blob: 9ec9293eec26660fda2a88d15a91ff2b1dd74ee4 [file] [log] [blame]
// Copyright 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/resources/picture_layer_tiling.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include "base/debug/trace_event.h"
#include "cc/base/math_util.h"
#include "ui/gfx/point_conversions.h"
#include "ui/gfx/rect_conversions.h"
#include "ui/gfx/safe_integer_conversions.h"
#include "ui/gfx/size_conversions.h"
namespace cc {
namespace {
const int kTileBundleWidth = 2;
const int kTileBundleHeight = 2;
std::pair<int, int> ComputeTileBundleIndex(int i, int j) {
return std::make_pair(i / kTileBundleWidth, j / kTileBundleHeight);
}
gfx::Size ComputeBundleTextureSize(gfx::Size tile_size,
const TilingData& tiling_data) {
int border_texels = tiling_data.border_texels();
int inner_tile_width = tile_size.width() - 2 * border_texels;
int bundle_width = inner_tile_width * kTileBundleWidth + 2 * border_texels;
int inner_tile_height = tile_size.height() - 2 * border_texels;
int bundle_height = inner_tile_height * kTileBundleHeight + 2 * border_texels;
return gfx::Size(bundle_width, bundle_height);
}
} // namespace
scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
float contents_scale,
gfx::Size layer_bounds,
PictureLayerTilingClient* client) {
return make_scoped_ptr(new PictureLayerTiling(contents_scale,
layer_bounds,
client));
}
PictureLayerTiling::PictureLayerTiling(float contents_scale,
gfx::Size layer_bounds,
PictureLayerTilingClient* client)
: contents_scale_(contents_scale),
layer_bounds_(layer_bounds),
resolution_(NON_IDEAL_RESOLUTION),
client_(client),
tiling_data_(gfx::Size(), gfx::Size(), true),
bundle_tiling_data_(gfx::Size(), gfx::Size(), true),
current_tree_(PENDING_TREE),
last_impl_frame_time_in_seconds_(0.0) {
gfx::Size content_bounds =
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds, contents_scale));
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
DCHECK(!gfx::ToFlooredSize(
gfx::ScaleSize(layer_bounds, contents_scale)).IsEmpty()) <<
"Tiling created with scale too small as contents become empty." <<
" Layer bounds: " << layer_bounds.ToString() <<
" Contents scale: " << contents_scale;
tiling_data_.SetTotalSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
bundle_tiling_data_.SetTotalSize(content_bounds);
bundle_tiling_data_.SetMaxTextureSize(
ComputeBundleTextureSize(tile_size, tiling_data_));
}
PictureLayerTiling::~PictureLayerTiling() {
}
void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
client_ = client;
}
gfx::Rect PictureLayerTiling::ContentRect() const {
return gfx::Rect(tiling_data_.total_size());
}
gfx::SizeF PictureLayerTiling::ContentSizeF() const {
return gfx::ScaleSize(layer_bounds_, contents_scale_);
}
TileBundle* PictureLayerTiling::CreateBundleForTileAt(
int i,
int j,
const PictureLayerTiling* twin_tiling) {
TileBundleMapKey key = ComputeTileBundleIndex(i, j);
DCHECK(tile_bundles_.find(key) == tile_bundles_.end());
scoped_refptr<TileBundle> candidate_bundle = NULL;
// Always try to get the twin bundle first. TileBundles are always shared
// between trees.
if (twin_tiling &&
tiling_data_.max_texture_size() ==
twin_tiling->tiling_data_.max_texture_size()) {
candidate_bundle = twin_tiling->TileBundleAt(key.first, key.second);
}
// If we couldn't get a tile bundle, create a new one.
