blob: b58a4d19e0c2df33294ffbd61d416bd5d56f2b23 [file] [log] [blame]
// Copyright 2010 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/output/gl_renderer.h"
#include <algorithm>
#include <limits>
#include <set>
#include <string>
#include <vector>
#include "base/debug/trace_event.h"
#include "base/logging.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#include "cc/layers/video_layer_impl.h"
#include "cc/output/compositor_frame.h"
#include "cc/output/compositor_frame_metadata.h"
#include "cc/output/context_provider.h"
#include "cc/output/copy_output_request.h"
#include "cc/output/geometry_binding.h"
#include "cc/output/gl_frame_data.h"
#include "cc/output/output_surface.h"
#include "cc/output/render_surface_filters.h"
#include "cc/quads/picture_draw_quad.h"
#include "cc/quads/render_pass.h"
#include "cc/quads/stream_video_draw_quad.h"
#include "cc/quads/texture_draw_quad.h"
#include "cc/resources/layer_quad.h"
#include "cc/resources/raster_worker_pool.h"
#include "cc/resources/scoped_resource.h"
#include "cc/resources/texture_mailbox_deleter.h"
#include "cc/trees/damage_tracker.h"
#include "cc/trees/proxy.h"
#include "cc/trees/single_thread_proxy.h"
#include "gpu/GLES2/gl2extchromium.h"
#include "gpu/command_buffer/client/context_support.h"
#include "gpu/command_buffer/client/gles2_interface.h"
#include "gpu/command_buffer/common/gpu_memory_allocation.h"
#include "third_party/khronos/GLES2/gl2.h"
#include "third_party/khronos/GLES2/gl2ext.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkColor.h"
#include "third_party/skia/include/core/SkColorFilter.h"
#include "third_party/skia/include/core/SkSurface.h"
#include "third_party/skia/include/gpu/GrContext.h"
#include "third_party/skia/include/gpu/GrTexture.h"
#include "third_party/skia/include/gpu/SkGpuDevice.h"
#include "third_party/skia/include/gpu/SkGrTexturePixelRef.h"
#include "third_party/skia/include/gpu/gl/GrGLInterface.h"
#include "ui/gfx/quad_f.h"
#include "ui/gfx/rect_conversions.h"
using gpu::gles2::GLES2Interface;
namespace cc {
namespace {
class FallbackFence : public ResourceProvider::Fence {
public:
explicit FallbackFence(gpu::gles2::GLES2Interface* gl)
: gl_(gl), has_passed_(false) {}
// Overridden from ResourceProvider::Fence:
virtual bool HasPassed() OVERRIDE {
if (!has_passed_) {
has_passed_ = true;
Synchronize();
}
return true;
}
private:
virtual ~FallbackFence() {}
void Synchronize() {
TRACE_EVENT0("cc", "FallbackFence::Synchronize");
gl_->Finish();
}
gpu::gles2::GLES2Interface* gl_;
bool has_passed_;
DISALLOW_COPY_AND_ASSIGN(FallbackFence);
};
class OnDemandRasterTaskImpl : public Task {
public:
OnDemandRasterTaskImpl(PicturePileImpl* picture_pile,
SkBitmap* bitmap,
gfx::Rect content_rect,
float contents_scale)
: picture_pile_(picture_pile),
bitmap_(bitmap),
content_rect_(content_rect),
contents_scale_(contents_scale) {
DCHECK(picture_pile_);
DCHECK(bitmap_);
}
// Overridden from Task:
virtual void RunOnWorkerThread() OVERRIDE {
TRACE_EVENT0("cc", "OnDemandRasterTaskImpl::RunOnWorkerThread");
SkCanvas canvas(*bitmap_);
PicturePileImpl* picture_pile = picture_pile_->GetCloneForDrawingOnThread(
RasterWorkerPool::GetPictureCloneIndexForCurrentThread());
DCHECK(picture_pile);
picture_pile->RasterToBitmap(&canvas, content_rect_, contents_scale_, NULL);
}
protected:
virtual ~OnDemandRasterTaskImpl() {}
private:
PicturePileImpl* picture_pile_;
SkBitmap* bitmap_;
const gfx::Rect content_rect_;
const float contents_scale_;
DISALLOW_COPY_AND_ASSIGN(OnDemandRasterTaskImpl);
};
bool NeedsIOSurfaceReadbackWorkaround() {
#if defined(OS_MACOSX)
// This isn't strictly required in DumpRenderTree-mode when Mesa is used,
// but it doesn't seem to hurt.
return true;
#else
return false;
#endif
}
Float4 UVTransform(const TextureDrawQuad* quad) {
gfx::PointF uv0 = quad->uv_top_left;
gfx::PointF uv1 = quad->uv_bottom_right;
Float4 xform = {{uv0.x(), uv0.y(), uv1.x() - uv0.x(), uv1.y() - uv0.y()}};
if (quad->flipped) {
xform.data[1] = 1.0f - xform.data[1];
xform.data[3] = -xform.data[3];
}
return xform;
}
Float4 PremultipliedColor(SkColor color) {
const float factor = 1.0f / 255.0f;
const float alpha = SkColorGetA(color) * factor;
Float4 result = {
{SkColorGetR(color) * factor * alpha, SkColorGetG(color) * factor * alpha,
SkColorGetB(color) * factor * alpha, alpha}};
return result;
}
SamplerType SamplerTypeFromTextureTarget(GLenum target) {
switch (target) {
case GL_TEXTURE_2D:
return SamplerType2D;
case GL_TEXTURE_RECTANGLE_ARB:
return SamplerType2DRect;
case GL_TEXTURE_EXTERNAL_OES:
return SamplerTypeExternalOES;
default:
NOTREACHED();
return SamplerType2D;
}
}
// Smallest unit that impact anti-aliasing output. We use this to
// determine when anti-aliasing is unnecessary.
const float kAntiAliasingEpsilon = 1.0f / 1024.0f;
// Block or crash if the number of pending sync queries reach this high as
// something is seriously wrong on the service side if this happens.
const size_t kMaxPendingSyncQueries = 16;
} // anonymous namespace
class GLRenderer::ScopedUseGrContext {
public:
static scoped_ptr<ScopedUseGrContext> Create(GLRenderer* renderer,
DrawingFrame* frame) {
if (!renderer->output_surface_->context_provider()->GrContext())
return scoped_ptr<ScopedUseGrContext>();
return make_scoped_ptr(new ScopedUseGrContext(renderer, frame));
}
~ScopedUseGrContext() { PassControlToGLRenderer(); }
GrContext* context() const {
return renderer_->output_surface_->context_provider()->GrContext();
}
private:
ScopedUseGrContext(GLRenderer* renderer, DrawingFrame* frame)
: renderer_(renderer), frame_(frame) {
PassControlToSkia();
}
void PassControlToSkia() { context()->resetContext(); }
void PassControlToGLRenderer() {
renderer_->RestoreGLState();
renderer_->RestoreFramebuffer(frame_);
}
GLRenderer* renderer_;
DrawingFrame* frame_;
DISALLOW_COPY_AND_ASSIGN(ScopedUseGrContext);
};
struct GLRenderer::PendingAsyncReadPixels {
PendingAsyncReadPixels() : buffer(0) {}
scoped_ptr<CopyOutputRequest> copy_request;
base::CancelableClosure finished_read_pixels_callback;
unsigned buffer;
private:
DISALLOW_COPY_AND_ASSIGN(PendingAsyncReadPixels);
};
class GLRenderer::SyncQuery {
public:
explicit SyncQuery(gpu::gles2::GLES2Interface* gl)
: gl_(gl), query_id_(0u), weak_ptr_factory_(this) {
gl_->GenQueriesEXT(1, &query_id_);
}
virtual ~SyncQuery() { gl_->DeleteQueriesEXT(1, &query_id_); }
scoped_refptr<ResourceProvider::Fence> Begin() {
DCHECK(!weak_ptr_factory_.HasWeakPtrs() || !IsPending());
// Invalidate weak pointer held by old fence.
weak_ptr_factory_.InvalidateWeakPtrs();
gl_->BeginQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM, query_id_);
return make_scoped_refptr<ResourceProvider::Fence>(
new Fence(weak_ptr_factory_.GetWeakPtr()));
}
void End() { gl_->EndQueryEXT(GL_COMMANDS_COMPLETED_CHROMIUM); }
bool IsPending() {
unsigned available = 1;
gl_->GetQueryObjectuivEXT(
query_id_, GL_QUERY_RESULT_AVAILABLE_EXT, &available);
return !available;
}
void Wait() {
unsigned result = 0;
gl_->GetQueryObjectuivEXT(query_id_, GL_QUERY_RESULT_EXT, &result);
}
private:
class Fence : public ResourceProvider::Fence {
public:
explicit Fence(base::WeakPtr<GLRenderer::SyncQuery> query)
: query_(query) {}
// Overridden from ResourceProvider::Fence:
virtual bool HasPassed() OVERRIDE {
return !query_ || !query_->IsPending();
}
private:
virtual ~Fence() {}
base::WeakPtr<SyncQuery> query_;
DISALLOW_COPY_AND_ASSIGN(Fence);
};
gpu::gles2::GLES2Interface* gl_;
unsigned query_id_;
base::WeakPtrFactory<SyncQuery> weak_ptr_factory_;
DISALLOW_COPY_AND_ASSIGN(SyncQuery);
};
scoped_ptr<GLRenderer> GLRenderer::Create(
RendererClient* client,
const LayerTreeSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min) {
return make_scoped_ptr(new GLRenderer(client,
settings,
output_surface,
resource_provider,
texture_mailbox_deleter,
highp_threshold_min));
}
GLRenderer::GLRenderer(RendererClient* client,
const LayerTreeSettings* settings,
OutputSurface* output_surface,
ResourceProvider* resource_provider,
TextureMailboxDeleter* texture_mailbox_deleter,
int highp_threshold_min)
: DirectRenderer(client, settings, output_surface, resource_provider),
offscreen_framebuffer_id_(0),
shared_geometry_quad_(QuadVertexRect()),
gl_(output_surface->context_provider()->ContextGL()),
context_support_(output_surface->context_provider()->ContextSupport()),
texture_mailbox_deleter_(texture_mailbox_deleter),
is_backbuffer_discarded_(false),
is_scissor_enabled_(false),
scissor_rect_needs_reset_(true),
stencil_shadow_(false),
blend_shadow_(false),
highp_threshold_min_(highp_threshold_min),
highp_threshold_cache_(0),
use_sync_query_(false),
on_demand_tile_raster_resource_id_(0) {
DCHECK(gl_);
DCHECK(context_support_);
ContextProvider::Capabilities context_caps =
output_surface_->context_provider()->ContextCapabilities();
capabilities_.using_partial_swap =
settings_->partial_swap_enabled && context_caps.gpu.post_sub_buffer;
DCHECK(!context_caps.gpu.iosurface || context_caps.gpu.texture_rectangle);
capabilities_.using_egl_image = context_caps.gpu.egl_image_external;
capabilities_.max_texture_size = resource_provider_->max_texture_size();
capabilities_.best_texture_format = resource_provider_->best_texture_format();
// The updater can access textures while the GLRenderer is using them.
