blob: 901c8b897fa8f5bfd99f30a94ad24bf2ef63e453 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/win/audio_unified_win.h"
#include <Functiondiscoverykeys_devpkey.h>
#include "base/debug/trace_event.h"
#ifndef NDEBUG
#include "base/file_util.h"
#include "base/path_service.h"
#endif
#include "base/time/time.h"
#include "base/win/scoped_com_initializer.h"
#include "media/audio/win/audio_manager_win.h"
#include "media/audio/win/avrt_wrapper_win.h"
#include "media/audio/win/core_audio_util_win.h"
using base::win::ScopedComPtr;
using base::win::ScopedCOMInitializer;
using base::win::ScopedCoMem;
// Smoothing factor in exponential smoothing filter where 0 < alpha < 1.
// Larger values of alpha reduce the level of smoothing.
// See http://en.wikipedia.org/wiki/Exponential_smoothing for details.
static const double kAlpha = 0.1;
// Compute a rate compensation which always attracts us back to a specified
// target level over a period of |kCorrectionTimeSeconds|.
static const double kCorrectionTimeSeconds = 0.1;
#ifndef NDEBUG
// Max number of columns in the output text file |kUnifiedAudioDebugFileName|.
// See LogElementNames enumerator for details on what each column represents.
static const size_t kMaxNumSampleTypes = 4;
static const size_t kMaxNumParams = 2;
// Max number of rows in the output file |kUnifiedAudioDebugFileName|.
// Each row corresponds to one set of sample values for (approximately) the
// same time instant (stored in the first column).
static const size_t kMaxFileSamples = 10000;
// Name of output debug file used for off-line analysis of measurements which
// can be utilized for performance tuning of this class.
static const char kUnifiedAudioDebugFileName[] = "unified_win_debug.txt";
// Name of output debug file used for off-line analysis of measurements.
// This file will contain a list of audio parameters.
static const char kUnifiedAudioParamsFileName[] = "unified_win_params.txt";
#endif
// Use the acquired IAudioClock interface to derive a time stamp of the audio
// sample which is currently playing through the speakers.
static double SpeakerStreamPosInMilliseconds(IAudioClock* clock) {
UINT64 device_frequency = 0, position = 0;
if (FAILED(clock->GetFrequency(&device_frequency)) ||
FAILED(clock->GetPosition(&position, NULL))) {
return 0.0;
}
return base::Time::kMillisecondsPerSecond *
(static_cast<double>(position) / device_frequency);
}
// Get a time stamp in milliseconds given number of audio frames in |num_frames|
// using the current sample rate |fs| as scale factor.
// Example: |num_frames| = 960 and |fs| = 48000 => 20 [ms].
static double CurrentStreamPosInMilliseconds(UINT64 num_frames, DWORD fs) {
return base::Time::kMillisecondsPerSecond *
(static_cast<double>(num_frames) / fs);
}
// Convert a timestamp in milliseconds to byte units given the audio format
// in |format|.
// Example: |ts_milliseconds| equals 10, sample rate is 48000 and frame size
// is 4 bytes per audio frame => 480 * 4 = 1920 [bytes].
static int MillisecondsToBytes(double ts_milliseconds,
const WAVEFORMATPCMEX& format) {
double seconds = ts_milliseconds / base::Time::kMillisecondsPerSecond;
return static_cast<int>(seconds * format.Format.nSamplesPerSec *
format.Format.nBlockAlign + 0.5);
}
// Convert frame count to milliseconds given the audio format in |format|.