if (!candidate_bundle) {
candidate_bundle = client_->CreateTileBundle(key.first * kTileBundleWidth,
key.second * kTileBundleHeight,
kTileBundleWidth,
kTileBundleHeight);
}
candidate_bundle->SwapTilesIfRequired();
tile_bundles_[key] = candidate_bundle;
return candidate_bundle.get();
}
TileBundle* PictureLayerTiling::TileBundleContainingTileAt(int i, int j) const {
TileBundleMapKey key = ComputeTileBundleIndex(i, j);
return TileBundleAt(key.first, key.second);
}
TileBundle* PictureLayerTiling::TileBundleAt(int i, int j) const {
TileBundleMapKey key(i, j);
TileBundleMap::const_iterator it = tile_bundles_.find(key);
if (it == tile_bundles_.end())
return NULL;
it->second->SwapTilesIfRequired();
return it->second.get();
}
Tile* PictureLayerTiling::TileAt(WhichTree tree, int i, int j) const {
TileBundle* bundle = TileBundleContainingTileAt(i, j);
if (!bundle)
return NULL;
return bundle->TileAt(tree, i, j);
}
void PictureLayerTiling::CreateTile(WhichTree tree,
int i,
int j,
const PictureLayerTiling* twin_tiling) {
TileBundle* bundle = TileBundleContainingTileAt(i, j);
if (!bundle)
bundle = CreateBundleForTileAt(i, j, twin_tiling);
gfx::Rect paint_rect = tiling_data_.TileBoundsWithBorder(i, j);
gfx::Rect tile_rect = paint_rect;
tile_rect.set_size(tiling_data_.max_texture_size());
// Check our twin for a valid tile.
WhichTree twin_tree = (tree == ACTIVE_TREE) ? PENDING_TREE : ACTIVE_TREE;
if (Tile* candidate_tile = bundle->TileAt(twin_tree, i, j)) {
gfx::Rect rect =
gfx::ScaleToEnclosingRect(paint_rect, 1.0f / contents_scale_);
if (!client_->GetInvalidation()->Intersects(rect)) {
bundle->AddTileAt(tree, i, j, candidate_tile);
return;
}
}
// Create a new tile because our twin didn't have a valid one.
scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
if (tile.get())
bundle->AddTileAt(tree, i, j, tile);
}
bool PictureLayerTiling::RemoveTile(WhichTree tree, int i, int j) {
TileBundleMapKey key = ComputeTileBundleIndex(i, j);
TileBundleMap::iterator it = tile_bundles_.find(key);
if (it == tile_bundles_.end())
return false;
it->second->SwapTilesIfRequired();
return it->second->RemoveTileAt(tree, i, j);
}
void PictureLayerTiling::RemoveBundleContainingTileAtIfEmpty(int i, int j) {
TileBundleMapKey key = ComputeTileBundleIndex(i, j);
TileBundleMap::iterator it = tile_bundles_.find(key);
if (it == tile_bundles_.end())
return;
if (it->second->IsEmpty())
tile_bundles_.erase(it);
}
Region PictureLayerTiling::OpaqueRegionInContentRect(
gfx::Rect content_rect) const {
Region opaque_region;
// TODO(enne): implement me
return opaque_region;
}
void PictureLayerTiling::SetCanUseLCDText(bool can_use_lcd_text) {
// TODO(vmpstr): This can be done per bundle with results used
// in tile manager.
for (TileBundleMap::iterator it = tile_bundles_.begin();
it != tile_bundles_.end();
++it) {
for (TileBundle::Iterator tile_it(it->second, current_tree_);
tile_it;
++tile_it)
tile_it->set_can_use_lcd_text(can_use_lcd_text);
}
}
void PictureLayerTiling::CreateMissingTilesInLiveTilesRect() {
DCHECK(current_tree_ == PENDING_TREE);
const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
for (TilingData::Iterator iter(&tiling_data_, live_tiles_rect_); iter;
++iter) {
int tile_x = iter.index_x();
int tile_y = iter.index_y();
Tile* tile = TileAt(PENDING_TREE, tile_x, tile_y);
if (tile)
continue;
CreateTile(PENDING_TREE, tile_x, tile_y, twin_tiling);
}
}
void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) {
if (layer_bounds_ == layer_bounds)
return;
DCHECK(current_tree_ == PENDING_TREE);
DCHECK(!layer_bounds.IsEmpty());
gfx::Size old_layer_bounds = layer_bounds_;
layer_bounds_ = layer_bounds;
gfx::Size old_content_bounds = tiling_data_.total_size();
gfx::Size content_bounds =
gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));
gfx::Size tile_size = client_->CalculateTileSize(content_bounds);
if (tile_size != tiling_data_.max_texture_size()) {
tiling_data_.SetTotalSize(content_bounds);
tiling_data_.SetMaxTextureSize(tile_size);
bundle_tiling_data_.SetTotalSize(content_bounds);
bundle_tiling_data_.SetMaxTextureSize(
ComputeBundleTextureSize(tile_size, tiling_data_));
Reset();
return;
}
// Any tiles outside our new bounds are invalid and should be dropped.