capabilities_.allow_partial_texture_updates = true;
// Check for texture fast paths. Currently we always use MO8 textures,
// so we only need to avoid POT textures if we have an NPOT fast-path.
capabilities_.avoid_pow2_textures = context_caps.gpu.fast_npot_mo8_textures;
capabilities_.using_map_image = context_caps.gpu.map_image;
capabilities_.using_discard_framebuffer =
context_caps.gpu.discard_framebuffer;
capabilities_.allow_rasterize_on_demand = true;
use_sync_query_ = context_caps.gpu.sync_query;
InitializeSharedObjects();
}
GLRenderer::~GLRenderer() {
while (!pending_async_read_pixels_.empty()) {
PendingAsyncReadPixels* pending_read = pending_async_read_pixels_.back();
pending_read->finished_read_pixels_callback.Cancel();
pending_async_read_pixels_.pop_back();
}
in_use_overlay_resources_.clear();
CleanupSharedObjects();
}
const RendererCapabilitiesImpl& GLRenderer::Capabilities() const {
return capabilities_;
}
void GLRenderer::DebugGLCall(GLES2Interface* gl,
const char* command,
const char* file,
int line) {
GLuint error = gl->GetError();
if (error != GL_NO_ERROR)
LOG(ERROR) << "GL command failed: File: " << file << "\n\tLine " << line
<< "\n\tcommand: " << command << ", error "
<< static_cast<int>(error) << "\n";
}
void GLRenderer::DidChangeVisibility() {
EnforceMemoryPolicy();
context_support_->SetSurfaceVisible(visible());
}
void GLRenderer::ReleaseRenderPassTextures() { render_pass_textures_.clear(); }
void GLRenderer::DiscardPixels(bool has_external_stencil_test,
bool draw_rect_covers_full_surface) {
if (has_external_stencil_test || !draw_rect_covers_full_surface ||
!capabilities_.using_discard_framebuffer)
return;
bool using_default_framebuffer =
!current_framebuffer_lock_ &&
output_surface_->capabilities().uses_default_gl_framebuffer;
GLenum attachments[] = {static_cast<GLenum>(
using_default_framebuffer ? GL_COLOR_EXT : GL_COLOR_ATTACHMENT0_EXT)};
gl_->DiscardFramebufferEXT(
GL_FRAMEBUFFER, arraysize(attachments), attachments);
}
void GLRenderer::ClearFramebuffer(DrawingFrame* frame,
bool has_external_stencil_test) {
// It's unsafe to clear when we have a stencil test because glClear ignores
// stencil.
if (has_external_stencil_test) {
DCHECK(!frame->current_render_pass->has_transparent_background);
return;
}
// On DEBUG builds, opaque render passes are cleared to blue to easily see
// regions that were not drawn on the screen.
if (frame->current_render_pass->has_transparent_background)
GLC(gl_, gl_->ClearColor(0, 0, 0, 0));
else
GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
bool always_clear = false;
#ifndef NDEBUG
always_clear = true;
#endif
if (always_clear || frame->current_render_pass->has_transparent_background) {
GLbitfield clear_bits = GL_COLOR_BUFFER_BIT;
if (always_clear)
clear_bits |= GL_STENCIL_BUFFER_BIT;
gl_->Clear(clear_bits);
}
}
void GLRenderer::BeginDrawingFrame(DrawingFrame* frame) {
if (frame->device_viewport_rect.IsEmpty())
return;
TRACE_EVENT0("cc", "GLRenderer::BeginDrawingFrame");
scoped_refptr<ResourceProvider::Fence> read_lock_fence;
if (use_sync_query_) {
// Block until oldest sync query has passed if the number of pending queries
// ever reach kMaxPendingSyncQueries.
if (pending_sync_queries_.size() >= kMaxPendingSyncQueries) {
LOG(ERROR) << "Reached limit of pending sync queries.";
pending_sync_queries_.front()->Wait();
DCHECK(!pending_sync_queries_.front()->IsPending());
}
while (!pending_sync_queries_.empty()) {
if (pending_sync_queries_.front()->IsPending())
break;
available_sync_queries_.push_back(pending_sync_queries_.take_front());
}
current_sync_query_ = available_sync_queries_.empty()
? make_scoped_ptr(new SyncQuery(gl_))
: available_sync_queries_.take_front();
read_lock_fence = current_sync_query_->Begin();
} else {
read_lock_fence = make_scoped_refptr(new FallbackFence(gl_));
}
resource_provider_->SetReadLockFence(read_lock_fence.get());
// TODO(enne): Do we need to reinitialize all of this state per frame?
ReinitializeGLState();
}
void GLRenderer::DoNoOp() {
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
GLC(gl_, gl_->Flush());
}
void GLRenderer::DoDrawQuad(DrawingFrame* frame, const DrawQuad* quad) {
DCHECK(quad->rect.Contains(quad->visible_rect));
if (quad->material != DrawQuad::TEXTURE_CONTENT) {
FlushTextureQuadCache();
}
switch (quad->material) {
case DrawQuad::INVALID:
NOTREACHED();
break;
case DrawQuad::CHECKERBOARD:
DrawCheckerboardQuad(frame, CheckerboardDrawQuad::MaterialCast(quad));
break;
case DrawQuad::DEBUG_BORDER:
DrawDebugBorderQuad(frame, DebugBorderDrawQuad::MaterialCast(quad));
break;
case DrawQuad::IO_SURFACE_CONTENT:
DrawIOSurfaceQuad(frame, IOSurfaceDrawQuad::MaterialCast(quad));
break;
case DrawQuad::PICTURE_CONTENT:
DrawPictureQuad(frame, PictureDrawQuad::MaterialCast(quad));
break;
case DrawQuad::RENDER_PASS:
DrawRenderPassQuad(frame, RenderPassDrawQuad::MaterialCast(quad));
break;
case DrawQuad::SOLID_COLOR:
DrawSolidColorQuad(frame, SolidColorDrawQuad::MaterialCast(quad));
break;
case DrawQuad::STREAM_VIDEO_CONTENT:
DrawStreamVideoQuad(frame, StreamVideoDrawQuad::MaterialCast(quad));
break;
case DrawQuad::SURFACE_CONTENT:
// Surface content should be fully resolved to other quad types before
// reaching a direct renderer.
NOTREACHED();
break;
case DrawQuad::TEXTURE_CONTENT:
EnqueueTextureQuad(frame, TextureDrawQuad::MaterialCast(quad));
break;
case DrawQuad::TILED_CONTENT:
DrawTileQuad(frame, TileDrawQuad::MaterialCast(quad));
break;
case DrawQuad::YUV_VIDEO_CONTENT:
DrawYUVVideoQuad(frame, YUVVideoDrawQuad::MaterialCast(quad));
break;
}
}
void GLRenderer::DrawCheckerboardQuad(const DrawingFrame* frame,
const CheckerboardDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
const TileCheckerboardProgram* program = GetTileCheckerboardProgram();
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
SkColor color = quad->color;
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().color_location(),
SkColorGetR(color) * (1.0f / 255.0f),
SkColorGetG(color) * (1.0f / 255.0f),
SkColorGetB(color) * (1.0f / 255.0f),
1));
const int checkerboard_width = 16;
float frequency = 1.0f / checkerboard_width;
gfx::Rect tile_rect = quad->rect;
float tex_offset_x = tile_rect.x() % checkerboard_width;
float tex_offset_y = tile_rect.y() % checkerboard_width;
float tex_scale_x = tile_rect.width();
float tex_scale_y = tile_rect.height();
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().tex_transform_location(),
tex_offset_x,
tex_offset_y,
tex_scale_x,
tex_scale_y));
GLC(gl_,
gl_->Uniform1f(program->fragment_shader().frequency_location(),
frequency));
SetShaderOpacity(quad->opacity(),
program->fragment_shader().alpha_location());
DrawQuadGeometry(frame,
quad->quadTransform(),
quad->rect,
program->vertex_shader().matrix_location());
}
void GLRenderer::DrawDebugBorderQuad(const DrawingFrame* frame,
const DebugBorderDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
const DebugBorderProgram* program = GetDebugBorderProgram();
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
// Use the full quad_rect for debug quads to not move the edges based on
// partial swaps.
gfx::Rect layer_rect = quad->rect;
gfx::Transform render_matrix;
QuadRectTransform(&render_matrix, quad->quadTransform(), layer_rect);
GLRenderer::ToGLMatrix(&gl_matrix[0],
frame->projection_matrix * render_matrix);
GLC(gl_,
gl_->UniformMatrix4fv(
program->vertex_shader().matrix_location(), 1, false, &gl_matrix[0]));
SkColor color = quad->color;
float alpha = SkColorGetA(color) * (1.0f / 255.0f);
GLC(gl_,
gl_->Uniform4f(program->fragment_shader().color_location(),
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
alpha));
GLC(gl_, gl_->LineWidth(quad->width));
// The indices for the line are stored in the same array as the triangle
// indices.
GLC(gl_, gl_->DrawElements(GL_LINE_LOOP, 4, GL_UNSIGNED_SHORT, 0));
}
static SkBitmap ApplyImageFilter(
scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
ResourceProvider* resource_provider,
const gfx::Point& origin,
SkImageFilter* filter,
ScopedResource* source_texture_resource) {
if (!filter)
return SkBitmap();
if (!use_gr_context)
return SkBitmap();
ResourceProvider::ScopedReadLockGL lock(resource_provider,
source_texture_resource->id());
// Wrap the source texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
backend_texture_description.fWidth = source_texture_resource->size().width();
backend_texture_description.fHeight =
source_texture_resource->size().height();
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fTextureHandle = lock.texture_id();
backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
skia::RefPtr<GrTexture> texture =
skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
backend_texture_description));
SkImageInfo info = {
source_texture_resource->size().width(),
source_texture_resource->size().height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
// Place the platform texture inside an SkBitmap.
SkBitmap source;
source.setInfo(info);
skia::RefPtr<SkGrPixelRef> pixel_ref =
skia::AdoptRef(new SkGrPixelRef(info, texture.get()));
source.setPixelRef(pixel_ref.get());
// Create a scratch texture for backing store.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fSampleCnt = 0;
desc.fWidth = source.width();
desc.fHeight = source.height();
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
GrAutoScratchTexture scratch_texture(
use_gr_context->context(), desc, GrContext::kExact_ScratchTexMatch);
skia::RefPtr<GrTexture> backing_store =
skia::AdoptRef(scratch_texture.detach());
if (backing_store.get() == NULL) {
TRACE_EVENT_INSTANT0("cc",
"ApplyImageFilter scratch texture allocation failed",
TRACE_EVENT_SCOPE_THREAD);
return SkBitmap();
}
// Create a device and canvas using that backing store.
skia::RefPtr<SkGpuDevice> device =
skia::AdoptRef(SkGpuDevice::Create(backing_store->asRenderTarget()));
DCHECK(device.get());
SkCanvas canvas(device.get());
// Draw the source bitmap through the filter to the canvas.
