blob: 9221d7001c18ecfe05475034fe843eee02e6eadc [file] [log] [blame]
// Copyright (c) 2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include "encodings/compact_lang_det/cldutil.h"
#include "base/basictypes.h"
#include "encodings/compact_lang_det/cldutil_dbg.h"
#include "encodings/compact_lang_det/generated/compact_lang_det_generated_meanscore.h"
#include "encodings/compact_lang_det/utf8propletterscriptnum.h"
#include "encodings/compact_lang_det/win/cld_commandlineflags.h"
#include "encodings/compact_lang_det/win/cld_logging.h"
#include "encodings/compact_lang_det/win/cld_unilib.h"
#include "encodings/compact_lang_det/win/cld_utf.h"
#include "encodings/compact_lang_det/win/cld_utf8statetable.h"
// Runtime routines for hashing, looking up, and scoring
// unigrams (CJK), bigrams (CJK), quadgrams, and octagrams.
// Unigrams and bigrams are for CJK languages only, including simplified/
// traditional Chinese, Japanese, Korean, Vietnamese Han characters, and
// Zhuang Han characters. Surrounding spaces are not considered.
// Quadgrams and octagrams for for non-CJK and include two bits indicating
// preceding and trailing spaces (word boundaries).
// Indicator bits for leading/trailing space around quad/octagram
// NOTE: 4444 bits are chosen to flip constant bits in hash of four chars of
// 1-, 2-, or 3-bytes each.
static const uint32 kPreSpaceIndicator = 0x00004444;
static const uint32 kPostSpaceIndicator = 0x44440000;
// Little-endian masks for 0..24 bytes picked up as uint32's
static const uint32 kWordMask0[4] = {
0xFFFFFFFF, 0x000000FF, 0x0000FFFF, 0x00FFFFFF
};
static const int kMinCJKUTF8CharBytes = 3;
static const int kMinGramCount = 3;
static const int kMaxGramCount = 16;
// Routines to access a hash table of <key:wordhash, value:probs> pairs
// Buckets have 4-byte wordhash for sizes < 32K buckets, but only
// 2-byte wordhash for sizes >= 32K buckets, with other wordhash bits used as
// bucket subscript.
// Probs is a packed: three languages plus a subscript for probability table
// Buckets have all the keys together, then all the values.Key array never
// crosses a cache-line boundary, so no-match case takes exactly one cache miss.
// Match case may sometimes take an additional cache miss on value access.
//
// Other possibilites include 5 or 10 6-byte entries plus pad to make 32 or 64
// byte buckets with single cache miss.
// Or 2-byte key and 6-byte value, allowing 5 languages instead of three.
//------------------------------------------------------------------------------
//------------------------------------------------------------------------------
// Hashing groups of 1/2/4/8 letters, perhaps with spaces or underscores
//------------------------------------------------------------------------------
// Design principles for these hash functions
// - Few operations
// - Handle 1-, 2-, and 3-byte UTF-8 scripts, ignoring intermixing except in
// Latin script expect 1- and 2-byte mixtures.
