blob: caa4ab8ba4f8b0748b80cefb4e185d30b2d6d385 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/webrtc_audio_renderer.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/strings/string_util.h"
#include "content/renderer/media/audio_device_factory.h"
#include "content/renderer/media/webrtc_audio_device_impl.h"
#include "content/renderer/render_thread_impl.h"
#include "media/audio/audio_output_device.h"
#include "media/audio/audio_parameters.h"
#include "media/audio/sample_rates.h"
#include "media/base/audio_hardware_config.h"
#if defined(OS_WIN)
#include "base/win/windows_version.h"
#include "media/audio/win/core_audio_util_win.h"
#endif
namespace content {
namespace {
// Supported hardware sample rates for output sides.
#if defined(OS_WIN) || defined(OS_MACOSX)
// AudioHardwareConfig::GetOutputSampleRate() asks the audio layer for its
// current sample rate (set by the user) on Windows and Mac OS X. The listed
// rates below adds restrictions and Initialize() will fail if the user selects
// any rate outside these ranges.
const int kValidOutputRates[] = {96000, 48000, 44100, 32000, 16000};
#elif defined(OS_LINUX) || defined(OS_OPENBSD)
const int kValidOutputRates[] = {48000, 44100};
#elif defined(OS_ANDROID)
// TODO(leozwang): We want to use native sampling rate on Android to achieve
// low latency, currently 16000 is used to work around audio problem on some
// Android devices.
const int kValidOutputRates[] = {48000, 44100, 16000};
const int kDefaultOutputBufferSize = 2048;
#else
const int kValidOutputRates[] = {44100};
#endif
// TODO(xians): Merge the following code to WebRtcAudioCapturer, or remove.
enum AudioFramesPerBuffer {
k160,
k320,
k440,
k480,
k640,
k880,
k960,
k1440,
k1920,
kUnexpectedAudioBufferSize // Must always be last!
};
// Helper method to convert integral values to their respective enum values
// above, or kUnexpectedAudioBufferSize if no match exists.
// We map 441 to k440 to avoid changes in the XML part for histograms.
// It is still possible to map the histogram result to the actual buffer size.
// See http://crbug.com/243450 for details.
AudioFramesPerBuffer AsAudioFramesPerBuffer(int frames_per_buffer) {
switch (frames_per_buffer) {
case 160: return k160;
case 320: return k320;
case 441: return k440;
case 480: return k480;
case 640: return k640;
case 880: return k880;
case 960: return k960;
case 1440: return k1440;
case 1920: return k1920;
}
return kUnexpectedAudioBufferSize;
}
void AddHistogramFramesPerBuffer(int param) {
AudioFramesPerBuffer afpb = AsAudioFramesPerBuffer(param);
if (afpb != kUnexpectedAudioBufferSize) {
UMA_HISTOGRAM_ENUMERATION("WebRTC.AudioOutputFramesPerBuffer",
afpb, kUnexpectedAudioBufferSize);
} else {
// Report unexpected sample rates using a unique histogram name.
UMA_HISTOGRAM_COUNTS("WebRTC.AudioOutputFramesPerBufferUnexpected", param);
}
}
} // namespace
WebRtcAudioRenderer::WebRtcAudioRenderer(int source_render_view_id)
: state_(UNINITIALIZED),
source_render_view_id_(source_render_view_id),
source_(NULL),
play_ref_count_(0),
audio_delay_milliseconds_(0),
fifo_delay_milliseconds_(0) {
}
WebRtcAudioRenderer::~WebRtcAudioRenderer() {
DCHECK(thread_checker_.CalledOnValidThread());
DCHECK_EQ(state_, UNINITIALIZED);
buffer_.reset();
}
bool WebRtcAudioRenderer::Initialize(WebRtcAudioRendererSource* source) {
DVLOG(1) << "WebRtcAudioRenderer::Initialize()";
DCHECK(thread_checker_.CalledOnValidThread());
base::AutoLock auto_lock(lock_);
DCHECK_EQ(state_, UNINITIALIZED);
DCHECK(source);
DCHECK(!sink_.get());
DCHECK(!source_);
// Use stereo output on all platforms exept Android.
media::ChannelLayout channel_layout = media::CHANNEL_LAYOUT_STEREO;
#if defined(OS_ANDROID)
DVLOG(1) << "Using mono audio output for Android";
channel_layout = media::CHANNEL_LAYOUT_MONO;
#endif
// Ask the renderer for the default audio output hardware sample-rate.