gfx::Rect bounded_live_tiles_rect(live_tiles_rect_);
bounded_live_tiles_rect.Intersect(gfx::Rect(content_bounds));
SetLiveTilesRect(bounded_live_tiles_rect);
tiling_data_.SetTotalSize(content_bounds);
bundle_tiling_data_.SetTotalSize(content_bounds);
// Create tiles for newly exposed areas.
Region layer_region((gfx::Rect(layer_bounds_)));
layer_region.Subtract(gfx::Rect(old_layer_bounds));
Invalidate(layer_region);
}
void PictureLayerTiling::Invalidate(const Region& layer_region) {
DCHECK(current_tree_ == PENDING_TREE);
std::vector<std::pair<int, int> > new_tile_keys;
for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
gfx::Rect layer_rect = iter.rect();
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(layer_rect, contents_scale_);
content_rect.Intersect(live_tiles_rect_);
if (content_rect.IsEmpty())
continue;
for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) {
int tile_x = iter.index_x();
int tile_y = iter.index_y();
// If there is no bundle for the given tile, we can skip.
bool deleted = RemoveTile(PENDING_TREE, tile_x, tile_y);
if (deleted)
new_tile_keys.push_back(std::make_pair(tile_x, tile_y));
}
}
const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
for (size_t i = 0; i < new_tile_keys.size(); ++i) {
CreateTile(PENDING_TREE,
new_tile_keys[i].first,
new_tile_keys[i].second,
twin_tiling);
}
}
PictureLayerTiling::CoverageIterator::CoverageIterator()
: tiling_(NULL),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1) {
}
PictureLayerTiling::CoverageIterator::CoverageIterator(
const PictureLayerTiling* tiling,
float dest_scale,
gfx::Rect dest_rect)
: tiling_(tiling),
dest_rect_(dest_rect),
dest_to_content_scale_(0),
current_tile_(NULL),
tile_i_(0),
tile_j_(0),
left_(0),
top_(0),
right_(-1),
bottom_(-1),
tree_(tiling->current_tree_) {
DCHECK(tiling_);
if (dest_rect_.IsEmpty())
return;
dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
// This is the maximum size that the dest rect can be, given the content size.
gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize(
tiling_->ContentRect().size(),
1 / dest_to_content_scale_,
1 / dest_to_content_scale_));
gfx::Rect content_rect =
gfx::ScaleToEnclosingRect(dest_rect_,
dest_to_content_scale_,
dest_to_content_scale_);
// IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
// check for non-intersection first.
content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size()));
if (content_rect.IsEmpty())
return;
left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
content_rect.right() - 1);
bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
content_rect.bottom() - 1);
tile_i_ = left_ - 1;
tile_j_ = top_;
++(*this);
}
PictureLayerTiling::CoverageIterator::~CoverageIterator() {
}
PictureLayerTiling::CoverageIterator&
PictureLayerTiling::CoverageIterator::operator++() {
if (tile_j_ > bottom_)
return *this;
bool first_time = tile_i_ < left_;
bool new_row = false;
tile_i_++;
if (tile_i_ > right_) {
tile_i_ = left_;
tile_j_++;
new_row = true;
if (tile_j_ > bottom_) {
current_tile_ = NULL;
return *this;
}
}
current_tile_ = tiling_->TileAt(tree_, tile_i_, tile_j_);
// Calculate the current geometry rect. Due to floating point rounding
// and ToEnclosingRect, tiles might overlap in destination space on the
// edges.
gfx::Rect last_geometry_rect = current_geometry_rect_;
gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
current_geometry_rect_ =
gfx::ScaleToEnclosingRect(content_rect,
1 / dest_to_content_scale_,
1 / dest_to_content_scale_);
current_geometry_rect_.Intersect(dest_rect_);
if (first_time)
return *this;
// Iteration happens left->right, top->bottom. Running off the bottom-right
// edge is handled by the intersection above with dest_rect_. Here we make
// sure that the new current geometry rect doesn't overlap with the last.