static double FrameCountToMilliseconds(int num_frames,
const WAVEFORMATPCMEX& format) {
return (base::Time::kMillisecondsPerSecond * num_frames) /
static_cast<double>(format.Format.nSamplesPerSec);
}
namespace media {
WASAPIUnifiedStream::WASAPIUnifiedStream(AudioManagerWin* manager,
const AudioParameters& params,
const std::string& input_device_id)
: creating_thread_id_(base::PlatformThread::CurrentId()),
manager_(manager),
params_(params),
input_channels_(params.input_channels()),
output_channels_(params.channels()),
input_device_id_(input_device_id),
share_mode_(CoreAudioUtil::GetShareMode()),
opened_(false),
volume_(1.0),
output_buffer_size_frames_(0),
input_buffer_size_frames_(0),
endpoint_render_buffer_size_frames_(0),
endpoint_capture_buffer_size_frames_(0),
num_written_frames_(0),
total_delay_ms_(0.0),
total_delay_bytes_(0),
source_(NULL),
input_callback_received_(false),
io_sample_rate_ratio_(1),
target_fifo_frames_(0),
average_delta_(0),
fifo_rate_compensation_(1),
update_output_delay_(false),
capture_delay_ms_(0) {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::WASAPIUnifiedStream");
VLOG(1) << "WASAPIUnifiedStream::WASAPIUnifiedStream()";
DCHECK(manager_);
VLOG(1) << "Input channels : " << input_channels_;
VLOG(1) << "Output channels: " << output_channels_;
VLOG(1) << "Sample rate : " << params_.sample_rate();
VLOG(1) << "Buffer size : " << params.frames_per_buffer();
#ifndef NDEBUG
input_time_stamps_.reset(new int64[kMaxFileSamples]);
num_frames_in_fifo_.reset(new int[kMaxFileSamples]);
resampler_margin_.reset(new int[kMaxFileSamples]);
fifo_rate_comps_.reset(new double[kMaxFileSamples]);
num_elements_.reset(new int[kMaxNumSampleTypes]);
std::fill(num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes, 0);
input_params_.reset(new int[kMaxNumParams]);
output_params_.reset(new int[kMaxNumParams]);
#endif
DVLOG_IF(1, share_mode_ == AUDCLNT_SHAREMODE_EXCLUSIVE)
<< "Core Audio (WASAPI) EXCLUSIVE MODE is enabled.";
// Load the Avrt DLL if not already loaded. Required to support MMCSS.
bool avrt_init = avrt::Initialize();
DCHECK(avrt_init) << "Failed to load the avrt.dll";
// All events are auto-reset events and non-signaled initially.
// Create the event which the audio engine will signal each time a buffer
// has been recorded.
capture_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
// Create the event which will be set in Stop() when straeming shall stop.
stop_streaming_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
}
WASAPIUnifiedStream::~WASAPIUnifiedStream() {
VLOG(1) << "WASAPIUnifiedStream::~WASAPIUnifiedStream()";
#ifndef NDEBUG
base::FilePath data_file_name;
PathService::Get(base::DIR_EXE, &data_file_name);
data_file_name = data_file_name.AppendASCII(kUnifiedAudioDebugFileName);
data_file_ = base::OpenFile(data_file_name, "wt");
DVLOG(1) << ">> Output file " << data_file_name.value() << " is created.";
size_t n = 0;
size_t elements_to_write = *std::min_element(
num_elements_.get(), num_elements_.get() + kMaxNumSampleTypes);
while (n < elements_to_write) {
fprintf(data_file_, "%I64d %d %d %10.9f\n",
input_time_stamps_[n],
num_frames_in_fifo_[n],
resampler_margin_[n],
fifo_rate_comps_[n]);
++n;
}
base::CloseFile(data_file_);
base::FilePath param_file_name;
PathService::Get(base::DIR_EXE, &param_file_name);
param_file_name = param_file_name.AppendASCII(kUnifiedAudioParamsFileName);
param_file_ = base::OpenFile(param_file_name, "wt");
DVLOG(1) << ">> Output file " << param_file_name.value() << " is created.";
fprintf(param_file_, "%d %d\n", input_params_[0], input_params_[1]);
fprintf(param_file_, "%d %d\n", output_params_[0], output_params_[1]);
base::CloseFile(param_file_);
#endif
}
bool WASAPIUnifiedStream::Open() {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::Open");
DVLOG(1) << "WASAPIUnifiedStream::Open()";
DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
if (opened_)
return true;
AudioParameters hw_output_params;
HRESULT hr = CoreAudioUtil::GetPreferredAudioParameters(
eRender, eConsole, &hw_output_params);
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get preferred output audio parameters.";
return false;
}
AudioParameters hw_input_params;
if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
// Query native parameters for the default capture device.
hr = CoreAudioUtil::GetPreferredAudioParameters(
eCapture, eConsole, &hw_input_params);
} else {
// Query native parameters for the capture device given by
// |input_device_id_|.
hr = CoreAudioUtil::GetPreferredAudioParameters(
input_device_id_, &hw_input_params);
}
if (FAILED(hr)) {
LOG(ERROR) << "Failed to get preferred input audio parameters.";
return false;
}
// It is currently only possible to open up the output audio device using
// the native number of channels.
if (output_channels_ != hw_output_params.channels()) {
LOG(ERROR) << "Audio device does not support requested output channels.";
return false;
}
// It is currently only possible to open up the input audio device using
// the native number of channels. If the client asks for a higher channel
// count, we will do channel upmixing in this class. The most typical
// example is that the client provides stereo but the hardware can only be
// opened in mono mode. We will do mono to stereo conversion in this case.