media::AudioHardwareConfig* hardware_config =
RenderThreadImpl::current()->GetAudioHardwareConfig();
int sample_rate = hardware_config->GetOutputSampleRate();
DVLOG(1) << "Audio output hardware sample rate: " << sample_rate;
// WebRTC does not yet support higher rates than 96000 on the client side
// and 48000 is the preferred sample rate. Therefore, if 192000 is detected,
// we change the rate to 48000 instead. The consequence is that the native
// layer will be opened up at 192kHz but WebRTC will provide data at 48kHz
// which will then be resampled by the audio converted on the browser side
// to match the native audio layer.
if (sample_rate == 192000) {
DVLOG(1) << "Resampling from 48000 to 192000 is required";
sample_rate = 48000;
}
media::AudioSampleRate asr = media::AsAudioSampleRate(sample_rate);
if (asr != media::kUnexpectedAudioSampleRate) {
UMA_HISTOGRAM_ENUMERATION(
"WebRTC.AudioOutputSampleRate", asr, media::kUnexpectedAudioSampleRate);
} else {
UMA_HISTOGRAM_COUNTS("WebRTC.AudioOutputSampleRateUnexpected", sample_rate);
}
// Verify that the reported output hardware sample rate is supported
// on the current platform.
if (std::find(&kValidOutputRates[0],
&kValidOutputRates[0] + arraysize(kValidOutputRates),
sample_rate) ==
&kValidOutputRates[arraysize(kValidOutputRates)]) {
DLOG(ERROR) << sample_rate << " is not a supported output rate.";
return false;
}
// Set up audio parameters for the source, i.e., the WebRTC client.
// The WebRTC client only supports multiples of 10ms as buffer size where
// 10ms is preferred for lowest possible delay.
media::AudioParameters source_params;
int buffer_size = (sample_rate / 100);
DVLOG(1) << "Using WebRTC output buffer size: " << buffer_size;
int channels = ChannelLayoutToChannelCount(channel_layout);
source_params.Reset(media::AudioParameters::AUDIO_PCM_LOW_LATENCY,
channel_layout, channels, 0,
sample_rate, 16, buffer_size);
// Set up audio parameters for the sink, i.e., the native audio output stream.
// We strive to open up using native parameters to achieve best possible
// performance and to ensure that no FIFO is needed on the browser side to
// match the client request. Any mismatch between the source and the sink is
// taken care of in this class instead using a pull FIFO.
media::AudioParameters sink_params;
#if defined(OS_ANDROID)
buffer_size = kDefaultOutputBufferSize;
#else
buffer_size = hardware_config->GetOutputBufferSize();
#endif
sink_params.Reset(media::AudioParameters::AUDIO_PCM_LOW_LATENCY,
channel_layout, channels, 0, sample_rate, 16, buffer_size);
// Create a FIFO if re-buffering is required to match the source input with
// the sink request. The source acts as provider here and the sink as
// consumer.
fifo_delay_milliseconds_ = 0;
if (source_params.frames_per_buffer() != sink_params.frames_per_buffer()) {
DVLOG(1) << "Rebuffering from " << source_params.frames_per_buffer()
<< " to " << sink_params.frames_per_buffer();
audio_fifo_.reset(new media::AudioPullFifo(
source_params.channels(),
source_params.frames_per_buffer(),
base::Bind(
&WebRtcAudioRenderer::SourceCallback,
base::Unretained(this))));
if (sink_params.frames_per_buffer() > source_params.frames_per_buffer()) {
int frame_duration_milliseconds = base::Time::kMillisecondsPerSecond /
static_cast<double>(source_params.sample_rate());
fifo_delay_milliseconds_ = (sink_params.frames_per_buffer() -
source_params.frames_per_buffer()) * frame_duration_milliseconds;
}
}
// Allocate local audio buffers based on the parameters above.