int min_left;
int min_top;
if (new_row) {
min_left = dest_rect_.x();
min_top = last_geometry_rect.bottom();
} else {
min_left = last_geometry_rect.right();
min_top = last_geometry_rect.y();
}
int inset_left = std::max(0, min_left - current_geometry_rect_.x());
int inset_top = std::max(0, min_top - current_geometry_rect_.y());
current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
if (!new_row) {
DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
}
return *this;
}
gfx::Rect PictureLayerTiling::CoverageIterator::geometry_rect() const {
return current_geometry_rect_;
}
gfx::Rect
PictureLayerTiling::CoverageIterator::full_tile_geometry_rect() const {
gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
rect.set_size(tiling_->tiling_data_.max_texture_size());
return rect;
}
TilePriority PictureLayerTiling::CoverageIterator::priority() {
TileBundle* bundle = tiling_->TileBundleContainingTileAt(tile_i_, tile_j_);
if (bundle)
return bundle->GetPriority(tree_);
return TilePriority();
}
void PictureLayerTiling::CoverageIterator::SetPriorityForTesting(
const TilePriority& priority) {
TileBundle* bundle = tiling_->TileBundleContainingTileAt(tile_i_, tile_j_);
bundle->SetPriority(tree_, priority);
}
gfx::RectF PictureLayerTiling::CoverageIterator::texture_rect() const {
gfx::PointF tex_origin =
tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
// Convert from dest space => content space => texture space.
gfx::RectF texture_rect(current_geometry_rect_);
texture_rect.Scale(dest_to_content_scale_,
dest_to_content_scale_);
texture_rect.Offset(-tex_origin.OffsetFromOrigin());
texture_rect.Intersect(tiling_->ContentRect());
return texture_rect;
}
gfx::Size PictureLayerTiling::CoverageIterator::texture_size() const {
return tiling_->tiling_data_.max_texture_size();
}
void PictureLayerTiling::Reset() {
live_tiles_rect_ = gfx::Rect();
tile_bundles_.clear();
}
void PictureLayerTiling::UpdateTilePriorities(
WhichTree tree,
gfx::Size device_viewport,
gfx::Rect viewport_in_layer_space,
gfx::Rect visible_layer_rect,
gfx::Size last_layer_bounds,
gfx::Size current_layer_bounds,
float last_layer_contents_scale,
float current_layer_contents_scale,
const gfx::Transform& last_screen_transform,
const gfx::Transform& current_screen_transform,
double current_frame_time_in_seconds,
size_t max_tiles_for_interest_area) {
if (!has_ever_been_updated())
current_tree_ = tree;
DCHECK_EQ(tree, current_tree_);
if (!NeedsUpdateForFrameAtTime(current_frame_time_in_seconds)) {
// This should never be zero for the purposes of has_ever_been_updated().
DCHECK_NE(current_frame_time_in_seconds, 0.0);
return;
}
if (ContentRect().IsEmpty()) {
last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
return;
}
gfx::Rect viewport_in_content_space =
gfx::ScaleToEnclosingRect(viewport_in_layer_space, contents_scale_);
gfx::Rect visible_content_rect =
gfx::ScaleToEnclosingRect(visible_layer_rect, contents_scale_);
gfx::Size tile_size = tiling_data_.max_texture_size();
int64 interest_rect_area =
max_tiles_for_interest_area * tile_size.width() * tile_size.height();
gfx::Rect starting_rect = visible_content_rect.IsEmpty()
? viewport_in_content_space
: visible_content_rect;
gfx::Rect interest_rect = ExpandRectEquallyToAreaBoundedBy(
starting_rect,
interest_rect_area,
ContentRect(),
&expansion_cache_);
DCHECK(interest_rect.IsEmpty() ||
ContentRect().Contains(interest_rect));
SetLiveTilesRect(interest_rect);
double time_delta = 0;
if (last_impl_frame_time_in_seconds_ != 0.0 &&
last_layer_bounds == current_layer_bounds) {
time_delta =
current_frame_time_in_seconds - last_impl_frame_time_in_seconds_;
}
gfx::Rect view_rect(device_viewport);
float current_scale = current_layer_contents_scale / contents_scale_;
float last_scale = last_layer_contents_scale / contents_scale_;
// Fast path tile priority calculation when both transforms are translations.
