blob: 8732713e9ac4b342d82c0685e39ca8348e1467f4 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_connection.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "net/base/net_errors.h"
#include "net/quic/congestion_control/receive_algorithm_interface.h"
#include "net/quic/congestion_control/send_algorithm_interface.h"
#include "net/quic/crypto/null_encrypter.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/crypto/quic_random.h"
#include "net/quic/quic_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/mock_random.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_framer_peer.h"
#include "net/quic/test_tools/quic_packet_creator_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::vector;
using testing::_;
using testing::AnyNumber;
using testing::Between;
using testing::ContainerEq;
using testing::DoAll;
using testing::InSequence;
using testing::InvokeWithoutArgs;
using testing::Return;
using testing::StrictMock;
using testing::SaveArg;
namespace net {
namespace test {
namespace {
const char data1[] = "foo";
const char data2[] = "bar";
const bool kFin = true;
const bool kEntropyFlag = true;
const QuicPacketEntropyHash kTestEntropyHash = 76;
class TestReceiveAlgorithm : public ReceiveAlgorithmInterface {
public:
explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback)
: feedback_(feedback) {
}
bool GenerateCongestionFeedback(
QuicCongestionFeedbackFrame* congestion_feedback) {
if (feedback_ == NULL) {
return false;
}
*congestion_feedback = *feedback_;
return true;
}
MOCK_METHOD4(RecordIncomingPacket,
void(QuicByteCount, QuicPacketSequenceNumber, QuicTime, bool));
private:
QuicCongestionFeedbackFrame* feedback_;
DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm);
};
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8 tag)
: tag_(tag) {
}
virtual ~TaggingEncrypter() {}
// QuicEncrypter interface.
virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
return true;
}
virtual bool Encrypt(StringPiece nonce,
StringPiece associated_data,
StringPiece plaintext,
unsigned char* output) OVERRIDE {
memcpy(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
return true;
}
virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number,
StringPiece associated_data,
StringPiece plaintext) OVERRIDE {
const size_t len = plaintext.size() + kTagSize;
uint8* buffer = new uint8[len];
Encrypt(StringPiece(), associated_data, plaintext, buffer);
return new QuicData(reinterpret_cast<char*>(buffer), len, true);
}
virtual size_t GetKeySize() const OVERRIDE { return 0; }
virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; }
virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE {
return ciphertext_size - kTagSize;
}
virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE {
return plaintext_size + kTagSize;
}
virtual StringPiece GetKey() const OVERRIDE {
return StringPiece();
}
virtual StringPiece GetNoncePrefix() const OVERRIDE {
return StringPiece();
}
private:
enum {
kTagSize = 12,
};
const uint8 tag_;
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
virtual ~TaggingDecrypter() {}
// QuicDecrypter interface
virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
return true;
}
virtual bool Decrypt(StringPiece nonce,
StringPiece associated_data,
StringPiece ciphertext,
unsigned char* output,
size_t* output_length) OVERRIDE {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number,
StringPiece associated_data,
StringPiece ciphertext) OVERRIDE {
if (ciphertext.size() < kTagSize) {
return NULL;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return NULL;
}
const size_t len = ciphertext.size() - kTagSize;
uint8* buf = new uint8[len];
memcpy(buf, ciphertext.data(), len);
return new QuicData(reinterpret_cast<char*>(buf), len,
true /* owns buffer */);
}
virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); }
virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); }
protected:
virtual uint8 GetTag(StringPiece ciphertext) {
return ciphertext.data()[ciphertext.size()-1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(StringPiece ciphertext, uint8 tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {}
virtual ~StrictTaggingDecrypter() {}
// TaggingQuicDecrypter
virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE {
return tag_;
}
private:
const uint8 tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicAlarm::Delegate* delegate)
: QuicAlarm(delegate) {
}
virtual void SetImpl() OVERRIDE {}
virtual void CancelImpl() OVERRIDE {}
};
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock),
random_generator_(random_generator),
blocked_(false),
is_server_(true),
use_tagging_decrypter_(false),
packets_write_attempts_(0) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
// QuicConnectionHelperInterface
virtual void SetConnection(QuicConnection* connection) OVERRIDE {}
virtual const QuicClock* GetClock() const OVERRIDE {
return clock_;
}
virtual QuicRandom* GetRandomGenerator() OVERRIDE {
return random_generator_;
}
virtual int WritePacketToWire(const QuicEncryptedPacket& packet,
int* error) OVERRIDE {
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
QuicFramer framer(QuicVersionMax(), QuicTime::Zero(), is_server_);
if (use_tagging_decrypter_) {
framer.SetDecrypter(new TaggingDecrypter);
}
FramerVisitorCapturingFrames visitor;
framer.set_visitor(&visitor);
EXPECT_TRUE(framer.ProcessPacket(packet));
header_ = *visitor.header();
frame_count_ = visitor.frame_count();
if (visitor.ack()) {
ack_.reset(new QuicAckFrame(*visitor.ack()));
}
if (visitor.feedback()) {
feedback_.reset(new QuicCongestionFeedbackFrame(*visitor.feedback()));
}
if (visitor.stream_frames() != NULL && !visitor.stream_frames()->empty()) {
stream_frames_ = *visitor.stream_frames();
}
if (visitor.version_negotiation_packet() != NULL) {
version_negotiation_packet_.reset(new QuicVersionNegotiationPacket(
*visitor.version_negotiation_packet()));
}
if (blocked_) {
*error = ERR_IO_PENDING;
return -1;
}
*error = 0;
last_packet_size_ = packet.length();
return last_packet_size_;
}
virtual bool IsWriteBlockedDataBuffered() OVERRIDE {
return false;
}
virtual bool IsWriteBlocked(int error) OVERRIDE {
return error == ERR_IO_PENDING;
}
virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE {
return new TestAlarm(delegate);
}
QuicPacketHeader* header() { return &header_; }
size_t frame_count() const { return frame_count_; }
QuicAckFrame* ack() { return ack_.get(); }
QuicCongestionFeedbackFrame* feedback() { return feedback_.get(); }
const vector<QuicStreamFrame>* stream_frames() const {
return &stream_frames_;
}
size_t last_packet_size() {
return last_packet_size_;
}
QuicVersionNegotiationPacket* version_negotiation_packet() {
return version_negotiation_packet_.get();
}
void set_blocked(bool blocked) { blocked_ = blocked; }
void set_is_server(bool is_server) { is_server_ = is_server; }
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
void use_tagging_decrypter() {
use_tagging_decrypter_ = true;
}
uint32 packets_write_attempts() { return packets_write_attempts_; }
private:
MockClock* clock_;
MockRandom* random_generator_;
QuicPacketHeader header_;
size_t frame_count_;
scoped_ptr<QuicAckFrame> ack_;
scoped_ptr<QuicCongestionFeedbackFrame> feedback_;
vector<QuicStreamFrame> stream_frames_;
scoped_ptr<QuicVersionNegotiationPacket> version_negotiation_packet_;
size_t last_packet_size_;
bool blocked_;
bool is_server_;
uint32 final_bytes_of_last_packet_;
bool use_tagging_decrypter_;
uint32 packets_write_attempts_;
DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper);
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicGuid guid,
IPEndPoint address,
TestConnectionHelper* helper,
bool is_server)
: QuicConnection(guid, address, helper, is_server, QuicVersionMax()),
helper_(helper) {
helper_->set_is_server(!is_server);
}
void SendAck() {
QuicConnectionPeer::SendAck(this);
}
void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) {
QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm);
}
void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
}
QuicConsumedData SendStreamData1() {
return SendStreamData(1u, "food", 0, !kFin);
}
QuicConsumedData SendStreamData2() {
return SendStreamData(2u, "food2", 0, !kFin);
}
bool is_server() {
return QuicConnectionPeer::IsServer(this);
}
void set_version(QuicVersion version) {
framer_.set_version(version);
}
void set_is_server(bool is_server) {
helper_->set_is_server(!is_server);
QuicPacketCreatorPeer::SetIsServer(
QuicConnectionPeer::GetPacketCreator(this), is_server);
QuicConnectionPeer::SetIsServer(this, is_server);
}
QuicAlarm* GetAckAlarm() {
return QuicConnectionPeer::GetAckAlarm(this);
}
QuicAlarm* GetRetransmissionAlarm() {
return QuicConnectionPeer::GetRetransmissionAlarm(this);
}
QuicAlarm* GetSendAlarm() {
return QuicConnectionPeer::GetSendAlarm(this);
}
QuicAlarm* GetTimeoutAlarm() {
return QuicConnectionPeer::GetTimeoutAlarm(this);
}
using QuicConnection::SendOrQueuePacket;
using QuicConnection::SelectMutualVersion;
private:
TestConnectionHelper* helper_;
DISALLOW_COPY_AND_ASSIGN(TestConnection);
};
class QuicConnectionTest : public ::testing::Test {
protected:
QuicConnectionTest()
: guid_(42),
framer_(QuicVersionMax(), QuicTime::Zero(), false),
creator_(guid_, &framer_, QuicRandom::GetInstance(), false),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
connection_(guid_, IPEndPoint(), helper_, false),
frame1_(1, false, 0, data1),
frame2_(1, false, 3, data2),
accept_packet_(true) {
connection_.set_visitor(&visitor_);
connection_.SetSendAlgorithm(send_algorithm_);
// Simplify tests by not sending feedback unless specifically configured.