if (input_channels_ < hw_input_params.channels()) {
LOG(ERROR) << "Audio device does not support requested input channels.";
return false;
} else if (input_channels_ > hw_input_params.channels()) {
ChannelLayout input_layout =
GuessChannelLayout(hw_input_params.channels());
ChannelLayout output_layout = GuessChannelLayout(input_channels_);
channel_mixer_.reset(new ChannelMixer(input_layout, output_layout));
DVLOG(1) << "Remixing input channel layout from " << input_layout
<< " to " << output_layout << "; from "
<< hw_input_params.channels() << " channels to "
<< input_channels_;
}
if (hw_output_params.sample_rate() != params_.sample_rate()) {
LOG(ERROR) << "Requested sample-rate: " << params_.sample_rate()
<< " must match the hardware sample-rate: "
<< hw_output_params.sample_rate();
return false;
}
if (hw_output_params.frames_per_buffer() != params_.frames_per_buffer()) {
LOG(ERROR) << "Requested buffer size: " << params_.frames_per_buffer()
<< " must match the hardware buffer size: "
<< hw_output_params.frames_per_buffer();
return false;
}
// Set up WAVEFORMATPCMEX structures for input and output given the specified
// audio parameters.
SetIOFormats(hw_input_params, params_);
// Create the input and output busses.
input_bus_ = AudioBus::Create(
hw_input_params.channels(), input_buffer_size_frames_);
output_bus_ = AudioBus::Create(params_);
// One extra bus is needed for the input channel mixing case.
if (channel_mixer_) {
DCHECK_LT(hw_input_params.channels(), input_channels_);
// The size of the |channel_bus_| must be the same as the size of the
// output bus to ensure that the channel manager can deal with both
// resampled and non-resampled data as input.
channel_bus_ = AudioBus::Create(
input_channels_, params_.frames_per_buffer());
}
// Check if FIFO and resampling is required to match the input rate to the
// output rate. If so, a special thread loop, optimized for this case, will
// be used. This mode is also called varispeed mode.
// Note that we can also use this mode when input and output rates are the
// same but native buffer sizes differ (can happen if two different audio
// devices are used). For this case, the resampler uses a target ratio of
// 1.0 but SetRatio is called to compensate for clock-drift. The FIFO is
// required to compensate for the difference in buffer sizes.
// TODO(henrika): we could perhaps improve the performance for the second
// case here by only using the FIFO and avoid resampling. Not sure how much
// that would give and we risk not compensation for clock drift.
if (hw_input_params.sample_rate() != params_.sample_rate() ||
hw_input_params.frames_per_buffer() != params_.frames_per_buffer()) {
DoVarispeedInitialization(hw_input_params, params_);
}
// Render side (event driven only in varispeed mode):
ScopedComPtr<IAudioClient> audio_output_client =
CoreAudioUtil::CreateDefaultClient(eRender, eConsole);
if (!audio_output_client)
return false;
if (!CoreAudioUtil::IsFormatSupported(audio_output_client,
share_mode_,
&output_format_)) {
return false;
}
if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
// The |render_event_| will be NULL unless varispeed mode is utilized.
hr = CoreAudioUtil::SharedModeInitialize(
audio_output_client, &output_format_, render_event_.Get(),
&endpoint_render_buffer_size_frames_);
} else {
// TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
}
if (FAILED(hr))
return false;
ScopedComPtr<IAudioRenderClient> audio_render_client =
CoreAudioUtil::CreateRenderClient(audio_output_client);
if (!audio_render_client)
return false;
// Capture side (always event driven but format depends on varispeed or not):
ScopedComPtr<IAudioClient> audio_input_client;
if (input_device_id_ == AudioManagerBase::kDefaultDeviceId) {
audio_input_client = CoreAudioUtil::CreateDefaultClient(eCapture, eConsole);
} else {
ScopedComPtr<IMMDevice> audio_input_device(
CoreAudioUtil::CreateDevice(input_device_id_));
audio_input_client = CoreAudioUtil::CreateClient(audio_input_device);
}
if (!audio_input_client)
return false;
if (!CoreAudioUtil::IsFormatSupported(audio_input_client,
share_mode_,
&input_format_)) {
return false;
}
if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
// Include valid event handle for event-driven initialization.
// The input side is always event driven independent of if varispeed is
// used or not.
hr = CoreAudioUtil::SharedModeInitialize(
audio_input_client, &input_format_, capture_event_.Get(),
&endpoint_capture_buffer_size_frames_);
} else {
// TODO(henrika): add support for AUDCLNT_SHAREMODE_EXCLUSIVE.