// - Last byte of each character has about 5 bits of information
// - Spread good bits around so they can interact in at least two ways
// with other characters
// - Use add for additional mixing thorugh carries
// CJK Three-byte bigram
// ....dddd..cccccc..bbbbbb....aaaa
// ..................ffffff..eeeeee
// make
// ....dddd..cccccc..bbbbbb....aaaa
// 000....dddd..cccccc..bbbbbb....a
// ..................ffffff..eeeeee
// ffffff..eeeeee000000000000000000
//
// CJK Four-byte bigram
// ..dddddd..cccccc....bbbb....aaaa
// ..hhhhhh..gggggg....ffff....eeee
// make
// ..dddddd..cccccc....bbbb....aaaa
// 000..dddddd..cccccc....bbbb....a
// ..hhhhhh..gggggg....ffff....eeee
// ..ffff....eeee000000000000000000
// BIGRAM
// Pick up 1..8 bytes and hash them via mask/shift/add. NO pre/post
// OVERSHOOTS up to 3 bytes
// For runtime use of tables
uint32 cld::BiHashV25(const char* word_ptr, int bytecount) {
if (bytecount == 0) {
return 0;
}
uint32 word0, word1;
if (bytecount <= 4) {
word0 = UnalignedLoad32(word_ptr) & kWordMask0[bytecount & 3];
word0 = word0 ^ (word0 >> 3);
return word0;
}
// Else do 8 bytes
word0 = UnalignedLoad32(word_ptr);
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4) & kWordMask0[bytecount & 3];
word1 = word1 ^ (word1 << 18);
return word0 + word1;
}
//
// Ascii-7 One-byte chars
// ...ddddd...ccccc...bbbbb...aaaaa
// make
// ...ddddd...ccccc...bbbbb...aaaaa
// 000...ddddd...ccccc...bbbbb...aa
//
// Latin 1- and 2-byte chars
// ...ddddd...ccccc...bbbbb...aaaaa
// ...................fffff...eeeee
// make
// ...ddddd...ccccc...bbbbb...aaaaa
// 000...ddddd...ccccc...bbbbb...aa
// ...................fffff...eeeee
// ...............fffff...eeeee0000
//
// Non-CJK Two-byte chars
// ...ddddd...........bbbbb........
// ...hhhhh...........fffff........
// make
// ...ddddd...........bbbbb........
// 000...ddddd...........bbbbb.....
// ...hhhhh...........fffff........
// hhhh...........fffff........0000
//
// Non-CJK Three-byte chars
// ...........ccccc................
// ...................fffff........
// ...lllll...................iiiii
// make
// ...........ccccc................
// 000...........ccccc.............
// ...................fffff........
// ...............fffff........0000
// ...lllll...................iiiii
// .lllll...................iiiii00
//
// QUADGRAM
// Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add
// OVERSHOOTS up to 3 bytes
// For runtime use of tables
uint32 QuadHashV25Mix(const char* word_ptr, int bytecount, uint32 prepost) {
uint32 word0, word1, word2;
if (bytecount <= 4) {
word0 = UnalignedLoad32(word_ptr) & kWordMask0[bytecount & 3];
word0 = word0 ^ (word0 >> 3);
return word0 ^ prepost;
} else if (bytecount <= 8) {
word0 = UnalignedLoad32(word_ptr);
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4) & kWordMask0[bytecount & 3];
word1 = word1 ^ (word1 << 4);
return (word0 ^ prepost) + word1;
}
// else do 12 bytes
word0 = UnalignedLoad32(word_ptr);
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4);
word1 = word1 ^ (word1 << 4);
word2 = UnalignedLoad32(word_ptr + 8) & kWordMask0[bytecount & 3];
word2 = word2 ^ (word2 << 2);
return (word0 ^ prepost) + word1 + word2;
}
// QUADGRAM wrapper with surrounding spaces
// Pick up 1..12 bytes plus pre/post space and hash them via mask/shift/add
// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
// For runtime use of tables
uint32 cld::QuadHashV25(const char* word_ptr, int bytecount) {
if (bytecount == 0) {
return 0;
}
uint32 prepost = 0;
if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
return QuadHashV25Mix(word_ptr, bytecount, prepost);
}
// QUADGRAM wrapper with surrounding underscores (offline use)
// Pick up 1..12 bytes plus pre/post '_' and hash them via mask/shift/add
// OVERSHOOTS up to 3 bytes
// For offline construction of tables
uint32 cld::QuadHashV25Underscore(const char* word_ptr, int bytecount) {
if (bytecount == 0) {
return 0;
}
const char* local_word_ptr = word_ptr;
int local_bytecount = bytecount;
uint32 prepost = 0;
if (local_word_ptr[0] == '_') {
prepost |= kPreSpaceIndicator;
++local_word_ptr;
--local_bytecount;
}
if (local_word_ptr[local_bytecount - 1] == '_') {
prepost |= kPostSpaceIndicator;
--local_bytecount;
}
return QuadHashV25Mix(local_word_ptr, local_bytecount, prepost);
}
// OCTAGRAM
// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
//
// The low 32 bits follow the pattern from above, tuned to different scripts
// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