SetFeedback(NULL);
EXPECT_CALL(
*send_algorithm_, TimeUntilSend(_, _, _, _)).WillRepeatedly(Return(
QuicTime::Delta::Zero()));
EXPECT_CALL(*receive_algorithm_,
RecordIncomingPacket(_, _, _, _)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly(
Return(QuicTime::Delta::Zero()));
}
QuicAckFrame* outgoing_ack() {
outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_));
return outgoing_ack_.get();
}
QuicAckFrame* last_ack() {
return helper_->ack();
}
QuicCongestionFeedbackFrame* last_feedback() {
return helper_->feedback();
}
QuicPacketHeader* last_header() {
return helper_->header();
}
size_t last_sent_packet_size() {
return helper_->last_packet_size();
}
uint32 final_bytes_of_last_packet() {
return helper_->final_bytes_of_last_packet();
}
void use_tagging_decrypter() {
helper_->use_tagging_decrypter();
}
void ProcessPacket(QuicPacketSequenceNumber number) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _))
.WillOnce(Return(accept_packet_));
ProcessDataPacket(number, 0, !kEntropyFlag);
}
QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
QuicPacketCreatorPeer::SetSendVersionInPacket(&creator_,
connection_.is_server());
SerializedPacket serialized_packet = creator_.SerializeAllFrames(frames);
scoped_ptr<QuicPacket> packet(serialized_packet.packet);
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPacket(ENCRYPTION_NONE,
serialized_packet.sequence_number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return serialized_packet.entropy_hash;
}
size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number,
bool expect_revival) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).Times(2).WillRepeatedly(
Return(accept_packet_));
} else {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillOnce(
Return(accept_packet_));
}
return ProcessDataPacket(number, 1, !kEntropyFlag);
}
size_t ProcessDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
return ProcessDataPacketAtLevel(number, fec_group, entropy_flag,
ENCRYPTION_NONE);
}
size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag,
EncryptionLevel level) {
scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group,
entropy_flag));
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
level, number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
void ProcessClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group));
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
ENCRYPTION_NONE, number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number,
bool expect_revival, bool entropy_flag) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillOnce(DoAll(
SaveArg<2>(&revived_header_), Return(accept_packet_)));
}
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillOnce(Return(accept_packet_))
.RetiresOnSaturation();
return ProcessDataPacket(number, 1, entropy_flag);
}
// Sends an FEC packet that covers the packets that would have been sent.
size_t ProcessFecPacket(QuicPacketSequenceNumber number,
QuicPacketSequenceNumber min_protected_packet,
bool expect_revival,
bool entropy_flag) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillOnce(DoAll(
SaveArg<2>(&revived_header_), Return(accept_packet_)));
}
// Construct the decrypted data packet so we can compute the correct
// redundancy.
scoped_ptr<QuicPacket> data_packet(ConstructDataPacket(number, 1,
!kEntropyFlag));
header_.public_header.guid = guid_;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = entropy_flag;
header_.fec_flag = true;
header_.packet_sequence_number = number;
header_.is_in_fec_group = IN_FEC_GROUP;
header_.fec_group = min_protected_packet;
QuicFecData fec_data;
fec_data.fec_group = header_.fec_group;
// Since all data packets in this test have the same payload, the
// redundancy is either equal to that payload or the xor of that payload
// with itself, depending on the number of packets.
if (((number - min_protected_packet) % 2) == 0) {
for (size_t i = GetStartOfFecProtectedData(
header_.public_header.guid_length,
header_.public_header.version_flag,
header_.public_header.sequence_number_length);
i < data_packet->length(); ++i) {
data_packet->mutable_data()[i] ^= data_packet->data()[i];
}
}
fec_data.redundancy = data_packet->FecProtectedData();
scoped_ptr<QuicPacket> fec_packet(
framer_.BuildFecPacket(header_, fec_data).packet);
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id, StringPiece data,
QuicStreamOffset offset, bool fin,
QuicPacketSequenceNumber* last_packet) {
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).WillOnce(
SaveArg<2>(&packet_size));
connection_.SendStreamData(id, data, offset, fin);
if (last_packet != NULL) {
*last_packet =
QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number();
}
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(AnyNumber());
}
QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame,
bool expect_writes) {
if (expect_writes) {
EXPECT_CALL(visitor_, OnCanWrite()).Times(1).WillOnce(Return(true));
}
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(QuicPacketSequenceNumber number) {
return IsAwaitingPacket(outgoing_ack()->received_info, number);
}
QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
header_.public_header.guid = guid_;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = entropy_flag;
header_.fec_flag = false;
header_.packet_sequence_number = number;
header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header_.fec_group = fec_group;
QuicFrames frames;
QuicFrame frame(&frame1_);
frames.push_back(frame);
QuicPacket* packet =
framer_.BuildUnsizedDataPacket(header_, frames).packet;
EXPECT_TRUE(packet != NULL);
return packet;
}
QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
header_.public_header.guid = guid_;
header_.packet_sequence_number = number;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = false;
header_.fec_flag = false;
header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header_.fec_group = fec_group;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
qccf.ack_frame = QuicAckFrame(0, QuicTime::Zero(), 1);
QuicFrames frames;
QuicFrame frame(&qccf);
frames.push_back(frame);
QuicPacket* packet =
framer_.BuildUnsizedDataPacket(header_, frames).packet;
EXPECT_TRUE(packet != NULL);
return packet;
}
void SetFeedback(QuicCongestionFeedbackFrame* feedback) {
receive_algorithm_ = new TestReceiveAlgorithm(feedback);
connection_.SetReceiveAlgorithm(receive_algorithm_);
}
QuicGuid guid_;
QuicFramer framer_;
QuicPacketCreator creator_;
MockSendAlgorithm* send_algorithm_;
TestReceiveAlgorithm* receive_algorithm_;
MockClock clock_;
MockRandom random_generator_;
TestConnectionHelper* helper_;
TestConnection connection_;
testing::StrictMock<MockConnectionVisitor> visitor_;
QuicPacketHeader header_;
QuicPacketHeader revived_header_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
scoped_ptr<QuicAckFrame> outgoing_ack_;
bool accept_packet_;
private:
DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest);
};
TEST_F(QuicConnectionTest, PacketsInOrder) {
ProcessPacket(1);
EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed);
EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
ProcessPacket(2);
EXPECT_EQ(2u, outgoing_ack()->received_info.largest_observed);
EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
}
TEST_F(QuicConnectionTest, PacketsRejected) {
ProcessPacket(1);
EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed);
EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
accept_packet_ = false;
ProcessPacket(2);
// We should not have an ack for two.
EXPECT_EQ(1u, outgoing_ack()->received_info.largest_observed);
EXPECT_EQ(0u, outgoing_ack()->received_info.missing_packets.size());
}
TEST_F(QuicConnectionTest, PacketsOutOfOrder) {
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(1);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_F(QuicConnectionTest, DuplicatePacket) {
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnPacket() will be called.