}
if (FAILED(hr))
return false;
ScopedComPtr<IAudioCaptureClient> audio_capture_client =
CoreAudioUtil::CreateCaptureClient(audio_input_client);
if (!audio_capture_client)
return false;
// Varispeed mode requires additional preparations.
if (VarispeedMode())
ResetVarispeed();
// Store all valid COM interfaces.
audio_output_client_ = audio_output_client;
audio_render_client_ = audio_render_client;
audio_input_client_ = audio_input_client;
audio_capture_client_ = audio_capture_client;
opened_ = true;
return SUCCEEDED(hr);
}
void WASAPIUnifiedStream::Start(AudioSourceCallback* callback) {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::Start");
DVLOG(1) << "WASAPIUnifiedStream::Start()";
DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
CHECK(callback);
CHECK(opened_);
if (audio_io_thread_) {
CHECK_EQ(callback, source_);
return;
}
source_ = callback;
if (VarispeedMode()) {
ResetVarispeed();
fifo_rate_compensation_ = 1.0;
average_delta_ = 0.0;
input_callback_received_ = false;
update_output_delay_ = false;
}
// Create and start the thread that will listen for capture events.
// We will also listen on render events on the same thread if varispeed
// mode is utilized.
audio_io_thread_.reset(
new base::DelegateSimpleThread(this, "wasapi_io_thread"));
audio_io_thread_->Start();
if (!audio_io_thread_->HasBeenStarted()) {
DLOG(ERROR) << "Failed to start WASAPI IO thread.";
return;
}
// Start input streaming data between the endpoint buffer and the audio
// engine.
HRESULT hr = audio_input_client_->Start();
if (FAILED(hr)) {
StopAndJoinThread(hr);
return;
}
// Ensure that the endpoint buffer is prepared with silence.
if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
audio_output_client_, audio_render_client_)) {
DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
return;
}
}
num_written_frames_ = endpoint_render_buffer_size_frames_;
// Start output streaming data between the endpoint buffer and the audio
// engine.
hr = audio_output_client_->Start();
if (FAILED(hr)) {
StopAndJoinThread(hr);
return;
}
}
void WASAPIUnifiedStream::Stop() {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::Stop");
DVLOG(1) << "WASAPIUnifiedStream::Stop()";
DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
if (!audio_io_thread_)
return;
// Stop input audio streaming.
HRESULT hr = audio_input_client_->Stop();
if (FAILED(hr)) {
DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
<< "Failed to stop input streaming: " << std::hex << hr;
}
// Stop output audio streaming.
hr = audio_output_client_->Stop();
if (FAILED(hr)) {
DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
<< "Failed to stop output streaming: " << std::hex << hr;
}
// Wait until the thread completes and perform cleanup.
SetEvent(stop_streaming_event_.Get());
audio_io_thread_->Join();
audio_io_thread_.reset();
// Ensure that we don't quit the main thread loop immediately next
// time Start() is called.
ResetEvent(stop_streaming_event_.Get());
// Clear source callback, it'll be set again on the next Start() call.
source_ = NULL;
// Flush all pending data and reset the audio clock stream position to 0.
hr = audio_output_client_->Reset();
if (FAILED(hr)) {
DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
<< "Failed to reset output streaming: " << std::hex << hr;
}
audio_input_client_->Reset();
if (FAILED(hr)) {
DLOG_IF(ERROR, hr != AUDCLNT_E_NOT_INITIALIZED)
<< "Failed to reset input streaming: " << std::hex << hr;
}
// Extra safety check to ensure that the buffers are cleared.
// If the buffers are not cleared correctly, the next call to Start()
// would fail with AUDCLNT_E_BUFFER_ERROR at IAudioRenderClient::GetBuffer().
// TODO(henrika): this check is is only needed for shared-mode streams.
UINT32 num_queued_frames = 0;
audio_output_client_->GetCurrentPadding(&num_queued_frames);
DCHECK_EQ(0u, num_queued_frames);
}
void WASAPIUnifiedStream::Close() {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::Close");
DVLOG(1) << "WASAPIUnifiedStream::Close()";
DCHECK_EQ(GetCurrentThreadId(), creating_thread_id_);
// It is valid to call Close() before calling open or Start().
// It is also valid to call Close() after Start() has been called.
Stop();
// Inform the audio manager that we have been closed. This will cause our
// destruction.
manager_->ReleaseOutputStream(this);
}
void WASAPIUnifiedStream::SetVolume(double volume) {
DVLOG(1) << "SetVolume(volume=" << volume << ")";
if (volume < 0 || volume > 1)
return;
volume_ = volume;
}
void WASAPIUnifiedStream::GetVolume(double* volume) {
DVLOG(1) << "GetVolume()";
*volume = static_cast<double>(volume_);
}
void WASAPIUnifiedStream::ProvideInput(int frame_delay, AudioBus* audio_bus) {
// TODO(henrika): utilize frame_delay?