// For runtime use of tables V3
uint64 OctaHash40Mix(const char* word_ptr, int bytecount, uint64 prepost) {
uint64 word0;
uint64 word1;
uint64 sum;
if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
switch ((bytecount - 1) >> 2) {
case 0: // 1..4 bytes
word0 = UnalignedLoad32(word_ptr) & kWordMask0[bytecount & 3];
sum = word0;
word0 = word0 ^ (word0 >> 3);
break;
case 1: // 5..8 bytes
word0 = UnalignedLoad32(word_ptr);
sum = word0;
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4) & kWordMask0[bytecount & 3];
sum += word1;
word1 = word1 ^ (word1 << 4);
word0 += word1;
break;
case 2: // 9..12 bytes
word0 = UnalignedLoad32(word_ptr);
sum = word0;
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4);
sum += word1;
word1 = word1 ^ (word1 << 4);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 8) & kWordMask0[bytecount & 3];
sum += word1;
word1 = word1 ^ (word1 << 2);
word0 += word1;
break;
case 3: // 13..16 bytes
word0 = UnalignedLoad32(word_ptr);
sum = word0;
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4);
sum += word1;
word1 = word1 ^ (word1 << 4);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 8);
sum += word1;
word1 = word1 ^ (word1 << 2);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 12) & kWordMask0[bytecount & 3];
sum += word1;
word1 = word1 ^ (word1 >> 8);
word0 += word1;
break;
case 4: // 17..20 bytes
word0 = UnalignedLoad32(word_ptr);
sum = word0;
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4);
sum += word1;
word1 = word1 ^ (word1 << 4);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 8);
sum += word1;
word1 = word1 ^ (word1 << 2);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 12);
sum += word1;
word1 = word1 ^ (word1 >> 8);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 16) & kWordMask0[bytecount & 3];
sum += word1;
word1 = word1 ^ (word1 >> 4);
word0 += word1;
break;
default: // 21..24 bytes and higher (ignores beyond 24)
word0 = UnalignedLoad32(&word_ptr);
sum = word0;
word0 = word0 ^ (word0 >> 3);
word1 = UnalignedLoad32(word_ptr + 4);
sum += word1;
word1 = word1 ^ (word1 << 4);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 8);
sum += word1;
word1 = word1 ^ (word1 << 2);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 12);
sum += word1;
word1 = word1 ^ (word1 >> 8);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 16);
sum += word1;
word1 = word1 ^ (word1 >> 4);
word0 += word1;
word1 = UnalignedLoad32(word_ptr + 20) & kWordMask0[bytecount & 3];
sum += word1;
word1 = word1 ^ (word1 >> 6);
word0 += word1;
break;
}
sum += (sum >> 17); // extra 1-bit shift for bytes 2 & 3
sum += (sum >> 9); // extra 1-bit shift for bytes 1 & 3
sum = (sum & 0xff) << 32;
return (word0 ^ prepost) + sum;
}
// OCTAGRAM wrapper with surrounding spaces
// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
//
// The low 32 bits follow the pattern from above, tuned to different scripts
// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
// For runtime use of tables V3
uint64 cld::OctaHash40(const char* word_ptr, int bytecount) {
if (bytecount == 0) {
return 0;
}
uint64 prepost = 0;
if (word_ptr[-1] == ' ') {prepost |= kPreSpaceIndicator;}
if (word_ptr[bytecount] == ' ') {prepost |= kPostSpaceIndicator;}
return OctaHash40Mix(word_ptr, bytecount, prepost);
}
// OCTAGRAM wrapper with surrounding underscores (offline use)
// Pick up 1..24 bytes plus pre/post space and hash them via mask/shift/add
// UNDERSHOOTS 1 byte, OVERSHOOTS up to 3 bytes
//
// The low 32 bits follow the pattern from above, tuned to different scripts
// The high 8 bits are a simple sum of all bytes, shifted by 0/1/2/3 bits each
// For offline construction of tables
uint64 cld::OctaHash40underscore(const char* word_ptr, int bytecount) {
if (bytecount == 0) {
return 0;
}
const char* local_word_ptr = word_ptr;
int local_bytecount = bytecount;
uint64 prepost = 0;
if (local_word_ptr[0] == '_') {
prepost |= kPreSpaceIndicator;
++local_word_ptr;
--local_bytecount;
}
if (local_word_ptr[local_bytecount - 1] == '_') {
prepost |= kPostSpaceIndicator;
--local_bytecount;
}
return OctaHash40Mix(local_word_ptr, local_bytecount, prepost);
}
//------------------------------------------------------------------------------
// Scoring single groups of letters
//------------------------------------------------------------------------------
// UNIGRAM score one => tote
// Input: 1-byte entry of subscript into unigram probs, plus
// an accumulator tote.