ProcessDataPacket(3, 0, !kEntropyFlag);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_F(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(1));
ProcessPacket(5);
EXPECT_EQ(5u, outgoing_ack()->received_info.largest_observed);
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
creator_.set_sequence_number(5);
QuicAckFrame frame(0, QuicTime::Zero(), 4);
ProcessAckPacket(&frame, true);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_F(QuicConnectionTest, RejectPacketTooFarOut) {
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false));
ProcessDataPacket(6000, 0, !kEntropyFlag);
}
TEST_F(QuicConnectionTest, TruncatedAck) {
EXPECT_CALL(visitor_, OnAck(_)).Times(testing::AnyNumber());
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
for (int i = 0; i < 200; ++i) {
SendStreamDataToPeer(1, "foo", i * 3, !kFin, NULL);
}
QuicAckFrame frame(0, QuicTime::Zero(), 1);
frame.received_info.largest_observed = 192;
InsertMissingPacketsBetween(&frame.received_info, 1, 192);
frame.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 192) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 191);
ProcessAckPacket(&frame, true);
EXPECT_TRUE(QuicConnectionPeer::GetReceivedTruncatedAck(&connection_));
frame.received_info.missing_packets.erase(191);
frame.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 192) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 190);
ProcessAckPacket(&frame, true);
EXPECT_FALSE(QuicConnectionPeer::GetReceivedTruncatedAck(&connection_));
}
TEST_F(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) {
ProcessPacket(1);
// Delay sending, then queue up an ack.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
QuicConnectionPeer::SendAck(&connection_);
// Process an ack with a least unacked of the received ack.
// This causes an ack to be sent when TimeUntilSend returns 0.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
// Skip a packet and then record an ack.
creator_.set_sequence_number(2);
QuicAckFrame frame(0, QuicTime::Zero(), 3);
ProcessAckPacket(&frame, true);
}
TEST_F(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
QuicPacketSequenceNumber largest_observed;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, NOT_RETRANSMISSION))
.WillOnce(DoAll(SaveArg<1>(&largest_observed), SaveArg<2>(&packet_size)));
EXPECT_CALL(*send_algorithm_, AbandoningPacket(1, _)).Times(1);
connection_.SendStreamData(1, "foo", 0, !kFin);
QuicAckFrame frame(1, QuicTime::Zero(), largest_observed);
frame.received_info.missing_packets.insert(largest_observed);
frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, largest_observed - 1);
ProcessAckPacket(&frame, true);
ProcessAckPacket(&frame, true);
// Third nack should retransmit the largest observed packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, packet_size - kQuicVersionSize,
IS_RETRANSMISSION));
ProcessAckPacket(&frame, true);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, then that will count as a packet which instigates an ack.
ProcessAckPacket(&frame, true);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, NOT_RETRANSMISSION));
ProcessAckPacket(&frame, true);
// But an ack with no new missing packest will not send an ack.
frame.received_info.missing_packets.clear();
ProcessAckPacket(&frame, true);
ProcessAckPacket(&frame, true);
}
TEST_F(QuicConnectionTest, LeastUnackedLower) {
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
// Start out saying the least unacked is 2
creator_.set_sequence_number(5);
QuicAckFrame frame(0, QuicTime::Zero(), 2);
ProcessAckPacket(&frame, true);
// Change it to 1, but lower the sequence number to fake out-of-order packets.
// This should be fine.
creator_.set_sequence_number(1);
QuicAckFrame frame2(0, QuicTime::Zero(), 1);
// The scheduler will not process out of order acks.
ProcessAckPacket(&frame2, false);
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
creator_.set_sequence_number(7);
ProcessAckPacket(&frame2, false);
}
TEST_F(QuicConnectionTest, LargestObservedLower) {
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2);
// Start out saying the largest observed is 2.
QuicAckFrame frame(2, QuicTime::Zero(), 0);
frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, 2);
EXPECT_CALL(visitor_, OnAck(_));
ProcessAckPacket(&frame, true);
// Now change it to 1, and it should cause a connection error.
QuicAckFrame frame2(1, QuicTime::Zero(), 0);
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false));
ProcessAckPacket(&frame2, false);
}
TEST_F(QuicConnectionTest, LeastUnackedGreaterThanPacketSequenceNumber) {
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
// Create an ack with least_unacked is 2 in packet number 1.
creator_.set_sequence_number(0);
QuicAckFrame frame(0, QuicTime::Zero(), 2);
ProcessAckPacket(&frame, false);
}
TEST_F(QuicConnectionTest,
NackSequenceNumberGreaterThanLargestReceived) {
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
QuicAckFrame frame(0, QuicTime::Zero(), 1);
frame.received_info.missing_packets.insert(3);
ProcessAckPacket(&frame, false);
}
TEST_F(QuicConnectionTest, AckUnsentData) {
// Ack a packet which has not been sent.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
QuicAckFrame frame(1, QuicTime::Zero(), 0);
ProcessAckPacket(&frame, false);
}
TEST_F(QuicConnectionTest, AckAll) {
ProcessPacket(1);
creator_.set_sequence_number(1);
QuicAckFrame frame1(0, QuicTime::Zero(), 1);
ProcessAckPacket(&frame1, true);
}
TEST_F(QuicConnectionTest, BasicSending) {
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(6);
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendAckPacketToPeer(); // Packet 2
EXPECT_EQ(1u, last_ack()->sent_info.least_unacked);
SendAckPacketToPeer(); // Packet 3
EXPECT_EQ(1u, last_ack()->sent_info.least_unacked);
SendStreamDataToPeer(1u, "bar", 3, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(1u, last_ack()->sent_info.least_unacked);
SequenceNumberSet expected_acks;
expected_acks.insert(1);
// Peer acks up to packet 3.
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
QuicAckFrame frame(3, QuicTime::Zero(), 0);
frame.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 3);
ProcessAckPacket(&frame, true);
SendAckPacketToPeer(); // Packet 6
// As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
// ack for 4.
EXPECT_EQ(4u, last_ack()->sent_info.least_unacked);
expected_acks.clear();
expected_acks.insert(4);
// Peer acks up to packet 4, the last packet.
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
QuicAckFrame frame2(6, QuicTime::Zero(), 0);
frame2.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 6);
ProcessAckPacket(&frame2, true); // Acks don't instigate acks.
// Verify that we did not send an ack.
EXPECT_EQ(6u, last_header()->packet_sequence_number);
// So the last ack has not changed.
EXPECT_EQ(4u, last_ack()->sent_info.least_unacked);
// If we force an ack, we shouldn't change our retransmit state.
SendAckPacketToPeer(); // Packet 7
EXPECT_EQ(7u, last_ack()->sent_info.least_unacked);
// But if we send more data it should.
SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8
EXPECT_EQ(8u, last_packet);
SendAckPacketToPeer(); // Packet 9
EXPECT_EQ(8u, last_ack()->sent_info.least_unacked);
}
TEST_F(QuicConnectionTest, FECSending) {
// All packets carry version info till version is negotiated.
size_t payload_length;
connection_.options()->max_packet_length =
GetPacketLengthForOneStream(connection_.version(), kIncludeVersion,
IN_FEC_GROUP, &payload_length);
// And send FEC every two packets.
connection_.options()->max_packets_per_fec_group = 2;
// Send 4 data packets and 2 FEC packets.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(6);
// The first stream frame will consume 2 fewer bytes than the other three.
const string payload(payload_length * 4 - 6, 'a');
connection_.SendStreamData(1, payload, 0, !kFin);
// Expect the FEC group to be closed after SendStreamData.
EXPECT_FALSE(creator_.ShouldSendFec(true));
}
TEST_F(QuicConnectionTest, FECQueueing) {
// All packets carry version info till version is negotiated.
size_t payload_length;
connection_.options()->max_packet_length =
GetPacketLengthForOneStream(connection_.version(), kIncludeVersion,
IN_FEC_GROUP, &payload_length);
// And send FEC every two packets.
connection_.options()->max_packets_per_fec_group = 2;
EXPECT_EQ(0u, connection_.NumQueuedPackets());
helper_->set_blocked(true);
const string payload(payload_length, 'a');
connection_.SendStreamData(1, payload, 0, !kFin);
EXPECT_FALSE(creator_.ShouldSendFec(true));
// Expect the first data packet and the fec packet to be queued.