// A non-zero framed delay means multiple callbacks were necessary to
// fulfill the requested number of frames.
if (frame_delay > 0)
DVLOG(3) << "frame_delay: " << frame_delay;
#ifndef NDEBUG
resampler_margin_[num_elements_[RESAMPLER_MARGIN]] =
fifo_->frames() - audio_bus->frames();
num_elements_[RESAMPLER_MARGIN]++;
#endif
if (fifo_->frames() < audio_bus->frames()) {
DVLOG(ERROR) << "Not enough data in the FIFO ("
<< fifo_->frames() << " < " << audio_bus->frames() << ")";
audio_bus->Zero();
return;
}
fifo_->Consume(audio_bus, 0, audio_bus->frames());
}
void WASAPIUnifiedStream::SetIOFormats(const AudioParameters& input_params,
const AudioParameters& output_params) {
for (int n = 0; n < 2; ++n) {
const AudioParameters& params = (n == 0) ? input_params : output_params;
WAVEFORMATPCMEX* xformat = (n == 0) ? &input_format_ : &output_format_;
WAVEFORMATEX* format = &xformat->Format;
// Begin with the WAVEFORMATEX structure that specifies the basic format.
format->wFormatTag = WAVE_FORMAT_EXTENSIBLE;
format->nChannels = params.channels();
format->nSamplesPerSec = params.sample_rate();
format->wBitsPerSample = params.bits_per_sample();
format->nBlockAlign = (format->wBitsPerSample / 8) * format->nChannels;
format->nAvgBytesPerSec = format->nSamplesPerSec * format->nBlockAlign;
format->cbSize = sizeof(WAVEFORMATEXTENSIBLE) - sizeof(WAVEFORMATEX);
// Add the parts which are unique to WAVE_FORMAT_EXTENSIBLE.
// Note that we always open up using the native channel layout.
(*xformat).Samples.wValidBitsPerSample = format->wBitsPerSample;
(*xformat).dwChannelMask =
CoreAudioUtil::GetChannelConfig(
std::string(), n == 0 ? eCapture : eRender);
(*xformat).SubFormat = KSDATAFORMAT_SUBTYPE_PCM;
}
input_buffer_size_frames_ = input_params.frames_per_buffer();
output_buffer_size_frames_ = output_params.frames_per_buffer();
VLOG(1) << "#audio frames per input buffer : " << input_buffer_size_frames_;
VLOG(1) << "#audio frames per output buffer: " << output_buffer_size_frames_;
#ifndef NDEBUG
input_params_[0] = input_format_.Format.nSamplesPerSec;
input_params_[1] = input_buffer_size_frames_;
output_params_[0] = output_format_.Format.nSamplesPerSec;
output_params_[1] = output_buffer_size_frames_;
#endif
}
void WASAPIUnifiedStream::DoVarispeedInitialization(
const AudioParameters& input_params, const AudioParameters& output_params) {
DVLOG(1) << "WASAPIUnifiedStream::DoVarispeedInitialization()";
// A FIFO is required in this mode for input to output buffering.
// Note that it will add some latency.
fifo_.reset(new AudioFifo(input_params.channels(), kFifoSize));
VLOG(1) << "Using FIFO of size " << fifo_->max_frames()
<< " (#channels=" << input_params.channels() << ")";
// Create the multi channel resampler using the initial sample rate ratio.
// We will call MultiChannelResampler::SetRatio() during runtime to
// allow arbitrary combinations of input and output devices running off
// different clocks and using different drivers, with potentially
// differing sample-rates. Note that the requested block size is given by
// the native input buffer size |input_buffer_size_frames_|.
io_sample_rate_ratio_ = input_params.sample_rate() /
static_cast<double>(output_params.sample_rate());
DVLOG(2) << "io_sample_rate_ratio: " << io_sample_rate_ratio_;
resampler_.reset(new MultiChannelResampler(
input_params.channels(), io_sample_rate_ratio_, input_buffer_size_frames_,
base::Bind(&WASAPIUnifiedStream::ProvideInput, base::Unretained(this))));
VLOG(1) << "Resampling from " << input_params.sample_rate() << " to "
<< output_params.sample_rate();
// The optimal number of frames we'd like to keep in the FIFO at all times.
// The actual size will vary but the goal is to ensure that the average size
// is given by this value.
target_fifo_frames_ = kTargetFifoSafetyFactor * input_buffer_size_frames_;
VLOG(1) << "Target FIFO size: " << target_fifo_frames_;
// Create the event which the audio engine will signal each time it
// wants an audio buffer to render.
render_event_.Set(CreateEvent(NULL, FALSE, FALSE, NULL));
// Allocate memory for temporary audio bus used to store resampled input
// audio.
resampled_bus_ = AudioBus::Create(
input_params.channels(), output_buffer_size_frames_);
// Buffer initial silence corresponding to target I/O buffering.