SkPaint paint;
paint.setImageFilter(filter);
canvas.clear(SK_ColorTRANSPARENT);
// TODO(senorblanco): in addition to the origin translation here, the canvas
// should also be scaled to accomodate device pixel ratio and pinch zoom. See
// crbug.com/281516 and crbug.com/281518.
canvas.translate(SkIntToScalar(-origin.x()), SkIntToScalar(-origin.y()));
canvas.drawSprite(source, 0, 0, &paint);
// Flush the GrContext to ensure all buffered GL calls are drawn to the
// backing store before we access and return it, and have cc begin using the
// GL context again.
use_gr_context->context()->flush();
return device->accessBitmap(false);
}
static SkBitmap ApplyBlendModeWithBackdrop(
scoped_ptr<GLRenderer::ScopedUseGrContext> use_gr_context,
ResourceProvider* resource_provider,
SkBitmap source_bitmap_with_filters,
ScopedResource* source_texture_resource,
ScopedResource* background_texture_resource,
SkXfermode::Mode blend_mode) {
if (!use_gr_context)
return source_bitmap_with_filters;
DCHECK(background_texture_resource);
DCHECK(source_texture_resource);
gfx::Size source_size = source_texture_resource->size();
gfx::Size background_size = background_texture_resource->size();
DCHECK_LE(background_size.width(), source_size.width());
DCHECK_LE(background_size.height(), source_size.height());
int source_texture_with_filters_id;
scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
if (source_bitmap_with_filters.getTexture()) {
DCHECK_EQ(source_size.width(), source_bitmap_with_filters.width());
DCHECK_EQ(source_size.height(), source_bitmap_with_filters.height());
GrTexture* texture =
reinterpret_cast<GrTexture*>(source_bitmap_with_filters.getTexture());
source_texture_with_filters_id = texture->getTextureHandle();
} else {
lock.reset(new ResourceProvider::ScopedReadLockGL(
resource_provider, source_texture_resource->id()));
source_texture_with_filters_id = lock->texture_id();
}
ResourceProvider::ScopedReadLockGL lock_background(
resource_provider, background_texture_resource->id());
// Wrap the source texture in a Ganesh platform texture.
GrBackendTextureDesc backend_texture_description;
backend_texture_description.fConfig = kSkia8888_GrPixelConfig;
backend_texture_description.fOrigin = kBottomLeft_GrSurfaceOrigin;
backend_texture_description.fWidth = source_size.width();
backend_texture_description.fHeight = source_size.height();
backend_texture_description.fTextureHandle = source_texture_with_filters_id;
skia::RefPtr<GrTexture> source_texture =
skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
backend_texture_description));
backend_texture_description.fWidth = background_size.width();
backend_texture_description.fHeight = background_size.height();
backend_texture_description.fTextureHandle = lock_background.texture_id();
skia::RefPtr<GrTexture> background_texture =
skia::AdoptRef(use_gr_context->context()->wrapBackendTexture(
backend_texture_description));
SkImageInfo source_info = {
source_size.width(),
source_size.height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
// Place the platform texture inside an SkBitmap.
SkBitmap source;
source.setInfo(source_info);
skia::RefPtr<SkGrPixelRef> source_pixel_ref =
skia::AdoptRef(new SkGrPixelRef(source_info, source_texture.get()));
source.setPixelRef(source_pixel_ref.get());
SkImageInfo background_info = {
background_size.width(),
background_size.height(),
kPMColor_SkColorType,
kPremul_SkAlphaType
};
SkBitmap background;
background.setInfo(background_info);
skia::RefPtr<SkGrPixelRef> background_pixel_ref =
skia::AdoptRef(new SkGrPixelRef(
background_info, background_texture.get()));
background.setPixelRef(background_pixel_ref.get());
// Create a scratch texture for backing store.
GrTextureDesc desc;
desc.fFlags = kRenderTarget_GrTextureFlagBit | kNoStencil_GrTextureFlagBit;
desc.fSampleCnt = 0;
desc.fWidth = source.width();
desc.fHeight = source.height();
desc.fConfig = kSkia8888_GrPixelConfig;
desc.fOrigin = kBottomLeft_GrSurfaceOrigin;
GrAutoScratchTexture scratch_texture(
use_gr_context->context(), desc, GrContext::kExact_ScratchTexMatch);
skia::RefPtr<GrTexture> backing_store =
skia::AdoptRef(scratch_texture.detach());
if (backing_store.get() == NULL) {
TRACE_EVENT_INSTANT0(
"cc",
"ApplyBlendModeWithBackdrop scratch texture allocation failed",
TRACE_EVENT_SCOPE_THREAD);
return source_bitmap_with_filters;
}
// Create a device and canvas using that backing store.
skia::RefPtr<SkGpuDevice> device =
skia::AdoptRef(SkGpuDevice::Create(backing_store->asRenderTarget()));
DCHECK(device.get());
SkCanvas canvas(device.get());
// Draw the source bitmap through the filter to the canvas.
canvas.clear(SK_ColorTRANSPARENT);
canvas.drawSprite(background, 0, 0);
SkPaint paint;
paint.setXfermodeMode(blend_mode);
canvas.drawSprite(source, 0, 0, &paint);
// Flush the GrContext to ensure all buffered GL calls are drawn to the
// backing store before we access and return it, and have cc begin using the
// GL context again.
use_gr_context->context()->flush();
return device->accessBitmap(false);
}
scoped_ptr<ScopedResource> GLRenderer::GetBackgroundWithFilters(
DrawingFrame* frame,
const RenderPassDrawQuad* quad,
const gfx::Transform& contents_device_transform,
const gfx::Transform& contents_device_transform_inverse,
bool* background_changed) {
// This method draws a background filter, which applies a filter to any pixels
// behind the quad and seen through its background. The algorithm works as
// follows:
// 1. Compute a bounding box around the pixels that will be visible through
// the quad.
// 2. Read the pixels in the bounding box into a buffer R.
// 3. Apply the background filter to R, so that it is applied in the pixels'
// coordinate space.
// 4. Apply the quad's inverse transform to map the pixels in R into the
// quad's content space. This implicitly clips R by the content bounds of the
// quad since the destination texture has bounds matching the quad's content.
// 5. Draw the background texture for the contents using the same transform as
// used to draw the contents itself. This is done without blending to replace
// the current background pixels with the new filtered background.
// 6. Draw the contents of the quad over drop of the new background with
// blending, as per usual. The filtered background pixels will show through
// any non-opaque pixels in this draws.
//
// Pixel copies in this algorithm occur at steps 2, 3, 4, and 5.
// TODO(danakj): When this algorithm changes, update
// LayerTreeHost::PrioritizeTextures() accordingly.
// TODO(danakj): We only allow background filters on an opaque render surface
// because other surfaces may contain translucent pixels, and the contents
// behind those translucent pixels wouldn't have the filter applied.
bool apply_background_filters =
!frame->current_render_pass->has_transparent_background;
DCHECK(!frame->current_texture);
// TODO(ajuma): Add support for reference filters once
// FilterOperations::GetOutsets supports reference filters.
if (apply_background_filters && quad->background_filters.HasReferenceFilter())
apply_background_filters = false;
// TODO(danakj): Do a single readback for both the surface and replica and
// cache the filtered results (once filter textures are not reused).
gfx::Rect window_rect = gfx::ToEnclosingRect(MathUtil::MapClippedRect(
contents_device_transform, SharedGeometryQuad().BoundingBox()));
int top, right, bottom, left;
quad->background_filters.GetOutsets(&top, &right, &bottom, &left);
window_rect.Inset(-left, -top, -right, -bottom);
window_rect.Intersect(
MoveFromDrawToWindowSpace(frame->current_render_pass->output_rect));
scoped_ptr<ScopedResource> device_background_texture =
ScopedResource::Create(resource_provider_);
// The TextureUsageFramebuffer hint makes ResourceProvider avoid immutable
// storage allocation (texStorage2DEXT) for this texture. copyTexImage2D fails
// when called on a texture having immutable storage.
device_background_texture->Allocate(
window_rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
{
ResourceProvider::ScopedWriteLockGL lock(resource_provider_,
device_background_texture->id());
GetFramebufferTexture(
lock.texture_id(), device_background_texture->format(), window_rect);
}
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->background_filters, device_background_texture->size());
SkBitmap filtered_device_background;
if (apply_background_filters) {
filtered_device_background =
ApplyImageFilter(ScopedUseGrContext::Create(this, frame),
resource_provider_,
quad->rect.origin(),
filter.get(),
device_background_texture.get());
}
*background_changed = (filtered_device_background.getTexture() != NULL);
int filtered_device_background_texture_id = 0;
scoped_ptr<ResourceProvider::ScopedReadLockGL> lock;
if (filtered_device_background.getTexture()) {
GrTexture* texture =
reinterpret_cast<GrTexture*>(filtered_device_background.getTexture());
filtered_device_background_texture_id = texture->getTextureHandle();
} else {
lock.reset(new ResourceProvider::ScopedReadLockGL(
resource_provider_, device_background_texture->id()));
filtered_device_background_texture_id = lock->texture_id();
}
scoped_ptr<ScopedResource> background_texture =
ScopedResource::Create(resource_provider_);
background_texture->Allocate(
quad->rect.size(), ResourceProvider::TextureUsageFramebuffer, RGBA_8888);
const RenderPass* target_render_pass = frame->current_render_pass;
bool using_background_texture =
UseScopedTexture(frame, background_texture.get(), quad->rect);
if (using_background_texture) {
// Copy the readback pixels from device to the background texture for the
// surface.
gfx::Transform device_to_framebuffer_transform;
QuadRectTransform(
&device_to_framebuffer_transform, gfx::Transform(), quad->rect);
device_to_framebuffer_transform.PreconcatTransform(
contents_device_transform_inverse);
#ifndef NDEBUG
GLC(gl_, gl_->ClearColor(0, 0, 1, 1));
gl_->Clear(GL_COLOR_BUFFER_BIT);
#endif
// The filtered_deveice_background_texture is oriented the same as the frame
// buffer. The transform we are copying with has a vertical flip, as well as
// the |device_to_framebuffer_transform|, which cancel each other out. So do
// not flip the contents in the shader to maintain orientation.
bool flip_vertically = false;
CopyTextureToFramebuffer(frame,
filtered_device_background_texture_id,
window_rect,
device_to_framebuffer_transform,
flip_vertically);
}
UseRenderPass(frame, target_render_pass);
if (!using_background_texture)
return scoped_ptr<ScopedResource>();
return background_texture.Pass();
}
void GLRenderer::DrawRenderPassQuad(DrawingFrame* frame,
const RenderPassDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
ScopedResource* contents_texture =
render_pass_textures_.get(quad->render_pass_id);
if (!contents_texture || !contents_texture->id())
return;
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
gfx::Transform contents_device_transform =
frame->window_matrix * frame->projection_matrix * quad_rect_matrix;
contents_device_transform.FlattenTo2d();
// Can only draw surface if device matrix is invertible.
gfx::Transform contents_device_transform_inverse(
gfx::Transform::kSkipInitialization);
if (!contents_device_transform.GetInverse(&contents_device_transform_inverse))
return;
bool need_background_texture =
quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode ||
!quad->background_filters.IsEmpty();
bool background_changed = false;
scoped_ptr<ScopedResource> background_texture;
if (need_background_texture) {
// The pixels from the filtered background should completely replace the
// current pixel values.
bool disable_blending = blend_enabled();
if (disable_blending)
SetBlendEnabled(false);
background_texture =
GetBackgroundWithFilters(frame,
quad,
contents_device_transform,
contents_device_transform_inverse,
&background_changed);
if (disable_blending)
SetBlendEnabled(true);
}
// TODO(senorblanco): Cache this value so that we don't have to do it for both
// the surface and its replica. Apply filters to the contents texture.