EXPECT_EQ(2u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, AbandonFECFromCongestionWindow) {
connection_.options()->max_packets_per_fec_group = 1;
// 1 Data and 1 FEC packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(2);
connection_.SendStreamData(1, "foo", 0, !kFin);
// Larger timeout for FEC bytes to expire.
const QuicTime::Delta retransmission_time =
QuicTime::Delta::FromMilliseconds(5000);
clock_.AdvanceTime(retransmission_time);
// Send only data packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
// Abandon both FEC and data packet.
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(2);
connection_.OnRetransmissionTimeout();
}
TEST_F(QuicConnectionTest, DontAbandonAckedFEC) {
connection_.options()->max_packets_per_fec_group = 1;
const QuicPacketSequenceNumber sequence_number =
QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number() + 1;
// 1 Data and 1 FEC packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(2);
connection_.SendStreamData(1, "foo", 0, !kFin);
QuicAckFrame ack_fec(2, QuicTime::Zero(), 1);
// Data packet missing.
ack_fec.received_info.missing_packets.insert(1);
ack_fec.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 1);
EXPECT_CALL(visitor_, OnAck(_)).Times(1);
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
ProcessAckPacket(&ack_fec, true);
const QuicTime::Delta kDefaultRetransmissionTime =
QuicTime::Delta::FromMilliseconds(5000);
clock_.AdvanceTime(kDefaultRetransmissionTime);
// Abandon only data packet, FEC has been acked.
EXPECT_CALL(*send_algorithm_, AbandoningPacket(sequence_number, _)).Times(1);
// Send only data packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
connection_.OnRetransmissionTimeout();
}
TEST_F(QuicConnectionTest, FramePacking) {
// Block the connection.
connection_.GetSendAlarm()->Set(
clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1)));
// Send an ack and two stream frames in 1 packet by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData1)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData2)),
Return(true)));
// Unblock the connection.
connection_.GetSendAlarm()->Cancel();
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, NOT_RETRANSMISSION))
.Times(1);
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(3u, helper_->frame_count());
EXPECT_TRUE(helper_->ack());
EXPECT_EQ(2u, helper_->stream_frames()->size());
EXPECT_EQ(1u, (*helper_->stream_frames())[0].stream_id);
EXPECT_EQ(2u, (*helper_->stream_frames())[1].stream_id);
}
TEST_F(QuicConnectionTest, FramePackingFEC) {
// Enable fec.
connection_.options()->max_packets_per_fec_group = 6;
// Block the connection.
connection_.GetSendAlarm()->Set(
clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(1)));
// Send an ack and two stream frames in 1 packet by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData1)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData2)),
Return(true)));
// Unblock the connection.
connection_.GetSendAlarm()->Cancel();
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, NOT_RETRANSMISSION)).Times(2);
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's in an fec group.
EXPECT_EQ(1u, helper_->header()->fec_group);
EXPECT_EQ(0u, helper_->frame_count());
}
TEST_F(QuicConnectionTest, OnCanWrite) {
// Visitor's OnCanWill send data, but will return false.
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData1)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData2)),
Return(false)));
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
// Unblock the connection.
connection_.OnCanWrite();
// Parse the last packet and ensure it's the two stream frames from
// two different streams.
EXPECT_EQ(2u, helper_->frame_count());
EXPECT_EQ(2u, helper_->stream_frames()->size());
EXPECT_EQ(1u, (*helper_->stream_frames())[0].stream_id);
EXPECT_EQ(2u, (*helper_->stream_frames())[1].stream_id);
}
TEST_F(QuicConnectionTest, RetransmitOnNack) {
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(2);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(2, _)).Times(1);
QuicPacketSequenceNumber last_packet;
QuicByteCount second_packet_size;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
second_packet_size =
SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3
SequenceNumberSet expected_acks;
expected_acks.insert(1);
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
// Peer acks one but not two or three. Right now we only retransmit on
// explicit nack, so it should not trigger a retransimission.
QuicAckFrame ack_one(1, QuicTime::Zero(), 0);
ack_one.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 1);
ProcessAckPacket(&ack_one, true);
ProcessAckPacket(&ack_one, true);
ProcessAckPacket(&ack_one, true);
expected_acks.clear();
expected_acks.insert(3);
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
// Peer acks up to 3 with two explicitly missing. Two nacks should cause no
// change.
QuicAckFrame nack_two(3, QuicTime::Zero(), 0);
nack_two.received_info.missing_packets.insert(2);
nack_two.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 1);
ProcessAckPacket(&nack_two, true);
ProcessAckPacket(&nack_two, true);
// The third nack should trigger a retransimission.
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, second_packet_size - kQuicVersionSize,
IS_RETRANSMISSION)).Times(1);
ProcessAckPacket(&nack_two, true);
}
TEST_F(QuicConnectionTest, RetransmitNackedLargestObserved) {
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
QuicPacketSequenceNumber largest_observed;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, NOT_RETRANSMISSION))
.WillOnce(DoAll(SaveArg<1>(&largest_observed), SaveArg<2>(&packet_size)));
EXPECT_CALL(*send_algorithm_, AbandoningPacket(1, _)).Times(1);
connection_.SendStreamData(1, "foo", 0, !kFin);
QuicAckFrame frame(1, QuicTime::Zero(), largest_observed);
frame.received_info.missing_packets.insert(largest_observed);
frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, largest_observed - 1);
ProcessAckPacket(&frame, true);
ProcessAckPacket(&frame, true);
// Third nack should retransmit the largest observed packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, packet_size - kQuicVersionSize,
IS_RETRANSMISSION));
ProcessAckPacket(&frame, true);
}
TEST_F(QuicConnectionTest, RetransmitNackedPacketsOnTruncatedAck) {
for (int i = 0; i < 200; ++i) {
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
connection_.SendStreamData(1, "foo", i * 3, !kFin);
}
// Make a truncated ack frame.
QuicAckFrame frame(0, QuicTime::Zero(), 1);
frame.received_info.largest_observed = 192;
InsertMissingPacketsBetween(&frame.received_info, 1, 192);
frame.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 192) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 191);
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
EXPECT_CALL(visitor_, OnAck(_)).Times(1);
ProcessAckPacket(&frame, true);
EXPECT_TRUE(QuicConnectionPeer::GetReceivedTruncatedAck(&connection_));
QuicConnectionPeer::SetMaxPacketsPerRetransmissionAlarm(&connection_, 200);
const QuicTime::Delta kDefaultRetransmissionTime =
QuicTime::Delta::FromMilliseconds(500);
clock_.AdvanceTime(kDefaultRetransmissionTime);
// Only packets that are less than largest observed should be retransmitted.
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(191);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(191);
connection_.OnRetransmissionTimeout();
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2 * kDefaultRetransmissionTime.ToMicroseconds()));
// Retransmit already retransmitted packets event though the sequence number
// greater than the largest observed.
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(191);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(191);
connection_.OnRetransmissionTimeout();
}
TEST_F(QuicConnectionTest, LimitPacketsPerNack) {
EXPECT_CALL(*send_algorithm_, OnIncomingAck(12, _, _)).Times(1);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(11);
int offset = 0;
// Send packets 1 to 12
for (int i = 0; i < 12; ++i) {
SendStreamDataToPeer(1, "foo", offset, !kFin, NULL);
offset += 3;
}
// Ack 12, nack 1-11
QuicAckFrame nack(12, QuicTime::Zero(), 0);
for (int i = 1; i < 12; ++i) {
nack.received_info.missing_packets.insert(i);
}
nack.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 12) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 11);
SequenceNumberSet expected_acks;
expected_acks.insert(12);
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
// Nack three times.