ResetVarispeed();
}
void WASAPIUnifiedStream::ResetVarispeed() {
DCHECK(VarispeedMode());
// Buffer initial silence corresponding to target I/O buffering.
fifo_->Clear();
scoped_ptr<AudioBus> silence =
AudioBus::Create(input_format_.Format.nChannels,
target_fifo_frames_);
silence->Zero();
fifo_->Push(silence.get());
resampler_->Flush();
}
void WASAPIUnifiedStream::Run() {
ScopedCOMInitializer com_init(ScopedCOMInitializer::kMTA);
// Increase the thread priority.
audio_io_thread_->SetThreadPriority(base::kThreadPriority_RealtimeAudio);
// Enable MMCSS to ensure that this thread receives prioritized access to
// CPU resources.
// TODO(henrika): investigate if it is possible to include these additional
// settings in SetThreadPriority() as well.
DWORD task_index = 0;
HANDLE mm_task = avrt::AvSetMmThreadCharacteristics(L"Pro Audio",
&task_index);
bool mmcss_is_ok =
(mm_task && avrt::AvSetMmThreadPriority(mm_task, AVRT_PRIORITY_CRITICAL));
if (!mmcss_is_ok) {
// Failed to enable MMCSS on this thread. It is not fatal but can lead
// to reduced QoS at high load.
DWORD err = GetLastError();
LOG(WARNING) << "Failed to enable MMCSS (error code=" << err << ").";
}
// The IAudioClock interface enables us to monitor a stream's data
// rate and the current position in the stream. Allocate it before we
// start spinning.
ScopedComPtr<IAudioClock> audio_output_clock;
HRESULT hr = audio_output_client_->GetService(
__uuidof(IAudioClock), audio_output_clock.ReceiveVoid());
LOG_IF(WARNING, FAILED(hr)) << "Failed to create IAudioClock: "
<< std::hex << hr;
bool streaming = true;
bool error = false;
HANDLE wait_array[3];
size_t num_handles = 0;
wait_array[num_handles++] = stop_streaming_event_;
wait_array[num_handles++] = capture_event_;
if (render_event_) {
// One extra event handle is needed in varispeed mode.
wait_array[num_handles++] = render_event_;
}
// Keep streaming audio until stop event is signaled.
// Capture events are always used but render events are only active in
// varispeed mode.
while (streaming && !error) {
// Wait for a close-down event, or a new capture event.
DWORD wait_result = WaitForMultipleObjects(num_handles,
wait_array,
FALSE,
INFINITE);
switch (wait_result) {
case WAIT_OBJECT_0 + 0:
// |stop_streaming_event_| has been set.
streaming = false;
break;
case WAIT_OBJECT_0 + 1:
// |capture_event_| has been set
if (VarispeedMode()) {
ProcessInputAudio();
} else {
ProcessInputAudio();
ProcessOutputAudio(audio_output_clock);
}
break;
case WAIT_OBJECT_0 + 2:
DCHECK(VarispeedMode());
// |render_event_| has been set
ProcessOutputAudio(audio_output_clock);
break;
default:
error = true;
break;
}
}
if (streaming && error) {
// Stop audio streaming since something has gone wrong in our main thread
// loop. Note that, we are still in a "started" state, hence a Stop() call
// is required to join the thread properly.
audio_input_client_->Stop();
audio_output_client_->Stop();
PLOG(ERROR) << "WASAPI streaming failed.";
}
// Disable MMCSS.
if (mm_task && !avrt::AvRevertMmThreadCharacteristics(mm_task)) {
PLOG(WARNING) << "Failed to disable MMCSS";
}
}
void WASAPIUnifiedStream::ProcessInputAudio() {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessInputAudio");
BYTE* data_ptr = NULL;
UINT32 num_captured_frames = 0;
DWORD flags = 0;
UINT64 device_position = 0;
UINT64 capture_time_stamp = 0;
const int bytes_per_sample = input_format_.Format.wBitsPerSample >> 3;
base::TimeTicks now_tick = base::TimeTicks::HighResNow();
#ifndef NDEBUG
if (VarispeedMode()) {
input_time_stamps_[num_elements_[INPUT_TIME_STAMP]] =
now_tick.ToInternalValue();
num_elements_[INPUT_TIME_STAMP]++;
}
#endif
// Retrieve the amount of data in the capture endpoint buffer.
// |endpoint_capture_time_stamp| is the value of the performance
// counter at the time that the audio endpoint device recorded
// the device position of the first audio frame in the data packet.