// Output: running sums in tote updated
void cld::ProcessProbV25UniTote(int propval, Tote* tote) {
tote->AddGram();
const UnigramProbArray* pa = &kTargetCTJKVZProbs[propval];
if (pa->probs[0] > 0) {tote->Add(cld::PackLanguage(CHINESE), pa->probs[0]);}
if (pa->probs[1] > 0) {tote->Add(cld::PackLanguage(CHINESE_T), pa->probs[1]);}
if (pa->probs[2] > 0) {tote->Add(cld::PackLanguage(JAPANESE), pa->probs[2]);}
if (pa->probs[3] > 0) {tote->Add(cld::PackLanguage(KOREAN), pa->probs[3]);}
if (pa->probs[4] > 0) {tote->Add(cld::PackLanguage(VIETNAMESE), pa->probs[4]);}
if (pa->probs[5] > 0) {tote->Add(cld::PackLanguage(ZHUANG), pa->probs[5]);}
}
// BIGRAM, QUADGRAM, OCTAGRAM score one => tote
// Input: 4-byte entry of 3 language numbers and one probability subscript, plus
// an accumulator tote. (language 0 means unused entry)
// Output: running sums in tote updated
void cld::ProcessProbV25Tote(uint32 probs, Tote* tote) {
tote->AddGram();
uint8 prob123 = (probs >> 0) & 0xff;
const uint8* prob123_entry = cld::LgProb2TblEntry(prob123);
uint8 top1 = (probs >> 8) & 0xff;
if (top1 > 0) {tote->Add(top1, cld::LgProb3(prob123_entry, 0));}
uint8 top2 = (probs >> 16) & 0xff;
if (top2 > 0) {tote->Add(top2, cld::LgProb3(prob123_entry, 1));}
uint8 top3 = (probs >> 24) & 0xff;
if (top3 > 0) {tote->Add(top3, cld::LgProb3(prob123_entry, 2));}
}
//------------------------------------------------------------------------------
// Routines to accumulate probabilities
//------------------------------------------------------------------------------
// UNIGRAM, using UTF-8 property table, advancing by 1/2/4/8 chars
// Caller supplies table, such as compact_lang_det_generated_ctjkvz_b1_obj
// Score up to n unigrams, returning number of bytes consumed
// Updates tote_grams
int cld::DoUniScoreV3(const UTF8PropObj* unigram_obj,
const char* isrc, int srclen, int advance_by,
int* tote_grams, int gram_limit, Tote* chunk_tote) {
const char* src = isrc;
if (FLAGS_dbgscore) {DbgScoreInit(src, srclen);}
// Property-based CJK unigram lookup
if (src[0] == ' ') {++src; --srclen;}
const uint8* usrc = reinterpret_cast<const uint8*>(src);
int usrclen = srclen;
while (usrclen > 0) {
int len = kAdvanceOneChar[usrc[0]];
// Look up property of one UTF-8 character and advance over it
// Return 0 if input length is zero
// Return 0 and advance one byte if input is ill-formed
int propval = UTF8GenericPropertyBigOneByte(unigram_obj, &usrc, &usrclen);
if (FLAGS_dbglookup) {
DbgUniTermToStderr(propval, usrc, len);
}
if (propval > 0) {
ProcessProbV25UniTote(propval, chunk_tote);
++(*tote_grams);
if (FLAGS_dbgscore) {DbgScoreRecordUni((const char*)usrc, propval, len);}
}
// Advance by 1/2/4/8 characters (half of quad advance)
if (advance_by == 2) {
// Already advanced by 1
} else if (advance_by == 4) {
// Advance by 2 chars total, if not at end
if (UTFmax <= usrclen) {
int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