ProcessAckPacket(&nack, true);
ProcessAckPacket(&nack, true);
// The third call should trigger retransmitting 10 packets.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(10);
ProcessAckPacket(&nack, true);
// The fourth call should trigger retransmitting the 11th packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
ProcessAckPacket(&nack, true);
}
// Test sending multiple acks from the connection to the session.
TEST_F(QuicConnectionTest, MultipleAcks) {
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(6);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1u, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendStreamDataToPeer(3u, "foo", 0, !kFin, &last_packet); // Packet 2
EXPECT_EQ(2u, last_packet);
SendAckPacketToPeer(); // Packet 3
SendStreamDataToPeer(5u, "foo", 0, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendStreamDataToPeer(1u, "foo", 3, !kFin, &last_packet); // Packet 5
EXPECT_EQ(5u, last_packet);
SendStreamDataToPeer(3u, "foo", 3, !kFin, &last_packet); // Packet 6
EXPECT_EQ(6u, last_packet);
// Client will ack packets 1, [!2], 3, 4, 5
QuicAckFrame frame1(5, QuicTime::Zero(), 0);
frame1.received_info.missing_packets.insert(2);
frame1.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 5) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 2) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 1);
// The connection should pass up acks for 1, 4, 5. 2 is not acked, and 3 was
// an ackframe so should not be passed up.
SequenceNumberSet expected_acks;
expected_acks.insert(1);
expected_acks.insert(4);
expected_acks.insert(5);
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
ProcessAckPacket(&frame1, true);
// Now the client implicitly acks 2, and explicitly acks 6
QuicAckFrame frame2(6, QuicTime::Zero(), 0);
frame2.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 6);
expected_acks.clear();
// Both acks should be passed up.
expected_acks.insert(2);
expected_acks.insert(6);
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
ProcessAckPacket(&frame2, true);
}
TEST_F(QuicConnectionTest, DontLatchUnackedPacket) {
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1);
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1;
SendAckPacketToPeer(); // Packet 2
// This sets least unacked to 3 (unsent packet), since we don't need
// an ack for Packet 2 (ack packet).
SequenceNumberSet expected_acks;
expected_acks.insert(1);
// Peer acks packet 1.
EXPECT_CALL(visitor_, OnAck(ContainerEq(expected_acks)));
QuicAckFrame frame(1, QuicTime::Zero(), 0);
frame.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, 1);
ProcessAckPacket(&frame, true);
// Verify that our internal state has least-unacked as 3.
EXPECT_EQ(3u, outgoing_ack()->sent_info.least_unacked);
// When we send an ack, we make sure our least-unacked makes sense. In this
// case since we're not waiting on an ack for 2 and all packets are acked, we
// set it to 3.
SendAckPacketToPeer(); // Packet 3
// Since this was an ack packet, we set least_unacked to 4.
EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked);
// Check that the outgoing ack had its sequence number as least_unacked.
EXPECT_EQ(3u, last_ack()->sent_info.least_unacked);
SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4
EXPECT_EQ(4u, outgoing_ack()->sent_info.least_unacked);
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(4u, last_ack()->sent_info.least_unacked);
}
TEST_F(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) {
// Don't send missing packet 1.
ProcessFecPacket(2, 1, true, !kEntropyFlag);
EXPECT_FALSE(revived_header_.entropy_flag);
}
TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) {
ProcessFecProtectedPacket(1, false, kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(3, 1, true, !kEntropyFlag);
EXPECT_TRUE(revived_header_.entropy_flag);
}
TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) {
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecProtectedPacket(3, false, !kEntropyFlag);
ProcessFecPacket(4, 1, true, kEntropyFlag);
EXPECT_TRUE(revived_header_.entropy_flag);
}
TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) {
// Don't send missing packet 1.
ProcessFecPacket(3, 1, false, !kEntropyFlag);
// out of order
ProcessFecProtectedPacket(2, true, !kEntropyFlag);
EXPECT_FALSE(revived_header_.entropy_flag);
}
TEST_F(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) {
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(6, 1, false, kEntropyFlag);
ProcessFecProtectedPacket(3, false, kEntropyFlag);
ProcessFecProtectedPacket(4, false, kEntropyFlag);
ProcessFecProtectedPacket(5, true, !kEntropyFlag);
EXPECT_TRUE(revived_header_.entropy_flag);
}
TEST_F(QuicConnectionTest, TestRetransmit) {
const QuicTime::Delta kDefaultRetransmissionTime =
QuicTime::Delta::FromMilliseconds(500);
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
kDefaultRetransmissionTime);
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
EXPECT_EQ(1u, outgoing_ack()->sent_info.least_unacked);
EXPECT_EQ(1u, last_header()->packet_sequence_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransimission alarm firing
clock_.AdvanceTime(kDefaultRetransmissionTime);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
EXPECT_CALL(*send_algorithm_, AbandoningPacket(1, _)).Times(1);
connection_.RetransmitPacket(1);
EXPECT_EQ(2u, last_header()->packet_sequence_number);
EXPECT_EQ(2u, outgoing_ack()->sent_info.least_unacked);
}
TEST_F(QuicConnectionTest, RetransmitWithSameEncryptionLevel) {
const QuicTime::Delta kDefaultRetransmissionTime =
QuicTime::Delta::FromMilliseconds(500);
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
kDefaultRetransmissionTime);
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
EXPECT_EQ(0x01010101u, final_bytes_of_last_packet());
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
EXPECT_EQ(0x02020202u, final_bytes_of_last_packet());
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransimission alarm firing
clock_.AdvanceTime(kDefaultRetransmissionTime);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(2);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
connection_.RetransmitPacket(1);
// Packet should have been sent with ENCRYPTION_NONE.
EXPECT_EQ(0x01010101u, final_bytes_of_last_packet());
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
connection_.RetransmitPacket(2);
// Packet should have been sent with ENCRYPTION_INITIAL.
EXPECT_EQ(0x02020202u, final_bytes_of_last_packet());
}
TEST_F(QuicConnectionTest,
DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
QuicPacketSequenceNumber sequence_number;
SendStreamDataToPeer(1, "foo", 0, !kFin, &sequence_number);
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(0);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(sequence_number, _)).Times(1);
const QuicTime::Delta kDefaultRetransmissionTime =
QuicTime::Delta::FromMilliseconds(500);
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
kDefaultRetransmissionTime);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransimission alarm firing
clock_.AdvanceTime(kDefaultRetransmissionTime);
connection_.OnRetransmissionTimeout();
}
TEST_F(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(2, "bar", 0, !kFin, NULL);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(1);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(1);
connection_.RetransmitUnackedPackets(QuicConnection::INITIAL_ENCRYPTION_ONLY);
}
TEST_F(QuicConnectionTest, BufferNonDecryptablePackets) {
use_tagging_decrypter();
const uint8 tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted
// which should result in the packet being buffered.
ProcessDataPacketAtLevel(1, false, kEntropyFlag, ENCRYPTION_INITIAL);
// Transition to the new encryption state and process another
// encrypted packet which should result in the original packet being
// processed.
connection_.SetDecrypter(new StrictTaggingDecrypter(tag));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).Times(2).WillRepeatedly(
Return(true));
ProcessDataPacketAtLevel(2, false, kEntropyFlag, ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not
// reprocess the buffered packet.
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillOnce(Return(true));
ProcessDataPacketAtLevel(3, false, kEntropyFlag, ENCRYPTION_INITIAL);
}
TEST_F(QuicConnectionTest, TestRetransmitOrder) {
QuicByteCount first_packet_size;
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).WillOnce(
SaveArg<2>(&first_packet_size));
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(2);
connection_.SendStreamData(1, "first_packet", 0, !kFin);
QuicByteCount second_packet_size;
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).WillOnce(
SaveArg<2>(&second_packet_size));
connection_.SendStreamData(1, "second_packet", 12, !kFin);
EXPECT_NE(first_packet_size, second_packet_size);
// Advance the clock by huge time to make sure packets will be retransmitted.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
{
InSequence s;
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, second_packet_size, _));
}
connection_.OnRetransmissionTimeout();
}
TEST_F(QuicConnectionTest, TestRetransmissionCountCalculation) {
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(2);
QuicPacketSequenceNumber original_sequence_number;
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, NOT_RETRANSMISSION))
.WillOnce(SaveArg<1>(&original_sequence_number));
connection_.SendStreamData(1, "foo", 0, !kFin);
EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, original_sequence_number));
EXPECT_EQ(0u, QuicConnectionPeer::GetRetransmissionCount(
&connection_, original_sequence_number));
// Force retransmission due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
QuicPacketSequenceNumber rto_sequence_number;
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, IS_RETRANSMISSION))
.WillOnce(SaveArg<1>(&rto_sequence_number));
connection_.OnRetransmissionTimeout();
EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, original_sequence_number));
ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, rto_sequence_number));
EXPECT_EQ(1u, QuicConnectionPeer::GetRetransmissionCount(
&connection_, rto_sequence_number));
// Once by explicit nack.