// It is assumed that each audio sample contains 16 bits and each
// audio frame contains one or two audio samples depending on the
// number of channels.
buffer_.reset(
new int16[source_params.frames_per_buffer() * source_params.channels()]);
source_ = source;
source->SetRenderFormat(source_params);
// Configure the audio rendering client and start rendering.
sink_ = AudioDeviceFactory::NewOutputDevice(source_render_view_id_);
sink_->Initialize(sink_params, this);
sink_->Start();
// User must call Play() before any audio can be heard.
state_ = PAUSED;
UMA_HISTOGRAM_ENUMERATION("WebRTC.AudioOutputChannelLayout",
source_params.channel_layout(),
media::CHANNEL_LAYOUT_MAX);
UMA_HISTOGRAM_ENUMERATION("WebRTC.AudioOutputFramesPerBuffer",
source_params.frames_per_buffer(),
kUnexpectedAudioBufferSize);
AddHistogramFramesPerBuffer(source_params.frames_per_buffer());
return true;
}
void WebRtcAudioRenderer::Start() {
// TODO(xians): refactor to make usage of Start/Stop more symmetric.
NOTIMPLEMENTED();
}
void WebRtcAudioRenderer::Play() {
DVLOG(1) << "WebRtcAudioRenderer::Play()";
DCHECK(thread_checker_.CalledOnValidThread());
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED)
return;
DCHECK(play_ref_count_ == 0 || state_ == PLAYING);
++play_ref_count_;
state_ = PLAYING;
if (audio_fifo_) {
audio_delay_milliseconds_ = 0;
audio_fifo_->Clear();
}
}
void WebRtcAudioRenderer::Pause() {
DVLOG(1) << "WebRtcAudioRenderer::Pause()";
DCHECK(thread_checker_.CalledOnValidThread());
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED)
return;
DCHECK_EQ(state_, PLAYING);
DCHECK_GT(play_ref_count_, 0);
if (!--play_ref_count_)
state_ = PAUSED;
}
void WebRtcAudioRenderer::Stop() {
DVLOG(1) << "WebRtcAudioRenderer::Stop()";
DCHECK(thread_checker_.CalledOnValidThread());
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED)
return;
source_->RemoveAudioRenderer(this);
source_ = NULL;
sink_->Stop();
state_ = UNINITIALIZED;
}
void WebRtcAudioRenderer::SetVolume(float volume) {
DCHECK(thread_checker_.CalledOnValidThread());
base::AutoLock auto_lock(lock_);
if (state_ == UNINITIALIZED)
return;
sink_->SetVolume(volume);
}
base::TimeDelta WebRtcAudioRenderer::GetCurrentRenderTime() const {
return base::TimeDelta();
}
bool WebRtcAudioRenderer::IsLocalRenderer() const {
return false;
}
int WebRtcAudioRenderer::Render(media::AudioBus* audio_bus,
int audio_delay_milliseconds) {
base::AutoLock auto_lock(lock_);
if (!source_)
return 0;
DVLOG(2) << "WebRtcAudioRenderer::Render()";
DVLOG(2) << "audio_delay_milliseconds: " << audio_delay_milliseconds;
audio_delay_milliseconds_ = audio_delay_milliseconds;
if (audio_fifo_)
audio_fifo_->Consume(audio_bus, audio_bus->frames());
else
SourceCallback(0, audio_bus);
return (state_ == PLAYING) ? audio_bus->frames() : 0;
}
void WebRtcAudioRenderer::OnRenderError() {
NOTIMPLEMENTED();
LOG(ERROR) << "OnRenderError()";
}
// Called by AudioPullFifo when more data is necessary.
void WebRtcAudioRenderer::SourceCallback(
int fifo_frame_delay, media::AudioBus* audio_bus) {
DVLOG(2) << "WebRtcAudioRenderer::SourceCallback("
<< fifo_frame_delay << ", "
<< audio_bus->frames() << ")";
int output_delay_milliseconds = audio_delay_milliseconds_;
output_delay_milliseconds += fifo_delay_milliseconds_;
DVLOG(2) << "output_delay_milliseconds: " << output_delay_milliseconds;
// We need to keep render data for the |source_| regardless of |state_|,
// otherwise the data will be buffered up inside |source_|.
source_->RenderData(reinterpret_cast<uint8*>(buffer_.get()),
audio_bus->channels(), audio_bus->frames(),
output_delay_milliseconds);
// Avoid filling up the audio bus if we are not playing; instead
// return here and ensure that the returned value in Render() is 0.
if (state_ != PLAYING) {
audio_bus->Zero();
return;
}
// De-interleave each channel and convert to 32-bit floating-point
// with nominal range -1.0 -> +1.0 to match the callback format.
audio_bus->FromInterleaved(buffer_.get(),
audio_bus->frames(),
sizeof(buffer_[0]));
}
} // namespace content