HRESULT hr = audio_capture_client_->GetBuffer(&data_ptr,
&num_captured_frames,
&flags,
&device_position,
&capture_time_stamp);
if (FAILED(hr)) {
DLOG(ERROR) << "Failed to get data from the capture buffer";
return;
}
if (hr == AUDCLNT_S_BUFFER_EMPTY) {
// The return coded is a success code but a new packet is *not* available
// and none of the output parameters in the GetBuffer() call contains valid
// values. Best we can do is to deliver silence and avoid setting
// |input_callback_received_| since this only seems to happen for the
// initial event(s) on some devices.
input_bus_->Zero();
} else {
// Valid data has been recorded and it is now OK to set the flag which
// informs the render side that capturing has started.
input_callback_received_ = true;
}
if (num_captured_frames != 0) {
if (flags & AUDCLNT_BUFFERFLAGS_SILENT) {
// Clear out the capture buffer since silence is reported.
input_bus_->Zero();
} else {
// Store captured data in an audio bus after de-interleaving
// the data to match the audio bus structure.
input_bus_->FromInterleaved(
data_ptr, num_captured_frames, bytes_per_sample);
}
}
hr = audio_capture_client_->ReleaseBuffer(num_captured_frames);
DLOG_IF(ERROR, FAILED(hr)) << "Failed to release capture buffer";
// Buffer input into FIFO if varispeed mode is used. The render event
// will drive resampling of this data to match the output side.
if (VarispeedMode()) {
int available_frames = fifo_->max_frames() - fifo_->frames();
if (input_bus_->frames() <= available_frames) {
fifo_->Push(input_bus_.get());
}
#ifndef NDEBUG
num_frames_in_fifo_[num_elements_[NUM_FRAMES_IN_FIFO]] =
fifo_->frames();
num_elements_[NUM_FRAMES_IN_FIFO]++;
#endif
}
// Save resource by not asking for new delay estimates each time.
// These estimates are fairly stable and it is perfectly safe to only
// sample at a rate of ~1Hz.
// TODO(henrika): we might have to increase the update rate in varispeed
// mode since the delay variations are higher in this mode.
if ((now_tick - last_delay_sample_time_).InMilliseconds() >
kTimeDiffInMillisecondsBetweenDelayMeasurements &&
input_callback_received_) {
// Calculate the estimated capture delay, i.e., the latency between
// the recording time and the time we when we are notified about
// the recorded data. Note that the capture time stamp is given in
// 100-nanosecond (0.1 microseconds) units.
base::TimeDelta diff =
now_tick - base::TimeTicks::FromInternalValue(0.1 * capture_time_stamp);
capture_delay_ms_ = diff.InMillisecondsF();
last_delay_sample_time_ = now_tick;
update_output_delay_ = true;
}
}
void WASAPIUnifiedStream::ProcessOutputAudio(IAudioClock* audio_output_clock) {
TRACE_EVENT0("audio", "WASAPIUnifiedStream::ProcessOutputAudio");
if (!input_callback_received_) {
if (share_mode_ == AUDCLNT_SHAREMODE_SHARED) {
if (!CoreAudioUtil::FillRenderEndpointBufferWithSilence(
audio_output_client_, audio_render_client_))
DLOG(WARNING) << "Failed to prepare endpoint buffers with silence.";
}
return;
}
// Rate adjusted resampling is required in varispeed mode. It means that
// recorded audio samples will be read from the FIFO, resampled to match the
// output sample-rate and then stored in |resampled_bus_|.
if (VarispeedMode()) {
// Calculate a varispeed rate scalar factor to compensate for drift between
// input and output. We use the actual number of frames still in the FIFO
// compared with the ideal value of |target_fifo_frames_|.
int delta = fifo_->frames() - target_fifo_frames_;
// Average |delta| because it can jitter back/forth quite frequently
// by +/- the hardware buffer-size *if* the input and output callbacks are
// happening at almost exactly the same time. Also, if the input and output
// sample-rates are different then |delta| will jitter quite a bit due to
// the rate conversion happening in the varispeed, plus the jittering of
// the callbacks. The average value is what's important here.
// We use an exponential smoothing filter to reduce the variations.
average_delta_ += kAlpha * (delta - average_delta_);
// Compute a rate compensation which always attracts us back to the
// |target_fifo_frames_| over a period of kCorrectionTimeSeconds.
double correction_time_frames =
kCorrectionTimeSeconds * output_format_.Format.nSamplesPerSec;
fifo_rate_compensation_ =
(correction_time_frames + average_delta_) / correction_time_frames;
#ifndef NDEBUG
fifo_rate_comps_[num_elements_[RATE_COMPENSATION]] =
fifo_rate_compensation_;
num_elements_[RATE_COMPENSATION]++;
#endif
// Adjust for FIFO drift.