SkBitmap filter_bitmap;
SkScalar color_matrix[20];
bool use_color_matrix = false;
if (!quad->filters.IsEmpty()) {
skia::RefPtr<SkImageFilter> filter = RenderSurfaceFilters::BuildImageFilter(
quad->filters, contents_texture->size());
if (filter) {
skia::RefPtr<SkColorFilter> cf;
{
SkColorFilter* colorfilter_rawptr = NULL;
filter->asColorFilter(&colorfilter_rawptr);
cf = skia::AdoptRef(colorfilter_rawptr);
}
if (cf && cf->asColorMatrix(color_matrix) && !filter->getInput(0)) {
// We have a single color matrix as a filter; apply it locally
// in the compositor.
use_color_matrix = true;
} else {
filter_bitmap =
ApplyImageFilter(ScopedUseGrContext::Create(this, frame),
resource_provider_,
quad->rect.origin(),
filter.get(),
contents_texture);
}
}
}
if (quad->shared_quad_state->blend_mode != SkXfermode::kSrcOver_Mode &&
background_texture) {
filter_bitmap =
ApplyBlendModeWithBackdrop(ScopedUseGrContext::Create(this, frame),
resource_provider_,
filter_bitmap,
contents_texture,
background_texture.get(),
quad->shared_quad_state->blend_mode);
}
// Draw the background texture if it has some filters applied.
if (background_texture && background_changed) {
DCHECK(background_texture->size() == quad->rect.size());
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
background_texture->id());
// The background_texture is oriented the same as the frame buffer. The
// transform we are copying with has a vertical flip, so flip the contents
// in the shader to maintain orientation
bool flip_vertically = true;
CopyTextureToFramebuffer(frame,
lock.texture_id(),
quad->rect,
quad->quadTransform(),
flip_vertically);
}
bool clipped = false;
gfx::QuadF device_quad = MathUtil::MapQuad(
contents_device_transform, SharedGeometryQuad(), &clipped);
LayerQuad device_layer_bounds(gfx::QuadF(device_quad.BoundingBox()));
LayerQuad device_layer_edges(device_quad);
// Use anti-aliasing programs only when necessary.
bool use_aa =
!clipped && (!device_quad.IsRectilinear() ||
!gfx::IsNearestRectWithinDistance(device_quad.BoundingBox(),
kAntiAliasingEpsilon));
if (use_aa) {
device_layer_bounds.InflateAntiAliasingDistance();
device_layer_edges.InflateAntiAliasingDistance();
}
scoped_ptr<ResourceProvider::ScopedReadLockGL> mask_resource_lock;
unsigned mask_texture_id = 0;
if (quad->mask_resource_id) {
mask_resource_lock.reset(new ResourceProvider::ScopedReadLockGL(
resource_provider_, quad->mask_resource_id));
mask_texture_id = mask_resource_lock->texture_id();
}
// TODO(danakj): use the background_texture and blend the background in with
// this draw instead of having a separate copy of the background texture.
scoped_ptr<ResourceProvider::ScopedSamplerGL> contents_resource_lock;
if (filter_bitmap.getTexture()) {
GrTexture* texture =
reinterpret_cast<GrTexture*>(filter_bitmap.getTexture());
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
gl_->BindTexture(GL_TEXTURE_2D, texture->getTextureHandle());
} else {
contents_resource_lock =
make_scoped_ptr(new ResourceProvider::ScopedSamplerGL(
resource_provider_, contents_texture->id(), GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
contents_resource_lock->target());
}
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
int shader_quad_location = -1;
int shader_edge_location = -1;
int shader_viewport_location = -1;
int shader_mask_sampler_location = -1;
int shader_mask_tex_coord_scale_location = -1;
int shader_mask_tex_coord_offset_location = -1;
int shader_matrix_location = -1;
int shader_alpha_location = -1;
int shader_color_matrix_location = -1;
int shader_color_offset_location = -1;
int shader_tex_transform_location = -1;
if (use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgramAA* program =
GetRenderPassMaskProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_quad_location = program->vertex_shader().quad_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (!use_aa && mask_texture_id && !use_color_matrix) {
const RenderPassMaskProgram* program =
GetRenderPassMaskProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (use_aa && !mask_texture_id && !use_color_matrix) {
const RenderPassProgramAA* program =
GetRenderPassProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_quad_location = program->vertex_shader().quad_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
} else if (use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgramAA* program =
GetRenderPassMaskColorMatrixProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_quad_location = program->vertex_shader().quad_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgramAA* program =
GetRenderPassColorMatrixProgramAA(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_quad_location = program->vertex_shader().quad_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_edge_location = program->vertex_shader().edge_location();
shader_viewport_location = program->vertex_shader().viewport_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (!use_aa && mask_texture_id && use_color_matrix) {
const RenderPassMaskColorMatrixProgram* program =
GetRenderPassMaskColorMatrixProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_mask_sampler_location =
program->fragment_shader().mask_sampler_location();
shader_mask_tex_coord_scale_location =
program->fragment_shader().mask_tex_coord_scale_location();
shader_mask_tex_coord_offset_location =
program->fragment_shader().mask_tex_coord_offset_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else if (!use_aa && !mask_texture_id && use_color_matrix) {
const RenderPassColorMatrixProgram* program =
GetRenderPassColorMatrixProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_color_matrix_location =
program->fragment_shader().color_matrix_location();
shader_color_offset_location =
program->fragment_shader().color_offset_location();
} else {
const RenderPassProgram* program =
GetRenderPassProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
shader_matrix_location = program->vertex_shader().matrix_location();
shader_alpha_location = program->fragment_shader().alpha_location();
shader_tex_transform_location =
program->vertex_shader().tex_transform_location();
}
float tex_scale_x =
quad->rect.width() / static_cast<float>(contents_texture->size().width());
float tex_scale_y = quad->rect.height() /
static_cast<float>(contents_texture->size().height());
DCHECK_LE(tex_scale_x, 1.0f);
DCHECK_LE(tex_scale_y, 1.0f);
DCHECK(shader_tex_transform_location != -1 || IsContextLost());
// Flip the content vertically in the shader, as the RenderPass input
// texture is already oriented the same way as the framebuffer, but the
// projection transform does a flip.
GLC(gl_,
gl_->Uniform4f(shader_tex_transform_location,
0.0f,
tex_scale_y,
tex_scale_x,
-tex_scale_y));
scoped_ptr<ResourceProvider::ScopedSamplerGL> shader_mask_sampler_lock;
if (shader_mask_sampler_location != -1) {
DCHECK_NE(shader_mask_tex_coord_scale_location, 1);
DCHECK_NE(shader_mask_tex_coord_offset_location, 1);
GLC(gl_, gl_->Uniform1i(shader_mask_sampler_location, 1));
float mask_tex_scale_x = quad->mask_uv_rect.width() / tex_scale_x;
float mask_tex_scale_y = quad->mask_uv_rect.height() / tex_scale_y;
// Mask textures are oriented vertically flipped relative to the framebuffer
// and the RenderPass contents texture, so we flip the tex coords from the
// RenderPass texture to find the mask texture coords.
GLC(gl_,
gl_->Uniform2f(shader_mask_tex_coord_offset_location,
quad->mask_uv_rect.x(),
quad->mask_uv_rect.y() + quad->mask_uv_rect.height()));
GLC(gl_,
gl_->Uniform2f(shader_mask_tex_coord_scale_location,
mask_tex_scale_x,
-mask_tex_scale_y));
shader_mask_sampler_lock = make_scoped_ptr(
new ResourceProvider::ScopedSamplerGL(resource_provider_,
quad->mask_resource_id,
GL_TEXTURE1,
GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D),
shader_mask_sampler_lock->target());
}
if (shader_edge_location != -1) {
float edge[24];
device_layer_edges.ToFloatArray(edge);
device_layer_bounds.ToFloatArray(&edge[12]);
GLC(gl_, gl_->Uniform3fv(shader_edge_location, 8, edge));
}
if (shader_viewport_location != -1) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(shader_viewport_location, 1, viewport));
}
if (shader_color_matrix_location != -1) {
float matrix[16];
for (int i = 0; i < 4; ++i) {
for (int j = 0; j < 4; ++j)
matrix[i * 4 + j] = SkScalarToFloat(color_matrix[j * 5 + i]);
}
GLC(gl_,
gl_->UniformMatrix4fv(shader_color_matrix_location, 1, false, matrix));
}
static const float kScale = 1.0f / 255.0f;
if (shader_color_offset_location != -1) {
float offset[4];
for (int i = 0; i < 4; ++i)
offset[i] = SkScalarToFloat(color_matrix[i * 5 + 4]) * kScale;
GLC(gl_, gl_->Uniform4fv(shader_color_offset_location, 1, offset));
}
// Map device space quad to surface space. contents_device_transform has no 3d
// component since it was flattened, so we don't need to project.
gfx::QuadF surface_quad = MathUtil::MapQuad(contents_device_transform_inverse,
device_layer_edges.ToQuadF(),
&clipped);
SetShaderOpacity(quad->opacity(), shader_alpha_location);
SetShaderQuadF(surface_quad, shader_quad_location);
DrawQuadGeometry(
frame, quad->quadTransform(), quad->rect, shader_matrix_location);
// Flush the compositor context before the filter bitmap goes out of
// scope, so the draw gets processed before the filter texture gets deleted.