}
} else if (advance_by == 8) {
// Advance by 4 chars total, if not at end
if ((UTFmax * 3) <= usrclen) {
int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
}
} else {
// Advance by 8 chars total, if not at end
if ((UTFmax * 7) <= usrclen) {
int n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
n = kAdvanceOneChar[*usrc]; usrc += n; usrclen -= n;
}
}
DCHECK(usrclen >= 0);
if (*tote_grams >= gram_limit) {
break;
}
}
if (FLAGS_dbgscore) {
// With advance_by>2, we consume more input to get the same number of quads
int len = src - isrc;
DbgScoreTop(src, (len * 2) / advance_by, chunk_tote);
DbgScoreFlush();
}
int consumed2 = reinterpret_cast<const char*>(usrc) - isrc;
return consumed2;
}
// BIGRAM, using hash table, always advancing by 1 char
// Caller supplies table, such as &kCjkBiTable_obj or &kGibberishTable_obj
// Score all bigrams in isrc, using languages that have bigrams (CJK)
// Return number of bigrams that hit in the hash table
int cld::DoBigramScoreV3(const cld::CLDTableSummary* bigram_obj,
const char* isrc, int srclen, Tote* chunk_tote) {
int hit_count = 0;
const char* src = isrc;
// Hashtable-based CJK bigram lookup
const uint8* usrc = reinterpret_cast<const uint8*>(src);
const uint8* usrclimit1 = usrc + srclen - UTFmax;
if (FLAGS_dbgscore) {
fprintf(stderr, " " );
}
while (usrc < usrclimit1) {
int len = kAdvanceOneChar[usrc[0]];
int len2 = kAdvanceOneChar[usrc[len]] + len;
if ((kMinCJKUTF8CharBytes * 2) <= len2) { // Two CJK chars possible
// Lookup and score this bigram
// Always ignore pre/post spaces
uint32 bihash = BiHashV25(reinterpret_cast<const char*>(usrc), len2);
uint32 probs = QuadHashV3Lookup4(bigram_obj, bihash);
// Now go indirect on the subscript
probs = bigram_obj->kCLDTableInd[probs &
~bigram_obj->kCLDTableKeyMask];
// Process the bigram
if (FLAGS_dbglookup) {
const char* ssrc = reinterpret_cast<const char*>(usrc);
DbgBiTermToStderr(bihash, probs, ssrc, len2);
DbgScoreRecord(NULL, probs, len2);
} else if (FLAGS_dbgscore && (probs != 0)) {
const char* ssrc = reinterpret_cast<const char*>(usrc);
DbgScoreRecord(NULL, probs, len2);
string temp(ssrc, len2);
fprintf(stderr, "%s ", temp.c_str());
}
if (probs != 0) {
ProcessProbV25Tote(probs, chunk_tote);
++hit_count;
}
}
usrc += len; // Advance by one char
}
if (FLAGS_dbgscore) {
fprintf(stderr, "[%d bigrams scored]\n", hit_count);
DbgScoreState();
}
return hit_count;
}
// QUADGRAM, using hash table, advancing by 2/4/8/16 chars
// Caller supplies table, such as &kQuadTable_obj or &kGibberishTable_obj
// Score up to n quadgrams, returning number of bytes consumed
// Updates tote_grams
int cld::DoQuadScoreV3(const cld::CLDTableSummary* quadgram_obj,
const char* isrc, int srclen, int advance_by,
int* tote_grams, int gram_limit, Tote* chunk_tote) {
const char* src = isrc;
const char* srclimit = src + srclen;
// Limit is end, which has extra 20 20 20 00 past len
