blob: fa76828cc43e5348f5eef67b1c1f228c0fc1deca [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/audio_power_monitor.h"
#include <algorithm>
#include <cmath>
#include "base/bind.h"
#include "base/float_util.h"
#include "base/logging.h"
#include "base/message_loop/message_loop.h"
#include "base/time/time.h"
#include "media/base/audio_bus.h"
namespace media {
AudioPowerMonitor::AudioPowerMonitor(
int sample_rate,
const base::TimeDelta& time_constant,
const base::TimeDelta& measurement_period,
base::MessageLoop* message_loop,
const PowerMeasurementCallback& callback)
: sample_weight_(
1.0f - expf(-1.0f / (sample_rate * time_constant.InSecondsF()))),
num_frames_per_callback_(sample_rate * measurement_period.InSecondsF()),
message_loop_(message_loop),
power_level_callback_(callback),
average_power_(0.0f),
clipped_since_last_notification_(false),
frames_since_last_notification_(0),
last_reported_power_(-1.0f),
last_reported_clipped_(false) {
DCHECK(message_loop_);
DCHECK(!power_level_callback_.is_null());
}
AudioPowerMonitor::~AudioPowerMonitor() {
}
void AudioPowerMonitor::Scan(const AudioBus& buffer, int num_frames) {
DCHECK_LE(num_frames, buffer.frames());
const int num_channels = buffer.channels();
if (num_frames <= 0 || num_channels <= 0)
return;
// Calculate a new average power by applying a first-order low-pass filter
// over the audio samples in |buffer|.
//
// TODO(miu): Implement optimized SSE/NEON to more efficiently compute the
// results (in media/base/vector_math) in soon-upcoming change.
bool clipped = false;
float sum_power = 0.0f;
for (int i = 0; i < num_channels; ++i) {
float average_power_this_channel = average_power_;
const float* p = buffer.channel(i);
const float* const end_of_samples = p + num_frames;
for (; p < end_of_samples; ++p) {
const float sample = *p;
const float sample_squared = sample * sample;
clipped |= (sample_squared > 1.0f);
average_power_this_channel +=
(sample_squared - average_power_this_channel) * sample_weight_;
}
// If data in audio buffer is garbage, ignore its effect on the result.
if (base::IsNaN(average_power_this_channel))
average_power_this_channel = average_power_;
sum_power += average_power_this_channel;
}
// Update accumulated results.
average_power_ = std::max(0.0f, std::min(1.0f, sum_power / num_channels));
clipped_since_last_notification_ |= clipped;
frames_since_last_notification_ += num_frames;
// Once enough frames have been scanned, report the accumulated results.
if (frames_since_last_notification_ >= num_frames_per_callback_) {
// Note: Forgo making redundant callbacks when results remain unchanged.
// Part of this is to pin-down the power to zero if it is insignificantly
// small.
const float kInsignificantPower = 1.0e-10f; // -100 dBFS
const float power =
(average_power_ < kInsignificantPower) ? 0.0f : average_power_;
if (power != last_reported_power_ ||
clipped_since_last_notification_ != last_reported_clipped_) {
const float power_dbfs =
power > 0.0f ? 10.0f * log10f(power) : zero_power();
// Try to post a task to run the callback with the dBFS result. The
// posting of the task is guaranteed to be non-blocking, and therefore
// could fail. However, in the common case, failures should be rare (and
// then the task-post will likely succeed the next time it's attempted).
if (!message_loop_->TryPostTask(
FROM_HERE,
base::Bind(power_level_callback_,
power_dbfs, clipped_since_last_notification_))) {
DVLOG(2) << "TryPostTask() did not succeed.";
return;
}
last_reported_power_ = power;
last_reported_clipped_ = clipped_since_last_notification_;
}
clipped_since_last_notification_ = false;
frames_since_last_notification_ = 0;
}
}
} // namespace media