if (filter_bitmap.getTexture())
GLC(gl_, gl_->Flush());
}
struct SolidColorProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned color_location;
};
template <class T>
static void SolidColorUniformLocation(T program,
SolidColorProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->color_location = program->fragment_shader().color_location();
}
// static
bool GLRenderer::SetupQuadForAntialiasing(
const gfx::Transform& device_transform,
const DrawQuad* quad,
gfx::QuadF* local_quad,
float edge[24]) {
gfx::Rect tile_rect = quad->visible_rect;
bool clipped = false;
gfx::QuadF device_layer_quad = MathUtil::MapQuad(
device_transform, gfx::QuadF(quad->visibleContentRect()), &clipped);
bool is_axis_aligned_in_target = device_layer_quad.IsRectilinear();
bool is_nearest_rect_within_epsilon =
is_axis_aligned_in_target &&
gfx::IsNearestRectWithinDistance(device_layer_quad.BoundingBox(),
kAntiAliasingEpsilon);
// AAing clipped quads is not supported by the code yet.
bool use_aa = !clipped && !is_nearest_rect_within_epsilon && quad->IsEdge();
if (!use_aa)
return false;
LayerQuad device_layer_bounds(gfx::QuadF(device_layer_quad.BoundingBox()));
device_layer_bounds.InflateAntiAliasingDistance();
LayerQuad device_layer_edges(device_layer_quad);
device_layer_edges.InflateAntiAliasingDistance();
device_layer_edges.ToFloatArray(edge);
device_layer_bounds.ToFloatArray(&edge[12]);
gfx::PointF bottom_right = tile_rect.bottom_right();
gfx::PointF bottom_left = tile_rect.bottom_left();
gfx::PointF top_left = tile_rect.origin();
gfx::PointF top_right = tile_rect.top_right();
// Map points to device space.
bottom_right = MathUtil::MapPoint(device_transform, bottom_right, &clipped);
DCHECK(!clipped);
bottom_left = MathUtil::MapPoint(device_transform, bottom_left, &clipped);
DCHECK(!clipped);
top_left = MathUtil::MapPoint(device_transform, top_left, &clipped);
DCHECK(!clipped);
top_right = MathUtil::MapPoint(device_transform, top_right, &clipped);
DCHECK(!clipped);
LayerQuad::Edge bottom_edge(bottom_right, bottom_left);
LayerQuad::Edge left_edge(bottom_left, top_left);
LayerQuad::Edge top_edge(top_left, top_right);
LayerQuad::Edge right_edge(top_right, bottom_right);
// Only apply anti-aliasing to edges not clipped by culling or scissoring.
if (quad->IsTopEdge() && tile_rect.y() == quad->rect.y())
top_edge = device_layer_edges.top();
if (quad->IsLeftEdge() && tile_rect.x() == quad->rect.x())
left_edge = device_layer_edges.left();
if (quad->IsRightEdge() && tile_rect.right() == quad->rect.right())
right_edge = device_layer_edges.right();
if (quad->IsBottomEdge() && tile_rect.bottom() == quad->rect.bottom())
bottom_edge = device_layer_edges.bottom();
float sign = gfx::QuadF(tile_rect).IsCounterClockwise() ? -1 : 1;
bottom_edge.scale(sign);
left_edge.scale(sign);
top_edge.scale(sign);
right_edge.scale(sign);
// Create device space quad.
LayerQuad device_quad(left_edge, top_edge, right_edge, bottom_edge);
// Map device space quad to local space. device_transform has no 3d
// component since it was flattened, so we don't need to project. We should
// have already checked that the transform was uninvertible above.
gfx::Transform inverse_device_transform(gfx::Transform::kSkipInitialization);
bool did_invert = device_transform.GetInverse(&inverse_device_transform);
DCHECK(did_invert);
*local_quad = MathUtil::MapQuad(
inverse_device_transform, device_quad.ToQuadF(), &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return true;
}
void GLRenderer::DrawSolidColorQuad(const DrawingFrame* frame,
const SolidColorDrawQuad* quad) {
gfx::Rect tile_rect = quad->visible_rect;
SkColor color = quad->color;
float opacity = quad->opacity();
float alpha = (SkColorGetA(color) * (1.0f / 255.0f)) * opacity;
// Early out if alpha is small enough that quad doesn't contribute to output.
if (alpha < std::numeric_limits<float>::epsilon() &&
quad->ShouldDrawWithBlending())
return;
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix * quad->quadTransform();
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
bool use_aa =
settings_->allow_antialiasing && !quad->force_anti_aliasing_off &&
SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
SolidColorProgramUniforms uniforms;
if (use_aa)
SolidColorUniformLocation(GetSolidColorProgramAA(), &uniforms);
else
SolidColorUniformLocation(GetSolidColorProgram(), &uniforms);
SetUseProgram(uniforms.program);
GLC(gl_,
gl_->Uniform4f(uniforms.color_location,
(SkColorGetR(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetG(color) * (1.0f / 255.0f)) * alpha,
(SkColorGetB(color) * (1.0f / 255.0f)) * alpha,
alpha));
if (use_aa) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
tile_rect.size());
DrawQuadGeometry(
frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
}
struct TileProgramUniforms {
unsigned program;
unsigned matrix_location;
unsigned viewport_location;
unsigned quad_location;
unsigned edge_location;
unsigned vertex_tex_transform_location;
unsigned sampler_location;
unsigned fragment_tex_transform_location;
unsigned alpha_location;
};
template <class T>
static void TileUniformLocation(T program, TileProgramUniforms* uniforms) {
uniforms->program = program->program();
uniforms->matrix_location = program->vertex_shader().matrix_location();
uniforms->viewport_location = program->vertex_shader().viewport_location();
uniforms->quad_location = program->vertex_shader().quad_location();
uniforms->edge_location = program->vertex_shader().edge_location();
uniforms->vertex_tex_transform_location =
program->vertex_shader().vertex_tex_transform_location();
uniforms->sampler_location = program->fragment_shader().sampler_location();
uniforms->alpha_location = program->fragment_shader().alpha_location();
uniforms->fragment_tex_transform_location =
program->fragment_shader().fragment_tex_transform_location();
}
void GLRenderer::DrawTileQuad(const DrawingFrame* frame,
const TileDrawQuad* quad) {
DrawContentQuad(frame, quad, quad->resource_id);
}
void GLRenderer::DrawContentQuad(const DrawingFrame* frame,
const ContentDrawQuadBase* quad,
ResourceProvider::ResourceId resource_id) {
gfx::Rect tile_rect = quad->visible_rect;
gfx::RectF tex_coord_rect = MathUtil::ScaleRectProportional(
quad->tex_coord_rect, quad->rect, tile_rect);
float tex_to_geom_scale_x = quad->rect.width() / quad->tex_coord_rect.width();
float tex_to_geom_scale_y =
quad->rect.height() / quad->tex_coord_rect.height();
gfx::RectF clamp_geom_rect(tile_rect);
gfx::RectF clamp_tex_rect(tex_coord_rect);
// Clamp texture coordinates to avoid sampling outside the layer
// by deflating the tile region half a texel or half a texel
// minus epsilon for one pixel layers. The resulting clamp region
// is mapped to the unit square by the vertex shader and mapped
// back to normalized texture coordinates by the fragment shader
// after being clamped to 0-1 range.
float tex_clamp_x =
std::min(0.5f, 0.5f * clamp_tex_rect.width() - kAntiAliasingEpsilon);
float tex_clamp_y =
std::min(0.5f, 0.5f * clamp_tex_rect.height() - kAntiAliasingEpsilon);
float geom_clamp_x =
std::min(tex_clamp_x * tex_to_geom_scale_x,
0.5f * clamp_geom_rect.width() - kAntiAliasingEpsilon);
float geom_clamp_y =
std::min(tex_clamp_y * tex_to_geom_scale_y,
0.5f * clamp_geom_rect.height() - kAntiAliasingEpsilon);
clamp_geom_rect.Inset(geom_clamp_x, geom_clamp_y, geom_clamp_x, geom_clamp_y);
clamp_tex_rect.Inset(tex_clamp_x, tex_clamp_y, tex_clamp_x, tex_clamp_y);
// Map clamping rectangle to unit square.
float vertex_tex_translate_x = -clamp_geom_rect.x() / clamp_geom_rect.width();
float vertex_tex_translate_y =
-clamp_geom_rect.y() / clamp_geom_rect.height();
float vertex_tex_scale_x = tile_rect.width() / clamp_geom_rect.width();
float vertex_tex_scale_y = tile_rect.height() / clamp_geom_rect.height();
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, quad->texture_size);
gfx::Transform device_transform =
frame->window_matrix * frame->projection_matrix * quad->quadTransform();
device_transform.FlattenTo2d();
if (!device_transform.IsInvertible())
return;
gfx::QuadF local_quad = gfx::QuadF(gfx::RectF(tile_rect));
float edge[24];
bool use_aa =
settings_->allow_antialiasing &&
SetupQuadForAntialiasing(device_transform, quad, &local_quad, edge);
bool scaled = (tex_to_geom_scale_x != 1.f || tex_to_geom_scale_y != 1.f);
GLenum filter = (use_aa || scaled ||
!quad->quadTransform().IsIdentityOrIntegerTranslation())
? GL_LINEAR
: GL_NEAREST;
ResourceProvider::ScopedSamplerGL quad_resource_lock(
resource_provider_, resource_id, filter);
SamplerType sampler =
SamplerTypeFromTextureTarget(quad_resource_lock.target());
float fragment_tex_translate_x = clamp_tex_rect.x();
float fragment_tex_translate_y = clamp_tex_rect.y();
float fragment_tex_scale_x = clamp_tex_rect.width();
float fragment_tex_scale_y = clamp_tex_rect.height();
// Map to normalized texture coordinates.
if (sampler != SamplerType2DRect) {
gfx::Size texture_size = quad->texture_size;
DCHECK(!texture_size.IsEmpty());
fragment_tex_translate_x /= texture_size.width();
fragment_tex_translate_y /= texture_size.height();
fragment_tex_scale_x /= texture_size.width();
fragment_tex_scale_y /= texture_size.height();
}
TileProgramUniforms uniforms;
if (use_aa) {
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzleAA(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgramAA(tex_coord_precision, sampler),
&uniforms);
}
} else {
if (quad->ShouldDrawWithBlending()) {
if (quad->swizzle_contents) {
TileUniformLocation(GetTileProgramSwizzle(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgram(tex_coord_precision, sampler),
&uniforms);
}
} else {
if (quad->swizzle_contents) {
TileUniformLocation(
GetTileProgramSwizzleOpaque(tex_coord_precision, sampler),
&uniforms);
} else {
TileUniformLocation(GetTileProgramOpaque(tex_coord_precision, sampler),
&uniforms);
}
}
}
SetUseProgram(uniforms.program);
GLC(gl_, gl_->Uniform1i(uniforms.sampler_location, 0));
if (use_aa) {
float viewport[4] = {static_cast<float>(viewport_.x()),
static_cast<float>(viewport_.y()),
static_cast<float>(viewport_.width()),
static_cast<float>(viewport_.height()), };
GLC(gl_, gl_->Uniform4fv(uniforms.viewport_location, 1, viewport));
GLC(gl_, gl_->Uniform3fv(uniforms.edge_location, 8, edge));
GLC(gl_,
gl_->Uniform4f(uniforms.vertex_tex_transform_location,
vertex_tex_translate_x,
vertex_tex_translate_y,
vertex_tex_scale_x,
vertex_tex_scale_y));
GLC(gl_,
gl_->Uniform4f(uniforms.fragment_tex_transform_location,
fragment_tex_translate_x,
fragment_tex_translate_y,
fragment_tex_scale_x,
fragment_tex_scale_y));
} else {
// Move fragment shader transform to vertex shader. We can do this while
// still producing correct results as fragment_tex_transform_location
// should always be non-negative when tiles are transformed in a way
// that could result in sampling outside the layer.
vertex_tex_scale_x *= fragment_tex_scale_x;
vertex_tex_scale_y *= fragment_tex_scale_y;
vertex_tex_translate_x *= fragment_tex_scale_x;
vertex_tex_translate_y *= fragment_tex_scale_y;
vertex_tex_translate_x += fragment_tex_translate_x;
vertex_tex_translate_y += fragment_tex_translate_y;
GLC(gl_,
gl_->Uniform4f(uniforms.vertex_tex_transform_location,
vertex_tex_translate_x,
vertex_tex_translate_y,
vertex_tex_scale_x,
vertex_tex_scale_y));
}
// Enable blending when the quad properties require it or if we decided
// to use antialiasing.