const char* srclimit7 = src + srclen - (UTFmax * 7);
const char* srclimit15 = src + srclen - (UTFmax * 15);
if (FLAGS_dbgscore) {DbgScoreInit(src, srclen);}
// Run a little cache of last hits to catch overly-repetitive "text"
int next_prior = 0;
uint32 prior_quads[2] = {0, 0};
// Visit all quadgrams
if (src[0] == ' ') {++src;}
while (src < srclimit) {
// Find one quadgram
const char* src_end = src;
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
const char* src_mid = src_end;
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
src_end += kAdvanceOneCharButSpace[(uint8)src_end[0]];
int len = src_end - src;
// Lookup and score this quadgram
uint32 quadhash = QuadHashV25(src, len);
uint32 probs = QuadHashV3Lookup4(quadgram_obj, quadhash);
// Now go indirect on the subscript
probs = quadgram_obj->kCLDTableInd[probs &
~quadgram_obj->kCLDTableKeyMask];
// Process the quadgram
if (FLAGS_dbglookup) {
DbgQuadTermToStderr(quadhash, probs, src, len);
}
if (probs != 0) {
// Filter out recent repeats. If this works out, use in the other lookups
if ((quadhash != prior_quads[0]) && (quadhash != prior_quads[1])) {
prior_quads[next_prior] = quadhash;
next_prior = (next_prior + 1) & 1;
ProcessProbV25Tote(probs, chunk_tote);
++(*tote_grams);
if (FLAGS_dbgscore) {DbgScoreRecord(src, probs, len);}
}
}
// Advance all the way past word if at end-of-word
if (src_end[0] == ' ') {
src_mid = src_end;
}
// Advance by 2/4/8/16 characters
if (advance_by == 2) {
src = src_mid;
} else if (advance_by == 4) {
src = src_end;
} else if (advance_by == 8) {
// Advance by 8 chars total (4 more), if not at end
if (src < srclimit7) {
src_end += kAdvanceOneChar[(uint8)src_end[0]];
src_end += kAdvanceOneChar[(uint8)src_end[0]];
src_end += kAdvanceOneChar[(uint8)src_end[0]];
src_end += kAdvanceOneChar[(uint8)src_end[0]];
}
src = src_end;
} else {
// Advance by 16 chars total (12 more), if not at end
if (src < srclimit15) {
// Advance by ~16 chars by adding 3 * current bytelen
int fourcharlen = src_end - src;
src = src_end + (3 * fourcharlen);
// Advance a bit more if mid-character
src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
} else {
src = src_end;
}
}
DCHECK(src < srclimit);
src += kAdvanceOneCharSpaceVowel[(uint8)src[0]];
if (*tote_grams >= gram_limit) {
break;
}
}
if (FLAGS_dbgscore) {
// With advance_by>2, we consume more input to get the same number of quads
int len = src - isrc;
DbgScoreTop(src, (len * 2) / advance_by, chunk_tote);
DbgScoreFlush();
}
int consumed = src - isrc;
// If advancing by more than 2, src may have overshot srclimit
if (consumed > srclen) {
consumed = srclen;
}
return consumed;
}
// OCTAGRAM, using hash table, always advancing by 1 word
// Caller supplies table, such as &kLongWord8Table_obj
// Score all words in isrc, using languages that have quadgrams
// We don't normally use this routine except on the first quadgram run,
// but it can be used to resolve unreliable pages.