QuicPacketSequenceNumber nack_sequence_number;
// Ack packets might generate some other packets, which are not
// retransmissions. (More ack packets).
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, NOT_RETRANSMISSION))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, IS_RETRANSMISSION))
.WillOnce(SaveArg<1>(&nack_sequence_number));
QuicAckFrame ack(rto_sequence_number, QuicTime::Zero(), 0);
// Ack the retransmitted packet.
ack.received_info.missing_packets.insert(rto_sequence_number);
ack.received_info.entropy_hash = QuicConnectionPeer::GetSentEntropyHash(
&connection_, rto_sequence_number - 1);
for (int i = 0; i < 3; i++) {
ProcessAckPacket(&ack, true);
}
EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, rto_sequence_number));
EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, nack_sequence_number));
EXPECT_EQ(2u, QuicConnectionPeer::GetRetransmissionCount(
&connection_, nack_sequence_number));
}
TEST_F(QuicConnectionTest, SetRTOAfterWritingToSocket) {
helper_->set_blocked(true);
connection_.SendStreamData(1, "foo", 0, !kFin);
// Make sure that RTO is not started when the packet is queued.
EXPECT_EQ(0u, QuicConnectionPeer::GetNumRetransmissionTimeouts(&connection_));
// Test that RTO is started once we write to the socket.
helper_->set_blocked(false);
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(1u, QuicConnectionPeer::GetNumRetransmissionTimeouts(&connection_));
}
TEST_F(QuicConnectionTest, TestQueued) {
EXPECT_EQ(0u, connection_.NumQueuedPackets());
helper_->set_blocked(true);
connection_.SendStreamData(1, "foo", 0, !kFin);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Attempt to send all packets, but since we're actually still
// blocked, they should all remain queued.
EXPECT_FALSE(connection_.OnCanWrite());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Unblock the writes and actually send.
helper_->set_blocked(false);
EXPECT_CALL(visitor_, OnCanWrite());
EXPECT_TRUE(connection_.OnCanWrite());
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, CloseFecGroup) {
// Don't send missing packet 1
// Don't send missing packet 2
ProcessFecProtectedPacket(3, false, !kEntropyFlag);
// Don't send missing FEC packet 3
ASSERT_EQ(1u, connection_.NumFecGroups());
// Now send non-fec protected ack packet and close the group
QuicAckFrame frame(0, QuicTime::Zero(), 5);
creator_.set_sequence_number(4);
ProcessAckPacket(&frame, true);
ASSERT_EQ(0u, connection_.NumFecGroups());
}
TEST_F(QuicConnectionTest, NoQuicCongestionFeedbackFrame) {
SendAckPacketToPeer();
EXPECT_TRUE(last_feedback() == NULL);
}
TEST_F(QuicConnectionTest, WithQuicCongestionFeedbackFrame) {
QuicCongestionFeedbackFrame info;
info.type = kFixRate;
info.fix_rate.bitrate = QuicBandwidth::FromBytesPerSecond(123);
SetFeedback(&info);
SendAckPacketToPeer();
EXPECT_EQ(kFixRate, last_feedback()->type);
EXPECT_EQ(info.fix_rate.bitrate, last_feedback()->fix_rate.bitrate);
}
TEST_F(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) {
SendAckPacketToPeer();
EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _));
ProcessPacket(1);
}
TEST_F(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) {
SendAckPacketToPeer();
// Process an FEC packet, and revive the missing data packet
// but only contact the receive_algorithm once.
EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _, _));
ProcessFecPacket(2, 1, true, !kEntropyFlag);
}
TEST_F(QuicConnectionTest, InitialTimeout) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ConnectionClose(QUIC_CONNECTION_TIMED_OUT, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
QuicTime default_timeout = clock_.ApproximateNow().Add(
QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// Simulate the timeout alarm firing
clock_.AdvanceTime(
QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
EXPECT_TRUE(connection_.CheckForTimeout());
EXPECT_FALSE(connection_.connected());
}
TEST_F(QuicConnectionTest, TimeoutAfterSend) {
EXPECT_TRUE(connection_.connected());
QuicTime default_timeout = clock_.ApproximateNow().Add(
QuicTime::Delta::FromSeconds(kDefaultInitialTimeoutSecs));
// When we send a packet, the timeout will change to 5000 +
// kDefaultInitialTimeoutSecs.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
// Send an ack so we don't set the retransimission alarm.
SendAckPacketToPeer();
EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline());
// The original alarm will fire. We should not time out because we had a
// network event at t=5000. The alarm will reregister.
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
kDefaultInitialTimeoutSecs * 1000000 - 5000));
EXPECT_EQ(default_timeout, clock_.ApproximateNow());
EXPECT_FALSE(connection_.CheckForTimeout());
EXPECT_TRUE(connection_.connected());
EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)),
connection_.GetTimeoutAlarm()->deadline());
// This time, we should time out.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_CONNECTION_TIMED_OUT, false));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5));
EXPECT_EQ(default_timeout.Add(QuicTime::Delta::FromMilliseconds(5)),
clock_.ApproximateNow());
EXPECT_TRUE(connection_.CheckForTimeout());
EXPECT_FALSE(connection_.connected());
}
// TODO(ianswett): Add scheduler tests when should_retransmit is false.
TEST_F(QuicConnectionTest, SendScheduler) {
// Test that if we send a packet without delay, it is not queued.
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelay) {
// Test that if we send a packet with a delay, it ends up queued.
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
EXPECT_CALL(*send_algorithm_, SentPacket(_, 1, _, _)).Times(0);
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerForce) {
// Test that if we force send a packet, it is not queued.
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, IS_RETRANSMISSION, _, _)).Times(0);
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
// XXX: fixme. was: connection_.SendOrQueuePacket(1, packet, kForce);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerEAGAIN) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
helper_->set_blocked(true);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, SentPacket(_, 1, _, _)).Times(0);
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayThenSend) {
// Test that if we send a packet with a delay, it ends up queued.
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Advance the clock to fire the alarm, and configure the scheduler
// to permit the packet to be sent.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1));
connection_.GetSendAlarm()->Cancel();
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _));
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayThenRetransmit) {
EXPECT_CALL(*send_algorithm_, TimeUntilSend(_, NOT_RETRANSMISSION, _, _))
.WillRepeatedly(testing::Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, AbandoningPacket(1, _)).Times(1);
EXPECT_CALL(*send_algorithm_,
SentPacket(_, 1, _, NOT_RETRANSMISSION));
connection_.SendStreamData(1, "foo", 0, !kFin);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Advance the time for retransmission of lost packet.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(501));
// Test that if we send a retransmit with a delay, it ends up queued.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, IS_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
connection_.OnRetransmissionTimeout();
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Advance the clock to fire the alarm, and configure the scheduler
// to permit the packet to be sent.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, IS_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::Zero()));
// Ensure the scheduler is notified this is a retransmit.
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, IS_RETRANSMISSION));
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(1));
connection_.GetSendAlarm()->Cancel();
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayAndQueue) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Attempt to send another packet and make sure that it gets queued.
packet = ConstructDataPacket(2, 0, !kEntropyFlag);
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 2, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(2u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndSend) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(10)));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now send non-retransmitting information, that we're not going to
// retransmit 3. The far end should stop waiting for it.