SetBlendEnabled(quad->ShouldDrawWithBlending() || use_aa);
// Normalize to tile_rect.
local_quad.Scale(1.0f / tile_rect.width(), 1.0f / tile_rect.height());
SetShaderOpacity(quad->opacity(), uniforms.alpha_location);
SetShaderQuadF(local_quad, uniforms.quad_location);
// The transform and vertex data are used to figure out the extents that the
// un-antialiased quad should have and which vertex this is and the float
// quad passed in via uniform is the actual geometry that gets used to draw
// it. This is why this centered rect is used and not the original quad_rect.
gfx::RectF centered_rect(
gfx::PointF(-0.5f * tile_rect.width(), -0.5f * tile_rect.height()),
tile_rect.size());
DrawQuadGeometry(
frame, quad->quadTransform(), centered_rect, uniforms.matrix_location);
}
void GLRenderer::DrawYUVVideoQuad(const DrawingFrame* frame,
const YUVVideoDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
bool use_alpha_plane = quad->a_plane_resource_id != 0;
ResourceProvider::ScopedSamplerGL y_plane_lock(
resource_provider_, quad->y_plane_resource_id, GL_TEXTURE1, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), y_plane_lock.target());
ResourceProvider::ScopedSamplerGL u_plane_lock(
resource_provider_, quad->u_plane_resource_id, GL_TEXTURE2, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), u_plane_lock.target());
ResourceProvider::ScopedSamplerGL v_plane_lock(
resource_provider_, quad->v_plane_resource_id, GL_TEXTURE3, GL_LINEAR);
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), v_plane_lock.target());
scoped_ptr<ResourceProvider::ScopedSamplerGL> a_plane_lock;
if (use_alpha_plane) {
a_plane_lock.reset(new ResourceProvider::ScopedSamplerGL(
resource_provider_, quad->a_plane_resource_id, GL_TEXTURE4, GL_LINEAR));
DCHECK_EQ(static_cast<GLenum>(GL_TEXTURE_2D), a_plane_lock->target());
}
int matrix_location = -1;
int tex_scale_location = -1;
int tex_offset_location = -1;
int y_texture_location = -1;
int u_texture_location = -1;
int v_texture_location = -1;
int a_texture_location = -1;
int yuv_matrix_location = -1;
int yuv_adj_location = -1;
int alpha_location = -1;
if (use_alpha_plane) {
const VideoYUVAProgram* program = GetVideoYUVAProgram(tex_coord_precision);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
matrix_location = program->vertex_shader().matrix_location();
tex_scale_location = program->vertex_shader().tex_scale_location();
tex_offset_location = program->vertex_shader().tex_offset_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
a_texture_location = program->fragment_shader().a_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
alpha_location = program->fragment_shader().alpha_location();
} else {
const VideoYUVProgram* program = GetVideoYUVProgram(tex_coord_precision);
DCHECK(program && (program->initialized() || IsContextLost()));
SetUseProgram(program->program());
matrix_location = program->vertex_shader().matrix_location();
tex_scale_location = program->vertex_shader().tex_scale_location();
tex_offset_location = program->vertex_shader().tex_offset_location();
y_texture_location = program->fragment_shader().y_texture_location();
u_texture_location = program->fragment_shader().u_texture_location();
v_texture_location = program->fragment_shader().v_texture_location();
yuv_matrix_location = program->fragment_shader().yuv_matrix_location();
yuv_adj_location = program->fragment_shader().yuv_adj_location();
alpha_location = program->fragment_shader().alpha_location();
}
GLC(gl_,
gl_->Uniform2f(tex_scale_location,
quad->tex_coord_rect.width(),
quad->tex_coord_rect.height()));
GLC(gl_,
gl_->Uniform2f(tex_offset_location,
quad->tex_coord_rect.x(),
quad->tex_coord_rect.y()));
GLC(gl_, gl_->Uniform1i(y_texture_location, 1));
GLC(gl_, gl_->Uniform1i(u_texture_location, 2));
GLC(gl_, gl_->Uniform1i(v_texture_location, 3));
if (use_alpha_plane)
GLC(gl_, gl_->Uniform1i(a_texture_location, 4));
// These values are magic numbers that are used in the transformation from YUV
// to RGB color values. They are taken from the following webpage:
// http://www.fourcc.org/fccyvrgb.php
float yuv_to_rgb_rec601[9] = {
1.164f, 1.164f, 1.164f, 0.0f, -.391f, 2.018f, 1.596f, -.813f, 0.0f,
};
float yuv_to_rgb_rec601_jpeg[9] = {
1.f, 1.f, 1.f, 0.0f, -.34414f, 1.772f, 1.402f, -.71414f, 0.0f,
};
// These values map to 16, 128, and 128 respectively, and are computed
// as a fraction over 256 (e.g. 16 / 256 = 0.0625).
// They are used in the YUV to RGBA conversion formula:
// Y - 16 : Gives 16 values of head and footroom for overshooting
// U - 128 : Turns unsigned U into signed U [-128,127]
// V - 128 : Turns unsigned V into signed V [-128,127]
float yuv_adjust_rec601[3] = {
-0.0625f, -0.5f, -0.5f,
};
// Same as above, but without the head and footroom.
float yuv_adjust_rec601_jpeg[3] = {
0.0f, -0.5f, -0.5f,
};
float* yuv_to_rgb = NULL;
float* yuv_adjust = NULL;
switch (quad->color_space) {
case YUVVideoDrawQuad::REC_601:
yuv_to_rgb = yuv_to_rgb_rec601;
yuv_adjust = yuv_adjust_rec601;
break;
case YUVVideoDrawQuad::REC_601_JPEG:
yuv_to_rgb = yuv_to_rgb_rec601_jpeg;
yuv_adjust = yuv_adjust_rec601_jpeg;
break;
}
GLC(gl_, gl_->UniformMatrix3fv(yuv_matrix_location, 1, 0, yuv_to_rgb));
GLC(gl_, gl_->Uniform3fv(yuv_adj_location, 1, yuv_adjust));
SetShaderOpacity(quad->opacity(), alpha_location);
DrawQuadGeometry(frame, quad->quadTransform(), quad->rect, matrix_location);
}
void GLRenderer::DrawStreamVideoQuad(const DrawingFrame* frame,
const StreamVideoDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
static float gl_matrix[16];
DCHECK(capabilities_.using_egl_image);
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
const VideoStreamTextureProgram* program =
GetVideoStreamTextureProgram(tex_coord_precision);
SetUseProgram(program->program());
ToGLMatrix(&gl_matrix[0], quad->matrix);
GLC(gl_,
gl_->UniformMatrix4fv(
program->vertex_shader().tex_matrix_location(), 1, false, gl_matrix));
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_EXTERNAL_OES, lock.texture_id()));
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
SetShaderOpacity(quad->opacity(),
program->fragment_shader().alpha_location());
DrawQuadGeometry(frame,
quad->quadTransform(),
quad->rect,
program->vertex_shader().matrix_location());
}
void GLRenderer::DrawPictureQuad(const DrawingFrame* frame,
const PictureDrawQuad* quad) {
if (on_demand_tile_raster_bitmap_.width() != quad->texture_size.width() ||
on_demand_tile_raster_bitmap_.height() != quad->texture_size.height()) {
on_demand_tile_raster_bitmap_.allocN32Pixels(quad->texture_size.width(),
quad->texture_size.height());
if (on_demand_tile_raster_resource_id_)
resource_provider_->DeleteResource(on_demand_tile_raster_resource_id_);
on_demand_tile_raster_resource_id_ =
resource_provider_->CreateGLTexture(quad->texture_size,
GL_TEXTURE_2D,
GL_TEXTURE_POOL_UNMANAGED_CHROMIUM,
GL_CLAMP_TO_EDGE,
ResourceProvider::TextureUsageAny,
quad->texture_format);
}
// Create and run on-demand raster task for tile.
scoped_refptr<Task> on_demand_raster_task(
new OnDemandRasterTaskImpl(quad->picture_pile,
&on_demand_tile_raster_bitmap_,
quad->content_rect,
quad->contents_scale));
client_->RunOnDemandRasterTask(on_demand_raster_task.get());
uint8_t* bitmap_pixels = NULL;
SkBitmap on_demand_tile_raster_bitmap_dest;
SkColorType colorType = ResourceFormatToSkColorType(quad->texture_format);
if (on_demand_tile_raster_bitmap_.colorType() != colorType) {
on_demand_tile_raster_bitmap_.copyTo(&on_demand_tile_raster_bitmap_dest,
colorType);
// TODO(kaanb): The GL pipeline assumes a 4-byte alignment for the
// bitmap data. This check will be removed once crbug.com/293728 is fixed.