// This routine does not have an optimized advance_by
// SOON: Uses indirect language/probability longword
//
// Return number of words that hit in the hash table
int cld::DoOctaScoreV3(const cld::CLDTableSummary* octagram_obj,
const char* isrc, int srclen, Tote* chunk_tote) {
int hit_count = 0;
const char* src = isrc;
const char* srclimit = src + srclen + 1;
// Limit is end+1, to include extra space char (0x20) off the end
//
// Score all words truncated to 8 characters
int charcount = 0;
// Skip any initial space
if (src[0] == ' ') {++src;}
const char* word_ptr = src;
const char* word_end = word_ptr;
if (FLAGS_dbgscore) {
fprintf(stderr, " " );
}
while (src < srclimit) {
// Terminate previous word or continue current word
if (src[0] == ' ') {
int bytecount = word_end - word_ptr;
if (bytecount == 0)
break;
// Lookup and score this word
uint64 wordhash40 = OctaHash40(word_ptr, bytecount);
uint32 probs = OctaHashV3Lookup4(octagram_obj, wordhash40);
// Now go indirect on the subscript
probs = octagram_obj->kCLDTableInd[probs &
~octagram_obj->kCLDTableKeyMask];
// // Lookup and score this word
// uint32 wordhash = QuadHashV25(word_ptr, bytecount);
// uint32 probs = WordHashLookup4(wordhash, kLongWord8Table,
// kLongWord8TableSize);
//
if (FLAGS_dbglookup) {
DbgWordTermToStderr(wordhash40, probs, word_ptr, bytecount);
DbgScoreRecord(NULL, probs, bytecount);
} else if (FLAGS_dbgscore && (probs != 0)) {
DbgScoreRecord(NULL, probs, bytecount);
string temp(word_ptr, bytecount);
fprintf(stderr, "%s ", temp.c_str());
}
if (probs != 0) {
ProcessProbV25Tote(probs, chunk_tote);
++hit_count;
}
charcount = 0;
word_ptr = src + 1; // Over the space
word_end = word_ptr;
} else {
++charcount;
}
// Advance to next char
src += cld_UniLib::OneCharLen(src);
if (charcount <= 8) {
word_end = src;
}
}
if (FLAGS_dbgscore) {
fprintf(stderr, "[%d words scored]\n", hit_count);
DbgScoreState();
}
return hit_count;
}
//------------------------------------------------------------------------------
// Reliability calculations, for single language and between languages
//------------------------------------------------------------------------------
// Return reliablity of result 0..100 for top two scores
// delta==0 is 0% reliable, delta==fully_reliable_thresh is 100% reliable
// (on a scale where +1 is a factor of 2 ** 1.6 = 3.02)
// Threshold is uni/quadgram increment count, bounded above and below.
//
// Requiring a factor of 3 improvement (e.g. +1 log base 3)
// for each scored quadgram is too stringent, so I've backed this off to a
// factor of 2 (e.g. +5/8 log base 3).
//
// I also somewhat lowered the Min/MaxGramCount limits above
//
// Added: if fewer than 8 quads/unis, max reliability is 12*n percent
//
int cld::ReliabilityDelta(int value1, int value2, int gramcount) {
int max_reliability_percent = 100;
if (gramcount < 8) {
max_reliability_percent = 12 * gramcount;
}
int fully_reliable_thresh = (gramcount * 5) >> 3; // see note above
if (fully_reliable_thresh < kMinGramCount) { // Fully = 3..16
fully_reliable_thresh = kMinGramCount;
} else if (fully_reliable_thresh > kMaxGramCount) {
fully_reliable_thresh = kMaxGramCount;
}
int delta = value1 - value2;
if (delta >= fully_reliable_thresh) {return max_reliability_percent;}
if (delta <= 0) {return 0;}
return cld::minint(max_reliability_percent,
(100 * delta) / fully_reliable_thresh);
}
// Return reliablity of result 0..100 for top score vs. mainsteam score
// Values are score per 1024 bytes of input
// ratio = max(top/mainstream, mainstream/top)
// ratio > 4.0 is 0% reliable, <= 2.0 is 100% reliable
// Change: short-text word scoring can give unusually good results.
