SetDiffuseRGB(float r, float g, float b) {
diffuse_r_ = r;
diffuse_g_ = g;
diffuse_b_ = b;
CacheCalcs();
}
void Planet::SetPlanetPole(float x, float y, float z) {
planet_pole_x_ = x;
planet_pole_y_ = y;
planet_pole_z_ = z;
CacheCalcs();
}
void Planet::SetPlanetEquator(float x, float y, float z) {
// This is really over-ridden by spin at the momenent.
planet_equator_x_ = x;
planet_equator_y_ = y;
planet_equator_z_ = z;
CacheCalcs();
}
void Planet::SetPlanetSpin(float x, float y) {
planet_spin_x_ = x;
planet_spin_y_ = y;
CacheCalcs();
}
// Run a simple sim to spin the planet. Update loop is run once per frame.
// Called from the main thread only and only when the worker threads are idle.
void Planet::UpdateSim() {
float x = planet_spin_x_ + ui_spin_x_;
float y = planet_spin_y_ + ui_spin_y_;
// keep in nice range
if (x > (kPI * 2.0f))
x = x - kPI * 2.0f;
else if (x < (-kPI * 2.0f))
x = x + kPI * 2.0f;
if (y > (kPI * 2.0f))
y = y - kPI * 2.0f;
else if (y < (-kPI * 2.0f))
y = y + kPI * 2.0f;
SetPlanetSpin(x, y);
}
void Planet::DidChangeView(const pp::Rect& position, const pp::Rect& clip) {
if (position.size().width() == width_ &&
position.size().height() == height_)
return; // Size didn't change, no need to update anything.
// Create a new device context with the new size.
DestroyContext();
CreateContext(position.size());
if (initial_did_change_view_) {
initial_did_change_view_ = false;
Update();
}
}
void Planet::StartBenchmark() {
// For more consistent benchmark numbers, reset to default state.
Reset();
printf("Benchmark started...\n");
benchmark_frame_counter_ = kFramesToBenchmark;
benchmarking_ = true;
benchmark_start_time_ = getseconds();
}
void Planet::EndBenchmark() {
benchmark_end_time_ = getseconds();
printf("Benchmark ended... time: %2.5f\n",
benchmark_end_time_ - benchmark_start_time_);
benchmarking_ = false;
benchmark_frame_counter_ = 0;
double total_time = benchmark_end_time_ - benchmark_start_time_;
// Send benchmark result to JS.
PostUpdateMessage("benchmark_result", total_time);
}
void Planet::SetZoom(float zoom) {
ui_zoom_ = std::min(kZoomMax, std::max(kZoomMin, zoom));
SetEyeXYZ(0.0f, 0.0f, -ui_zoom_);
}
void Planet::SetLight(float light) {
ui_light_ = std::min(kLightMax, std::max(kLightMin, light));
SetDiffuseRGB(0.8f * ui_light_, 0.8f * ui_light_, 0.8f * ui_light_);
SetAmbientRGB(0.4f * ui_light_, 0.4f * ui_light_, 0.4f * ui_light_);
}
void Planet::SetTexture(const std::string& name, int width, int height,
uint32_t* pixels) {
if (pixels) {
if (name == "earth.jpg") {
delete base_tex_;
base_tex_ = new Texture(width, height, pixels);
} else if (name == "earthnight.jpg") {
delete night_tex_;
night_tex_ = new Texture(width, height, pixels);
}
}
}
// Handle input events from the user.
bool Planet::HandleInputEvent(const pp::InputEvent& event) {
switch (event.GetType()) {
case PP_INPUTEVENT_TYPE_KEYDOWN: {
pp::KeyboardInputEvent key(event);
uint32_t key_code = key.GetKeyCode();
if (key_code == 84) // 't' key
if (!benchmarking_)
StartBenchmark();
break;
}
case PP_INPUTEVENT_TYPE_MOUSEMOVE:
case PP_INPUTEVENT_TYPE_MOUSEDOWN: {
pp::MouseInputEvent mouse = pp::MouseInputEvent(event);
if (mouse.GetModifiers() & PP_INPUTEVENT_MODIFIER_LEFTBUTTONDOWN) {
PP_Point delta = mouse.GetMovement();
float delta_x = static_cast<float>(delta.x);
float delta_y = static_cast<float>(delta.y);
float spin_x = std::min(4.0f, std::max(-4.0f, delta_x * 0.5f));
float spin_y = std::min(4.0f, std::max(-4.0f, delta_y * 0.5f));
ui_spin_x_ = spin_x / 100.0f;
ui_spin_y_ = spin_y / 100.0f;
}
break;
}
case PP_INPUTEVENT_TYPE_WHEEL: {
pp::WheelInputEvent wheel = pp::WheelInputEvent(event);
PP_FloatPoint ticks = wheel.GetTicks();
SetZoom(ui_zoom_ + (ticks.x + ticks.y) * kWheelSpeed);
// Update html slider by sending update message to JS.