const double new_ratio = io_sample_rate_ratio_ * fifo_rate_compensation_;
resampler_->SetRatio(new_ratio);
// Get resampled input audio from FIFO where the size is given by the
// output side.
resampler_->Resample(resampled_bus_->frames(), resampled_bus_.get());
}
// Derive a new total delay estimate if the capture side has set the
// |update_output_delay_| flag.
if (update_output_delay_) {
// Calculate the estimated render delay, i.e., the time difference
// between the time when data is added to the endpoint buffer and
// when the data is played out on the actual speaker.
const double stream_pos = CurrentStreamPosInMilliseconds(
num_written_frames_ + output_buffer_size_frames_,
output_format_.Format.nSamplesPerSec);
const double speaker_pos =
SpeakerStreamPosInMilliseconds(audio_output_clock);
const double render_delay_ms = stream_pos - speaker_pos;
const double fifo_delay_ms = VarispeedMode() ?
FrameCountToMilliseconds(target_fifo_frames_, input_format_) : 0;
// Derive the total delay, i.e., the sum of the input and output
// delays. Also convert the value into byte units. An extra FIFO delay
// is added for varispeed usage cases.
total_delay_ms_ = VarispeedMode() ?
capture_delay_ms_ + render_delay_ms + fifo_delay_ms :
capture_delay_ms_ + render_delay_ms;
DVLOG(2) << "total_delay_ms : " << total_delay_ms_;
DVLOG(3) << " capture_delay_ms: " << capture_delay_ms_;
DVLOG(3) << " render_delay_ms : " << render_delay_ms;
DVLOG(3) << " fifo_delay_ms : " << fifo_delay_ms;
total_delay_bytes_ = MillisecondsToBytes(total_delay_ms_, output_format_);
// Wait for new signal from the capture side.
update_output_delay_ = false;
}
// Select source depending on if varispeed is utilized or not.
// Also, the source might be the output of a channel mixer if channel mixing
// is required to match the native input channels to the number of input
// channels used by the client (given by |input_channels_| in this case).
AudioBus* input_bus = VarispeedMode() ?
resampled_bus_.get() : input_bus_.get();
if (channel_mixer_) {
DCHECK_EQ(input_bus->frames(), channel_bus_->frames());
// Most common case is 1->2 channel upmixing.
channel_mixer_->Transform(input_bus, channel_bus_.get());
// Use the output from the channel mixer as new input bus.
input_bus = channel_bus_.get();
}
// Prepare for rendering by calling OnMoreIOData().
int frames_filled = source_->OnMoreIOData(
input_bus,
output_bus_.get(),
AudioBuffersState(0, total_delay_bytes_));
DCHECK_EQ(frames_filled, output_bus_->frames());
// Keep track of number of rendered frames since we need it for
// our delay calculations.
num_written_frames_ += frames_filled;
// Derive the the amount of available space in the endpoint buffer.
// Avoid render attempt if there is no room for a captured packet.
UINT32 num_queued_frames = 0;
audio_output_client_->GetCurrentPadding(&num_queued_frames);
if (endpoint_render_buffer_size_frames_ - num_queued_frames <
output_buffer_size_frames_)
return;
// Grab all available space in the rendering endpoint buffer
// into which the client can write a data packet.
uint8* audio_data = NULL;
HRESULT hr = audio_render_client_->GetBuffer(output_buffer_size_frames_,
&audio_data);
if (FAILED(hr)) {
DLOG(ERROR) << "Failed to access render buffer";
return;
}
const int bytes_per_sample = output_format_.Format.wBitsPerSample >> 3;
// Convert the audio bus content to interleaved integer data using
// |audio_data| as destination.
output_bus_->Scale(volume_);
output_bus_->ToInterleaved(
output_buffer_size_frames_, bytes_per_sample, audio_data);
// Release the buffer space acquired in the GetBuffer() call.
audio_render_client_->ReleaseBuffer(output_buffer_size_frames_, 0);
DLOG_IF(ERROR, FAILED(hr)) << "Failed to release render buffer";
return;
}
void WASAPIUnifiedStream::HandleError(HRESULT err) {
CHECK((started() && GetCurrentThreadId() == audio_io_thread_->tid()) ||
(!started() && GetCurrentThreadId() == creating_thread_id_));
NOTREACHED() << "Error code: " << std::hex << err;
if (source_)
source_->OnError(this);
}
void WASAPIUnifiedStream::StopAndJoinThread(HRESULT err) {
CHECK(GetCurrentThreadId() == creating_thread_id_);
DCHECK(audio_io_thread_.get());
SetEvent(stop_streaming_event_.Get());
audio_io_thread_->Join();
audio_io_thread_.reset();
HandleError(err);
}
} // namespace media