QuicAckFrame frame(0, QuicTime::Zero(), 1);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, _));
ProcessAckPacket(&frame, true);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Ensure alarm is not set
EXPECT_FALSE(connection_.GetSendAlarm()->IsSet());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayThenAckAndHold) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(10)));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now send non-retransmitting information, that we're not going to
// retransmit 3. The far end should stop waiting for it.
QuicAckFrame frame(0, QuicTime::Zero(), 1);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
ProcessAckPacket(&frame, false);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, SendSchedulerDelayThenOnCanWrite) {
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(10)));
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// OnCanWrite should not send the packet (because of the delay)
// but should still return true.
EXPECT_TRUE(connection_.OnCanWrite());
EXPECT_EQ(1u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, TestQueueLimitsOnSendStreamData) {
// All packets carry version info till version is negotiated.
size_t payload_length;
connection_.options()->max_packet_length =
GetPacketLengthForOneStream(connection_.version(), kIncludeVersion,
NOT_IN_FEC_GROUP, &payload_length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, NOT_RETRANSMISSION, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(10)));
const string payload(payload_length, 'a');
EXPECT_EQ(0u,
connection_.SendStreamData(1, payload, 0, !kFin).bytes_consumed);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_F(QuicConnectionTest, LoopThroughSendingPackets) {
// All packets carry version info till version is negotiated.
size_t payload_length;
connection_.options()->max_packet_length =
GetPacketLengthForOneStream(connection_.version(), kIncludeVersion,
NOT_IN_FEC_GROUP, &payload_length);
// Queue the first packet.
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(7);
// The first stream frame will consume 2 fewer bytes than the other six.
const string payload(payload_length * 7 - 12, 'a');
EXPECT_EQ(payload.size(),
connection_.SendStreamData(1, payload, 0, !kFin).bytes_consumed);
}
TEST_F(QuicConnectionTest, NoAckForClose) {
ProcessPacket(1);
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(0);
EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, true));
EXPECT_CALL(*send_algorithm_, SentPacket(_, _, _, _)).Times(0);
ProcessClosePacket(2, 0);
}
TEST_F(QuicConnectionTest, SendWhenDisconnected) {
EXPECT_TRUE(connection_.connected());
EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, false));
connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false);
EXPECT_FALSE(connection_.connected());
QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag);
EXPECT_CALL(*send_algorithm_, SentPacket(_, 1, _, _)).Times(0);
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA);
}
TEST_F(QuicConnectionTest, PublicReset) {
QuicPublicResetPacket header;
header.public_header.guid = guid_;
header.public_header.reset_flag = true;
header.public_header.version_flag = false;
header.rejected_sequence_number = 10101;
scoped_ptr<QuicEncryptedPacket> packet(
framer_.BuildPublicResetPacket(header));
EXPECT_CALL(visitor_, ConnectionClose(QUIC_PUBLIC_RESET, true));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet);
}
TEST_F(QuicConnectionTest, GoAway) {
QuicGoAwayFrame goaway;
goaway.last_good_stream_id = 1;
goaway.error_code = QUIC_PEER_GOING_AWAY;
goaway.reason_phrase = "Going away.";
EXPECT_CALL(visitor_, OnGoAway(_));
ProcessGoAwayPacket(&goaway);
}
TEST_F(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) {
QuicAckFrame ack(0, QuicTime::Zero(), 4);
// Set the sequence number of the ack packet to be least unacked (4)
creator_.set_sequence_number(3);
ProcessAckPacket(&ack, true);
EXPECT_TRUE(outgoing_ack()->received_info.missing_packets.empty());
}
TEST_F(QuicConnectionTest, ReceivedEntropyHashCalculation) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillRepeatedly(Return(true));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(4, 1, kEntropyFlag);
ProcessDataPacket(3, 1, !kEntropyFlag);
ProcessDataPacket(7, 1, kEntropyFlag);
EXPECT_EQ(146u, outgoing_ack()->received_info.entropy_hash);
}
TEST_F(QuicConnectionTest, UpdateEntropyForReceivedPackets) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillRepeatedly(Return(true));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(5, 1, kEntropyFlag);
ProcessDataPacket(4, 1, !kEntropyFlag);
EXPECT_EQ(34u, outgoing_ack()->received_info.entropy_hash);
// Make 4th packet my least unacked, and update entropy for 2, 3 packets.
QuicAckFrame ack(0, QuicTime::Zero(), 4);
QuicPacketEntropyHash kRandomEntropyHash = 129u;
ack.sent_info.entropy_hash = kRandomEntropyHash;
creator_.set_sequence_number(5);
QuicPacketEntropyHash six_packet_entropy_hash = 0;
if (ProcessAckPacket(&ack, true)) {
six_packet_entropy_hash = 1 << 6;
};
EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash),
outgoing_ack()->received_info.entropy_hash);
}
TEST_F(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillRepeatedly(Return(true));
ProcessDataPacket(1, 1, kEntropyFlag);
ProcessDataPacket(5, 1, !kEntropyFlag);
ProcessDataPacket(22, 1, kEntropyFlag);
EXPECT_EQ(66u, outgoing_ack()->received_info.entropy_hash);
creator_.set_sequence_number(22);
QuicPacketEntropyHash kRandomEntropyHash = 85u;
// Current packet is the least unacked packet.
QuicAckFrame ack(0, QuicTime::Zero(), 23);
ack.sent_info.entropy_hash = kRandomEntropyHash;
QuicPacketEntropyHash ack_entropy_hash = ProcessAckPacket(&ack, true);
EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash),
outgoing_ack()->received_info.entropy_hash);
ProcessDataPacket(25, 1, kEntropyFlag);
EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))),
outgoing_ack()->received_info.entropy_hash);
}
TEST_F(QuicConnectionTest, EntropyCalculationForTruncatedAck) {
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).WillRepeatedly(Return(true));
QuicPacketEntropyHash entropy[51];
entropy[0] = 0;
for (int i = 1; i < 51; ++i) {
bool should_send = i % 10 != 0;
bool entropy_flag = (i & (i - 1)) != 0;
if (!should_send) {
entropy[i] = entropy[i - 1];
continue;
}
if (entropy_flag) {
entropy[i] = entropy[i - 1] ^ (1 << (i % 8));
} else {
entropy[i] = entropy[i - 1];
}
ProcessDataPacket(i, 1, entropy_flag);
}
// Till 50 since 50th packet is not sent.
for (int i = 1; i < 50; ++i) {
EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash(
&connection_, i));
}
}
TEST_F(QuicConnectionTest, CheckSentEntropyHash) {
creator_.set_sequence_number(1);
SequenceNumberSet missing_packets;
QuicPacketEntropyHash entropy_hash = 0;
QuicPacketSequenceNumber max_sequence_number = 51;
for (QuicPacketSequenceNumber i = 1; i <= max_sequence_number; ++i) {
bool is_missing = i % 10 != 0;
bool entropy_flag = (i & (i - 1)) != 0;
QuicPacketEntropyHash packet_entropy_hash = 0;
if (entropy_flag) {
packet_entropy_hash = 1 << (i % 8);
}
QuicPacket* packet = ConstructDataPacket(i, 0, entropy_flag);
connection_.SendOrQueuePacket(
ENCRYPTION_NONE, i, packet, packet_entropy_hash,
HAS_RETRANSMITTABLE_DATA);
if (is_missing) {
missing_packets.insert(i);
continue;
}
entropy_hash ^= packet_entropy_hash;
}
EXPECT_TRUE(QuicConnectionPeer::IsValidEntropy(
&connection_, max_sequence_number, missing_packets, entropy_hash))
<< "";
}
TEST_F(QuicConnectionTest, ServerSendsVersionNegotiationPacket) {
framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.guid = guid_;
header.public_header.reset_flag = false;
header.public_header.version_flag = true;
header.entropy_flag = false;
header.fec_flag = false;
header.packet_sequence_number = 12;
header.fec_group = 0;
QuicFrames frames;
QuicFrame frame(&frame1_);
frames.push_back(frame);
scoped_ptr<QuicPacket> packet(
framer_.BuildUnsizedDataPacket(header, frames).packet);
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
framer_.set_version(QuicVersionMax());
connection_.set_is_server(true);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
EXPECT_TRUE(helper_->version_negotiation_packet() != NULL);
size_t num_versions = arraysize(kSupportedQuicVersions);
EXPECT_EQ(num_versions,
helper_->version_negotiation_packet()->versions.size());
// We expect all versions in kSupportedQuicVersions to be
// included in the packet.
for (size_t i = 0; i < num_versions; ++i) {
EXPECT_EQ(kSupportedQuicVersions[i],
helper_->version_negotiation_packet()->versions[i]);
}
}
TEST_F(QuicConnectionTest, ClientHandlesVersionNegotiation) {
// Start out with some unsupported version.
QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests(
QUIC_VERSION_UNSUPPORTED);
QuicPacketHeader header;
header.public_header.guid = guid_;
header.public_header.reset_flag = false;
header.public_header.version_flag = true;
header.entropy_flag = false;
header.fec_flag = false;
header.packet_sequence_number = 12;
header.fec_group = 0;
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
// Send a version negotiation packet.
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(
header.public_header, supported_versions));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
// Now force another packet. The connection should transition into
// NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion.
header.public_header.version_flag = false;
QuicFrames frames;
QuicFrame frame(&frame1_);
frames.push_back(frame);
scoped_ptr<QuicPacket> packet(
framer_.BuildUnsizedDataPacket(header, frames).packet);
encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet));
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).Times(1);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(
QuicConnectionPeer::GetPacketCreator(&connection_)));
}
TEST_F(QuicConnectionTest, BadVersionNegotiation) {
QuicPacketHeader header;
header.public_header.guid = guid_;
header.public_header.reset_flag = false;
header.public_header.version_flag = true;
header.entropy_flag = false;
header.fec_flag = false;
header.packet_sequence_number = 12;
header.fec_group = 0;
QuicVersionVector supported_versions;
for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) {
supported_versions.push_back(kSupportedQuicVersions[i]);
}
// Send a version negotiation packet with the version the client started with.
// It should be rejected.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_VERSION_NEGOTIATION_PACKET,
false));
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.BuildVersionNegotiationPacket(
header.public_header, supported_versions));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
TEST_F(QuicConnectionTest, CheckSendStats) {
EXPECT_CALL(*send_algorithm_, AbandoningPacket(_, _)).Times(3);
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, NOT_RETRANSMISSION));
connection_.SendStreamData(1u, "first", 0, !kFin);
size_t first_packet_size = last_sent_packet_size();
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, NOT_RETRANSMISSION));
connection_.SendStreamData(1u, "second", 0, !kFin);
size_t second_packet_size = last_sent_packet_size();
// 2 retransmissions due to rto, 1 due to explicit nack.
EXPECT_CALL(*send_algorithm_,
SentPacket(_, _, _, IS_RETRANSMISSION)).Times(3);
// Retransmit due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
connection_.OnRetransmissionTimeout();
// Retransmit due to explicit nacks
QuicAckFrame nack_three(4, QuicTime::Zero(), 0);
nack_three.received_info.missing_packets.insert(3);
nack_three.received_info.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_, 4) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 3) ^
QuicConnectionPeer::GetSentEntropyHash(&connection_, 2);
QuicFrame frame(&nack_three);
EXPECT_CALL(visitor_, OnAck(_));
EXPECT_CALL(*send_algorithm_, OnIncomingAck(_, _, _)).Times(1);
EXPECT_CALL(*send_algorithm_, OnIncomingLoss(_)).Times(1);
EXPECT_CALL(visitor_, OnCanWrite()).Times(3).WillRepeatedly(Return(true));
ProcessFramePacket(frame);
ProcessFramePacket(frame);
ProcessFramePacket(frame);
EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce(
Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize,
stats.bytes_sent);
EXPECT_EQ(5u, stats.packets_sent);
EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize,
stats.bytes_retransmitted);
EXPECT_EQ(3u, stats.packets_retransmitted);
EXPECT_EQ(2u, stats.rto_count);
}
TEST_F(QuicConnectionTest, CheckReceiveStats) {
size_t received_bytes = 0;
received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag);
received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag);
// Should be counted against dropped packets.
received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag);
received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag); // Fec packet
EXPECT_CALL(*send_algorithm_, SmoothedRtt()).WillOnce(
Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce(
Return(QuicBandwidth::Zero()));
const QuicConnectionStats& stats = connection_.GetStats();
EXPECT_EQ(received_bytes, stats.bytes_received);
EXPECT_EQ(4u, stats.packets_received);
EXPECT_EQ(1u, stats.packets_revived);
EXPECT_EQ(1u, stats.packets_dropped);
}
TEST_F(QuicConnectionTest, TestFecGroupLimits) {
// Create and return a group for 1
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != NULL);
// Create and return a group for 2
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL);
// Create and return a group for 4. This should remove 1 but not 2.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == NULL);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != NULL);
// Create and return a group for 3. This will kill off 2.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != NULL);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == NULL);
// Verify that adding 5 kills off 3, despite 4 being created before 3.
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != NULL);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != NULL);
ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == NULL);
}
TEST_F(QuicConnectionTest, DontProcessFramesIfPacketClosedConnection) {
// Construct a packet with stream frame and connection close frame.
header_.public_header.guid = guid_;
header_.packet_sequence_number = 1;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = false;
header_.fec_flag = false;
header_.fec_group = 0;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
qccf.ack_frame = QuicAckFrame(0, QuicTime::Zero(), 1);
QuicFrame close_frame(&qccf);
QuicFrame stream_frame(&frame1_);
QuicFrames frames;
frames.push_back(stream_frame);
frames.push_back(close_frame);
scoped_ptr<QuicPacket> packet(
framer_.BuildUnsizedDataPacket(header_, frames).packet);
EXPECT_TRUE(NULL != packet.get());
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
ENCRYPTION_NONE, 1, *packet));
EXPECT_CALL(visitor_, ConnectionClose(QUIC_PEER_GOING_AWAY, true));
EXPECT_CALL(visitor_, OnPacket(_, _, _, _)).Times(0);
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
// The QUIC_VERSION_X versions are deliberately set, rather than using all
// values in kSupportedQuicVersions.
TEST_F(QuicConnectionTest, SelectMutualVersion) {
// Set the connection to speak QUIC_VERSION_6.
connection_.set_version(QUIC_VERSION_6);
EXPECT_EQ(connection_.version(), QUIC_VERSION_6);
// Pass in available versions which includes a higher mutually supported
// version. The higher mutually supported version should be selected.
QuicVersionVector available_versions;
available_versions.push_back(QUIC_VERSION_6);
available_versions.push_back(QUIC_VERSION_7);
EXPECT_TRUE(connection_.SelectMutualVersion(available_versions));
EXPECT_EQ(connection_.version(), QUIC_VERSION_7);
// Expect that the lower version is selected.
QuicVersionVector lower_version;
lower_version.push_back(QUIC_VERSION_6);
EXPECT_TRUE(connection_.SelectMutualVersion(lower_version));
EXPECT_EQ(connection_.version(), QUIC_VERSION_6);
// Shouldn't be able to find a mutually supported version.
QuicVersionVector unsupported_version;
unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED);
EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version));
}
TEST_F(QuicConnectionTest, ConnectionCloseWhenNotWriteBlocked) {
helper_->set_blocked(false); // Already default.
// Send a packet (but write will not block).
connection_.SendStreamData(1, "foo", 0, !kFin);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, helper_->packets_write_attempts());
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false));
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_EQ(2u, helper_->packets_write_attempts());
}
TEST_F(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) {
EXPECT_EQ(0u, connection_.NumQueuedPackets());
helper_->set_blocked(true);
// Send a packet to so that write will really block.
connection_.SendStreamData(1, "foo", 0, !kFin);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_EQ(1u, helper_->packets_write_attempts());
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false));
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_EQ(1u, helper_->packets_write_attempts());
}
TEST_F(QuicConnectionTest, ConnectionCloseWhenNothingPending) {
helper_->set_blocked(true);
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_, ConnectionClose(QUIC_INVALID_PACKET_HEADER, false));
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_EQ(1u, helper_->packets_write_attempts());
}
} // namespace
} // namespace test
} // namespace net