PostUpdateMessage("set_zoom", ui_zoom_);
break;
}
default:
return false;
}
return true;
}
// PostUpdateMessage() helper function for sending small messages to JS.
void Planet::PostUpdateMessage(const char* message_name, double value) {
pp::VarDictionary message;
message.Set("message", message_name);
message.Set("value", value);
PostMessage(message);
}
// Handle message sent from Javascript.
void Planet::HandleMessage(const pp::Var& var) {
if (var.is_dictionary()) {
pp::VarDictionary dictionary(var);
std::string message = dictionary.Get("message").AsString();
if (message == "run benchmark" && !benchmarking_) {
StartBenchmark();
} else if (message == "set_light") {
SetLight(static_cast<float>(dictionary.Get("value").AsDouble()));
} else if (message == "set_zoom") {
SetZoom(static_cast<float>(dictionary.Get("value").AsDouble()));
} else if (message == "set_threads") {
int threads = dictionary.Get("value").AsInt();
delete workers_;
workers_ = new ThreadPool(threads);
} else if (message == "texture") {
std::string name = dictionary.Get("name").AsString();
int width = dictionary.Get("width").AsInt();
int height = dictionary.Get("height").AsInt();
pp::VarArrayBuffer array_buffer(dictionary.Get("data"));
if (!name.empty() && width > 0 && height > 0 && !array_buffer.is_null()) {
uint32_t* pixels = static_cast<uint32_t*>(array_buffer.Map());
SetTexture(name, width, height, pixels);
array_buffer.Unmap();
}
}
} else {
printf("Handle message unknown type: %s\n", var.DebugString().c_str());
}
}
void Planet::FlushCallback(void* thiz, int32_t result) {
static_cast<Planet*>(thiz)->Update();
}
// Update the 2d region and flush to make it visible on the page.
void Planet::FlushPixelBuffer() {
graphics_2d_context_->PaintImageData(*image_data_, pp::Point(0, 0));
graphics_2d_context_->Flush(pp::CompletionCallback(&FlushCallback, this));
}
void Planet::Update() {
// Don't call FlushPixelBuffer() when benchmarking - vsync is enabled by
// default, and will throttle the benchmark results.
do {
UpdateSim();
Render();
if (!benchmarking_) break;
--benchmark_frame_counter_;
} while (benchmark_frame_counter_ > 0);
if (benchmarking_)
EndBenchmark();
FlushPixelBuffer();
}
void Planet::CreateContext(const pp::Size& size) {
graphics_2d_context_ = new pp::Graphics2D(this, size, false);
if (graphics_2d_context_->is_null())
printf("Failed to create a 2D resource!\n");
if (!BindGraphics(*graphics_2d_context_))
printf("Couldn't bind the device context\n");
image_data_ = new pp::ImageData(this,
PP_IMAGEDATAFORMAT_BGRA_PREMUL,
size,
false);
width_ = image_data_->size().width();
height_ = image_data_->size().height();
stride_in_pixels_ = static_cast<uint32_t>(image_data_->stride() / 4);
pixel_buffer_ = static_cast<uint32_t*>(image_data_->data());
num_regions_ = height_;
}
void Planet::DestroyContext() {
delete graphics_2d_context_;
delete image_data_;
graphics_2d_context_ = NULL;
image_data_ = NULL;
width_ = 0;
height_ = 0;
stride_in_pixels_ = 0;
pixel_buffer_ = NULL;
}
class PlanetModule : public pp::Module {
public:
PlanetModule() : pp::Module() {}
virtual ~PlanetModule() {}
// Create and return a Planet instance.
virtual pp::Instance* CreateInstance(PP_Instance instance) {
return new Planet(instance);
}
};
namespace pp {
Module* CreateModule() {
return new PlanetModule();
}
} // namespace pp