CHECK_EQ(0u, on_demand_tile_raster_bitmap_dest.rowBytes() % 4);
bitmap_pixels = reinterpret_cast<uint8_t*>(
on_demand_tile_raster_bitmap_dest.getPixels());
} else {
bitmap_pixels =
reinterpret_cast<uint8_t*>(on_demand_tile_raster_bitmap_.getPixels());
}
resource_provider_->SetPixels(on_demand_tile_raster_resource_id_,
bitmap_pixels,
gfx::Rect(quad->texture_size),
gfx::Rect(quad->texture_size),
gfx::Vector2d());
DrawContentQuad(frame, quad, on_demand_tile_raster_resource_id_);
}
struct TextureProgramBinding {
template <class Program>
void Set(Program* program) {
DCHECK(program);
program_id = program->program();
sampler_location = program->fragment_shader().sampler_location();
matrix_location = program->vertex_shader().matrix_location();
background_color_location =
program->fragment_shader().background_color_location();
}
int program_id;
int sampler_location;
int matrix_location;
int background_color_location;
};
struct TexTransformTextureProgramBinding : TextureProgramBinding {
template <class Program>
void Set(Program* program) {
TextureProgramBinding::Set(program);
tex_transform_location = program->vertex_shader().tex_transform_location();
vertex_opacity_location =
program->vertex_shader().vertex_opacity_location();
}
int tex_transform_location;
int vertex_opacity_location;
};
void GLRenderer::FlushTextureQuadCache() {
// Check to see if we have anything to draw.
if (draw_cache_.program_id == 0)
return;
// Set the correct blending mode.
SetBlendEnabled(draw_cache_.needs_blending);
// Bind the program to the GL state.
SetUseProgram(draw_cache_.program_id);
// Bind the correct texture sampler location.
GLC(gl_, gl_->Uniform1i(draw_cache_.sampler_location, 0));
// Assume the current active textures is 0.
ResourceProvider::ScopedReadLockGL locked_quad(resource_provider_,
draw_cache_.resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, locked_quad.texture_id()));
COMPILE_ASSERT(sizeof(Float4) == 4 * sizeof(float), struct_is_densely_packed);
COMPILE_ASSERT(sizeof(Float16) == 16 * sizeof(float),
struct_is_densely_packed);
// Upload the tranforms for both points and uvs.
GLC(gl_,
gl_->UniformMatrix4fv(
static_cast<int>(draw_cache_.matrix_location),
static_cast<int>(draw_cache_.matrix_data.size()),
false,
reinterpret_cast<float*>(&draw_cache_.matrix_data.front())));
GLC(gl_,
gl_->Uniform4fv(
static_cast<int>(draw_cache_.uv_xform_location),
static_cast<int>(draw_cache_.uv_xform_data.size()),
reinterpret_cast<float*>(&draw_cache_.uv_xform_data.front())));
if (draw_cache_.background_color != SK_ColorTRANSPARENT) {
Float4 background_color = PremultipliedColor(draw_cache_.background_color);
GLC(gl_,
gl_->Uniform4fv(
draw_cache_.background_color_location, 1, background_color.data));
}
GLC(gl_,
gl_->Uniform1fv(
static_cast<int>(draw_cache_.vertex_opacity_location),
static_cast<int>(draw_cache_.vertex_opacity_data.size()),
static_cast<float*>(&draw_cache_.vertex_opacity_data.front())));
// Draw the quads!
GLC(gl_,
gl_->DrawElements(GL_TRIANGLES,
6 * draw_cache_.matrix_data.size(),
GL_UNSIGNED_SHORT,
0));
// Clear the cache.
draw_cache_.program_id = 0;
draw_cache_.uv_xform_data.resize(0);
draw_cache_.vertex_opacity_data.resize(0);
draw_cache_.matrix_data.resize(0);
}
void GLRenderer::EnqueueTextureQuad(const DrawingFrame* frame,
const TextureDrawQuad* quad) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
// Choose the correct texture program binding
TexTransformTextureProgramBinding binding;
if (quad->premultiplied_alpha) {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(GetTextureProgram(tex_coord_precision));
} else {
binding.Set(GetTextureBackgroundProgram(tex_coord_precision));
}
} else {
if (quad->background_color == SK_ColorTRANSPARENT) {
binding.Set(GetNonPremultipliedTextureProgram(tex_coord_precision));
} else {
binding.Set(
GetNonPremultipliedTextureBackgroundProgram(tex_coord_precision));
}
}
int resource_id = quad->resource_id;
if (draw_cache_.program_id != binding.program_id ||
draw_cache_.resource_id != resource_id ||
draw_cache_.needs_blending != quad->ShouldDrawWithBlending() ||
draw_cache_.background_color != quad->background_color ||
draw_cache_.matrix_data.size() >= 8) {
FlushTextureQuadCache();
draw_cache_.program_id = binding.program_id;
draw_cache_.resource_id = resource_id;
draw_cache_.needs_blending = quad->ShouldDrawWithBlending();
draw_cache_.background_color = quad->background_color;
draw_cache_.uv_xform_location = binding.tex_transform_location;
draw_cache_.background_color_location = binding.background_color_location;
draw_cache_.vertex_opacity_location = binding.vertex_opacity_location;
draw_cache_.matrix_location = binding.matrix_location;
draw_cache_.sampler_location = binding.sampler_location;
}
// Generate the uv-transform
draw_cache_.uv_xform_data.push_back(UVTransform(quad));
// Generate the vertex opacity
const float opacity = quad->opacity();
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[0] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[1] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[2] * opacity);
draw_cache_.vertex_opacity_data.push_back(quad->vertex_opacity[3] * opacity);
// Generate the transform matrix
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, quad->quadTransform(), quad->rect);
quad_rect_matrix = frame->projection_matrix * quad_rect_matrix;
Float16 m;
quad_rect_matrix.matrix().asColMajorf(m.data);
draw_cache_.matrix_data.push_back(m);
}
void GLRenderer::DrawIOSurfaceQuad(const DrawingFrame* frame,
const IOSurfaceDrawQuad* quad) {
SetBlendEnabled(quad->ShouldDrawWithBlending());
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_,
&highp_threshold_cache_,
highp_threshold_min_,
quad->shared_quad_state->visible_content_rect.bottom_right());
TexTransformTextureProgramBinding binding;
binding.Set(GetTextureIOSurfaceProgram(tex_coord_precision));
SetUseProgram(binding.program_id);
GLC(gl_, gl_->Uniform1i(binding.sampler_location, 0));
if (quad->orientation == IOSurfaceDrawQuad::FLIPPED) {
GLC(gl_,
gl_->Uniform4f(binding.tex_transform_location,
0,
quad->io_surface_size.height(),
quad->io_surface_size.width(),
quad->io_surface_size.height() * -1.0f));
} else {
GLC(gl_,
gl_->Uniform4f(binding.tex_transform_location,
0,
0,
quad->io_surface_size.width(),
quad->io_surface_size.height()));
}
const float vertex_opacity[] = {quad->opacity(), quad->opacity(),
quad->opacity(), quad->opacity()};
GLC(gl_, gl_->Uniform1fv(binding.vertex_opacity_location, 4, vertex_opacity));
ResourceProvider::ScopedReadLockGL lock(resource_provider_,
quad->io_surface_resource_id);
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, lock.texture_id()));
DrawQuadGeometry(
frame, quad->quadTransform(), quad->rect, binding.matrix_location);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_RECTANGLE_ARB, 0));
}
void GLRenderer::FinishDrawingFrame(DrawingFrame* frame) {
if (use_sync_query_) {
DCHECK(current_sync_query_);
current_sync_query_->End();
pending_sync_queries_.push_back(current_sync_query_.Pass());
}
current_framebuffer_lock_.reset();
swap_buffer_rect_.Union(gfx::ToEnclosingRect(frame->root_damage_rect));
GLC(gl_, gl_->Disable(GL_BLEND));
blend_shadow_ = false;
ScheduleOverlays(frame);
}
void GLRenderer::FinishDrawingQuadList() { FlushTextureQuadCache(); }
bool GLRenderer::FlippedFramebuffer() const { return true; }
void GLRenderer::EnsureScissorTestEnabled() {
if (is_scissor_enabled_)
return;
FlushTextureQuadCache();
GLC(gl_, gl_->Enable(GL_SCISSOR_TEST));
is_scissor_enabled_ = true;
}
void GLRenderer::EnsureScissorTestDisabled() {
if (!is_scissor_enabled_)
return;
FlushTextureQuadCache();
GLC(gl_, gl_->Disable(GL_SCISSOR_TEST));
is_scissor_enabled_ = false;
}
void GLRenderer::CopyCurrentRenderPassToBitmap(
DrawingFrame* frame,
scoped_ptr<CopyOutputRequest> request) {
gfx::Rect copy_rect = frame->current_render_pass->output_rect;
if (request->has_area())
copy_rect.Intersect(request->area());
GetFramebufferPixelsAsync(copy_rect, request.Pass());
}
void GLRenderer::ToGLMatrix(float* gl_matrix, const gfx::Transform& transform) {
transform.matrix().asColMajorf(gl_matrix);
}
void GLRenderer::SetShaderQuadF(const gfx::QuadF& quad, int quad_location) {
if (quad_location == -1)
return;
float gl_quad[8];
gl_quad[0] = quad.p1().x();
gl_quad[1] = quad.p1().y();
gl_quad[2] = quad.p2().x();
gl_quad[3] = quad.p2().y();
gl_quad[4] = quad.p3().x();
gl_quad[5] = quad.p3().y();
gl_quad[6] = quad.p4().x();
gl_quad[7] = quad.p4().y();
GLC(gl_, gl_->Uniform2fv(quad_location, 4, gl_quad));
}
void GLRenderer::SetShaderOpacity(float opacity, int alpha_location) {
if (alpha_location != -1)
GLC(gl_, gl_->Uniform1f(alpha_location, opacity));
}
void GLRenderer::SetStencilEnabled(bool enabled) {
if (enabled == stencil_shadow_)
return;
if (enabled)
GLC(gl_, gl_->Enable(GL_STENCIL_TEST));
else
GLC(gl_, gl_->Disable(GL_STENCIL_TEST));
stencil_shadow_ = enabled;
}
void GLRenderer::SetBlendEnabled(bool enabled) {
if (enabled == blend_shadow_)
return;
if (enabled)
GLC(gl_, gl_->Enable(GL_BLEND));
else
GLC(gl_, gl_->Disable(GL_BLEND));
blend_shadow_ = enabled;
}
void GLRenderer::SetUseProgram(unsigned program) {
if (program == program_shadow_)
return;
gl_->UseProgram(program);
program_shadow_ = program;
}
void GLRenderer::DrawQuadGeometry(const DrawingFrame* frame,
const gfx::Transform& draw_transform,
const gfx::RectF& quad_rect,
int matrix_location) {
gfx::Transform quad_rect_matrix;
QuadRectTransform(&quad_rect_matrix, draw_transform, quad_rect);
static float gl_matrix[16];
ToGLMatrix(&gl_matrix[0], frame->projection_matrix * quad_rect_matrix);
GLC(gl_, gl_->UniformMatrix4fv(matrix_location, 1, false, &gl_matrix[0]));
GLC(gl_, gl_->DrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0));
}
void GLRenderer::CopyTextureToFramebuffer(const DrawingFrame* frame,
int texture_id,
const gfx::Rect& rect,
const gfx::Transform& draw_matrix,
bool flip_vertically) {
TexCoordPrecision tex_coord_precision = TexCoordPrecisionRequired(
gl_, &highp_threshold_cache_, highp_threshold_min_, rect.bottom_right());
const RenderPassProgram* program = GetRenderPassProgram(tex_coord_precision);
SetUseProgram(program->program());
GLC(gl_, gl_->Uniform1i(program->fragment_shader().sampler_location(), 0));
if (flip_vertically) {
GLC(gl_,
gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
0.f,
1.f,
1.f,
-1.f));
} else {
GLC(gl_,
gl_->Uniform4f(program->vertex_shader().tex_transform_location(),
0.f,
0.f,
1.f,
1.f));
}
SetShaderOpacity(1.f, program->fragment_shader().alpha_location());
DCHECK_EQ(GL_TEXTURE0, ResourceProvider::GetActiveTextureUnit(gl_));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
DrawQuadGeometry(
frame, draw_matrix, rect, program->vertex_shader().matrix_location());
}
void GLRenderer::Finish() {
TRACE_EVENT0("cc", "GLRenderer::Finish");
GLC(gl_, gl_->Finish());
}
void GLRenderer::SwapBuffers(const CompositorFrameMetadata& metadata) {
DCHECK(!is_backbuffer_discarded_);
TRACE_EVENT0("cc,benchmark", "GLRenderer::SwapBuffers");
// We're done! Time to swapbuffers!