// Let top exceed mainstream by 4x at 50% reliable
int cld::ReliabilityMainstream(int topscore, int len, int mean_score) {
if (mean_score == 0) {return 100;} // No reliability data available yet
if (topscore == 0) {return 0;} // zero score = unreliable
if (len == 0) {return 0;} // zero len = unreliable
int top_kb = (topscore << 10) / len;
double ratio;
double ratio_cutoff;
if (top_kb > mean_score) {
ratio = (1.0 * top_kb) / mean_score;
ratio_cutoff = 5.0; // ramp down from 100% to 0%: 3.0-5.0
} else {
ratio = (1.0 * mean_score) / top_kb;
ratio_cutoff = 4.0; // ramp down from 100% to 0%: 2.0-4.0
}
if (ratio <= ratio_cutoff - 2.0) {return 100;}
if (ratio > ratio_cutoff) {return 0;}
int iratio = static_cast<int>(100 * (ratio_cutoff - ratio) / 2.0);
return iratio;
}
// Calculate ratio of score per 1KB vs. expected score per 1KB
double cld::GetNormalizedScore(Language lang, UnicodeLScript lscript,
int bytes, int score) {
// Average training-data score for this language-script combo, per 1KB
int expected_score = kMeanScore[lang * 4 + LScript4(lscript)];
if (lscript == ULScript_Common) {
// We don't know the script (only happens with second-chance score)
// Look for first non-zero mean value
for (int i = 2; i >= 0; --i) {
if (kMeanScore[lang * 4 + i] > 0) {
expected_score = kMeanScore[lang * 4 + i];
break;
}
}
}
if (expected_score < 100) {
expected_score = 1000;
}
// Our score per 1KB
double our_score = (score << 10) / (bytes ? bytes : 1); // Avoid zdiv
double ratio = our_score / expected_score;
// Just the raw count normalized as though each language has mean=1000;
ratio = (score * 1000.0) / expected_score;
return ratio;
}
// Calculate reliablity of len bytes of script lscript with chunk_tote
int cld::GetReliability(int len, UnicodeLScript lscript,
const Tote* chunk_tote) {
Language cur_lang = UnpackLanguage(chunk_tote->Key(0));
// Average score for this language-script combo
int mean_score = kMeanScore[cur_lang * 4 + LScript4(lscript)];
if (lscript == ULScript_Common) {
// We don't know the script (only happens with second-chance score)
// Look for first non-zero mean value
for (int i = 2; i >= 0; --i) {
if (kMeanScore[cur_lang * 4 + i] > 0) {
mean_score = kMeanScore[cur_lang * 4 + i];
break;
}
}
}
int reliability_delta = ReliabilityDelta(chunk_tote->Value(0),
chunk_tote->Value(1),
chunk_tote->GetGramCount());
int reliability_main = ReliabilityMainstream(chunk_tote->Value(0),
len,
mean_score);
int reliability_min = minint(reliability_delta, reliability_main);
if (FLAGS_dbgreli) {
char temp1[4];
char temp2[4];
cld::DbgLangName3(UnpackLanguage(chunk_tote->Key(0)), temp1);
if (temp1[2] == ' ') {temp1[2] = '\0';}
cld::DbgLangName3(UnpackLanguage(chunk_tote->Key(1)), temp2);
if (temp2[2] == ' ') {temp2[2] = '\0';}
int srclen = len;
fprintf(stderr, "CALC GetReliability gram=%d incr=%d srclen=%d, %s=%d %s=%d "
"top/KB=%d mean/KB=%d del=%d%% reli=%d%% "
"lang/lscript %d %d\n",
chunk_tote->GetGramCount(),
chunk_tote->GetIncrCount(),
srclen,
temp1, chunk_tote->Value(0),
temp2, chunk_tote->Value(1),
(chunk_tote->Value(0) << 10) / (srclen ? srclen : 1),
mean_score,
reliability_delta,
reliability_main,
cur_lang, lscript);
}
return reliability_min;
}
//------------------------------------------------------------------------------
// Miscellaneous
//------------------------------------------------------------------------------
// Demote all languages except Top40 and plus_one
// Do this just before sorting chunk_tote results
void cld::DemoteNotTop40(Tote* chunk_tote, int packed_plus_one) {
for (int sub = 0; sub < chunk_tote->MaxSize(); ++sub) {
if (chunk_tote->Key(sub) == 0) continue;
if (chunk_tote->Key(sub) == packed_plus_one) continue;
if (kIsPackedTop40[chunk_tote->Key(sub)]) continue;
// Quarter the score of others
chunk_tote->SetValue(sub, chunk_tote->Value(sub) >> 2);
}
}