gfx::Size surface_size = output_surface_->SurfaceSize();
CompositorFrame compositor_frame;
compositor_frame.metadata = metadata;
compositor_frame.gl_frame_data = make_scoped_ptr(new GLFrameData);
compositor_frame.gl_frame_data->size = surface_size;
if (capabilities_.using_partial_swap) {
// If supported, we can save significant bandwidth by only swapping the
// damaged/scissored region (clamped to the viewport).
swap_buffer_rect_.Intersect(gfx::Rect(surface_size));
int flipped_y_pos_of_rect_bottom = surface_size.height() -
swap_buffer_rect_.y() -
swap_buffer_rect_.height();
compositor_frame.gl_frame_data->sub_buffer_rect =
gfx::Rect(swap_buffer_rect_.x(),
flipped_y_pos_of_rect_bottom,
swap_buffer_rect_.width(),
swap_buffer_rect_.height());
} else {
compositor_frame.gl_frame_data->sub_buffer_rect =
gfx::Rect(output_surface_->SurfaceSize());
}
output_surface_->SwapBuffers(&compositor_frame);
// Release previously used overlay resources and hold onto the pending ones
// until the next swap buffers.
in_use_overlay_resources_.clear();
in_use_overlay_resources_.swap(pending_overlay_resources_);
swap_buffer_rect_ = gfx::Rect();
}
void GLRenderer::EnforceMemoryPolicy() {
if (!visible()) {
TRACE_EVENT0("cc", "GLRenderer::EnforceMemoryPolicy dropping resources");
ReleaseRenderPassTextures();
DiscardBackbuffer();
resource_provider_->ReleaseCachedData();
output_surface_->context_provider()->DeleteCachedResources();
GLC(gl_, gl_->Flush());
}
}
void GLRenderer::DiscardBackbuffer() {
if (is_backbuffer_discarded_)
return;
output_surface_->DiscardBackbuffer();
is_backbuffer_discarded_ = true;
// Damage tracker needs a full reset every time framebuffer is discarded.
client_->SetFullRootLayerDamage();
}
void GLRenderer::EnsureBackbuffer() {
if (!is_backbuffer_discarded_)
return;
output_surface_->EnsureBackbuffer();
is_backbuffer_discarded_ = false;
}
void GLRenderer::GetFramebufferPixelsAsync(
const gfx::Rect& rect,
scoped_ptr<CopyOutputRequest> request) {
DCHECK(!request->IsEmpty());
if (request->IsEmpty())
return;
if (rect.IsEmpty())
return;
gfx::Rect window_rect = MoveFromDrawToWindowSpace(rect);
DCHECK_GE(window_rect.x(), 0);
DCHECK_GE(window_rect.y(), 0);
DCHECK_LE(window_rect.right(), current_surface_size_.width());
DCHECK_LE(window_rect.bottom(), current_surface_size_.height());
if (!request->force_bitmap_result()) {
bool own_mailbox = !request->has_texture_mailbox();
GLuint texture_id = 0;
gl_->GenTextures(1, &texture_id);
gpu::Mailbox mailbox;
if (own_mailbox) {
GLC(gl_, gl_->GenMailboxCHROMIUM(mailbox.name));
} else {
mailbox = request->texture_mailbox().mailbox();
DCHECK_EQ(static_cast<unsigned>(GL_TEXTURE_2D),
request->texture_mailbox().target());
DCHECK(!mailbox.IsZero());
unsigned incoming_sync_point = request->texture_mailbox().sync_point();
if (incoming_sync_point)
GLC(gl_, gl_->WaitSyncPointCHROMIUM(incoming_sync_point));
}
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, texture_id));
if (own_mailbox) {
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(
GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLC(gl_,
gl_->TexParameteri(
GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
GLC(gl_, gl_->ProduceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
} else {
GLC(gl_, gl_->ConsumeTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name));
}
GetFramebufferTexture(texture_id, RGBA_8888, window_rect);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
unsigned sync_point = gl_->InsertSyncPointCHROMIUM();
TextureMailbox texture_mailbox(mailbox, GL_TEXTURE_2D, sync_point);
scoped_ptr<SingleReleaseCallback> release_callback;
if (own_mailbox) {
release_callback = texture_mailbox_deleter_->GetReleaseCallback(
output_surface_->context_provider(), texture_id);
} else {
gl_->DeleteTextures(1, &texture_id);
}
request->SendTextureResult(
window_rect.size(), texture_mailbox, release_callback.Pass());
return;
}
DCHECK(request->force_bitmap_result());
scoped_ptr<PendingAsyncReadPixels> pending_read(new PendingAsyncReadPixels);
pending_read->copy_request = request.Pass();
pending_async_read_pixels_.insert(pending_async_read_pixels_.begin(),
pending_read.Pass());
bool do_workaround = NeedsIOSurfaceReadbackWorkaround();
unsigned temporary_texture = 0;
unsigned temporary_fbo = 0;
if (do_workaround) {
// On Mac OS X, calling glReadPixels() against an FBO whose color attachment
// is an IOSurface-backed texture causes corruption of future glReadPixels()
// calls, even those on different OpenGL contexts. It is believed that this
// is the root cause of top crasher
// http://crbug.com/99393. <rdar://problem/10949687>
gl_->GenTextures(1, &temporary_texture);
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, temporary_texture));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE));
GLC(gl_,
gl_->TexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE));
// Copy the contents of the current (IOSurface-backed) framebuffer into a
// temporary texture.
GetFramebufferTexture(
temporary_texture, RGBA_8888, gfx::Rect(current_surface_size_));
gl_->GenFramebuffers(1, &temporary_fbo);
// Attach this texture to an FBO, and perform the readback from that FBO.
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, temporary_fbo));
GLC(gl_,
gl_->FramebufferTexture2D(GL_FRAMEBUFFER,
GL_COLOR_ATTACHMENT0,
GL_TEXTURE_2D,
temporary_texture,
0));
DCHECK_EQ(static_cast<unsigned>(GL_FRAMEBUFFER_COMPLETE),
gl_->CheckFramebufferStatus(GL_FRAMEBUFFER));
}
GLuint buffer = 0;
gl_->GenBuffers(1, &buffer);
GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, buffer));
GLC(gl_,
gl_->BufferData(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM,
4 * window_rect.size().GetArea(),
NULL,
GL_STREAM_READ));
GLuint query = 0;
gl_->GenQueriesEXT(1, &query);
GLC(gl_, gl_->BeginQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM, query));
GLC(gl_,
gl_->ReadPixels(window_rect.x(),
window_rect.y(),
window_rect.width(),
window_rect.height(),
GL_RGBA,
GL_UNSIGNED_BYTE,
NULL));
GLC(gl_, gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, 0));
if (do_workaround) {
// Clean up.
GLC(gl_, gl_->BindFramebuffer(GL_FRAMEBUFFER, 0));
GLC(gl_, gl_->BindTexture(GL_TEXTURE_2D, 0));
GLC(gl_, gl_->DeleteFramebuffers(1, &temporary_fbo));
GLC(gl_, gl_->DeleteTextures(1, &temporary_texture));
}
base::Closure finished_callback = base::Bind(&GLRenderer::FinishedReadback,
base::Unretained(this),
buffer,
query,
window_rect.size());
// Save the finished_callback so it can be cancelled.
pending_async_read_pixels_.front()->finished_read_pixels_callback.Reset(
finished_callback);
base::Closure cancelable_callback =
pending_async_read_pixels_.front()->
finished_read_pixels_callback.callback();
// Save the buffer to verify the callbacks happen in the expected order.
pending_async_read_pixels_.front()->buffer = buffer;
GLC(gl_, gl_->EndQueryEXT(GL_ASYNC_PIXEL_PACK_COMPLETED_CHROMIUM));
context_support_->SignalQuery(query, cancelable_callback);
EnforceMemoryPolicy();
}
void GLRenderer::FinishedReadback(unsigned source_buffer,
unsigned query,
const gfx::Size& size) {
DCHECK(!pending_async_read_pixels_.empty());
if (query != 0) {
GLC(gl_, gl_->DeleteQueriesEXT(1, &query));
}
PendingAsyncReadPixels* current_read = pending_async_read_pixels_.back();
// Make sure we service the readbacks in order.
DCHECK_EQ(source_buffer, current_read->buffer);
uint8* src_pixels = NULL;
scoped_ptr<SkBitmap> bitmap;
if (source_buffer != 0) {
GLC(gl_,
gl_->BindBuffer(GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, source_buffer));
src_pixels = static_cast<uint8*>(gl_->MapBufferCHROMIUM(
GL_PIXEL_PACK_TRANSFER_BUFFER_CHROMIUM, GL_READ_ONLY));
if (src_pixels) {
bitmap.reset(new SkBitmap);
bitmap->allocN32Pixels(size.width(), size.height());
scoped_ptr<SkAutoLockPixels> lock(new SkAutoLockPixels(*bitmap));
uint8* dest_pixels = static_cast<uint8*>(bitmap->getPixels());
size_t row_bytes = size.width() * 4;
int num_rows = size.height();
size_t total_bytes = num_rows * row_bytes;
for (size_t dest_y = 0; dest_y < total_bytes; dest_y += row_bytes) {
// Flip Y axis.
size_t src_y = total_bytes - dest_y - row_bytes;
// Swizzle OpenGL -> Skia byte order.
for (size_t x = 0; x < row_bytes; x += 4) {
dest_pixels[dest_y + x + SK_R32_SHIFT / 8] =
src_pixels[src_y + x + 0];
dest_pixels[dest_y + x + SK_G32_SHIFT