if (last_screen_transform.IsApproximatelyIdentityOrTranslation(
std::numeric_limits<float>::epsilon()) &&
current_screen_transform.IsApproximatelyIdentityOrTranslation(
std::numeric_limits<float>::epsilon())) {
gfx::Vector2dF current_offset(
current_screen_transform.matrix().get(0, 3),
current_screen_transform.matrix().get(1, 3));
gfx::Vector2dF last_offset(
last_screen_transform.matrix().get(0, 3),
last_screen_transform.matrix().get(1, 3));
for (TilingData::Iterator iter(&bundle_tiling_data_, interest_rect);
iter; ++iter) {
int bundle_x = iter.index_x();
int bundle_y = iter.index_y();
TileBundle* bundle = TileBundleAt(bundle_x, bundle_y);
if (!bundle)
continue;
gfx::Rect bundle_bounds =
bundle_tiling_data_.TileBounds(bundle_x, bundle_y);
gfx::RectF current_screen_rect =
gfx::ScaleRect(bundle_bounds, current_scale, current_scale) +
current_offset;
gfx::RectF last_screen_rect =
gfx::ScaleRect(bundle_bounds, last_scale, last_scale) +
last_offset;
float distance_to_visible_in_pixels =
current_screen_rect.ManhattanInternalDistance(view_rect);
float time_to_visible_in_seconds =
TilePriority::TimeForBoundsToIntersect(
last_screen_rect, current_screen_rect, time_delta, view_rect);
TilePriority priority(
resolution_,
time_to_visible_in_seconds,
distance_to_visible_in_pixels);
bundle->SetPriority(tree, priority);
}
} else if (!last_screen_transform.HasPerspective() &&
!current_screen_transform.HasPerspective()) {
// Secondary fast path that can be applied for any affine transforms.
// Initialize the necessary geometry in screen space, so that we can
// iterate over tiles in screen space without needing a costly transform
// mapping for each tile.
// Apply screen space transform to the local origin point (0, 0); only the
// translation component is needed and can be initialized directly.
gfx::Point current_screen_space_origin(
current_screen_transform.matrix().get(0, 3),
current_screen_transform.matrix().get(1, 3));
gfx::Point last_screen_space_origin(
last_screen_transform.matrix().get(0, 3),
last_screen_transform.matrix().get(1, 3));
float current_bundle_width =
bundle_tiling_data_.TileSizeX(0) * current_scale;
float last_bundle_width =
bundle_tiling_data_.TileSizeX(0) * last_scale;
float current_bundle_height =
bundle_tiling_data_.TileSizeY(0) * current_scale;
float last_bundle_height =
bundle_tiling_data_.TileSizeY(0) * last_scale;
// Apply screen space transform to local basis vectors (tile_width, 0) and
// (0, tile_height); the math simplifies and can be initialized directly.
gfx::Vector2dF current_horizontal(
current_screen_transform.matrix().get(0, 0) * current_bundle_width,
current_screen_transform.matrix().get(1, 0) * current_bundle_width);
gfx::Vector2dF current_vertical(
current_screen_transform.matrix().get(0, 1) * current_bundle_height,
current_screen_transform.matrix().get(1, 1) * current_bundle_height);
gfx::Vector2dF last_horizontal(
last_screen_transform.matrix().get(0, 0) * last_bundle_width,
last_screen_transform.matrix().get(1, 0) * last_bundle_width);
gfx::Vector2dF last_vertical(
last_screen_transform.matrix().get(0, 1) * last_bundle_height,
last_screen_transform.matrix().get(1, 1) * last_bundle_height);
for (TilingData::Iterator iter(&bundle_tiling_data_, interest_rect);
iter; ++iter) {
int bundle_x = iter.index_x();
int bundle_y = iter.index_y();
TileBundle* bundle = TileBundleAt(bundle_x, bundle_y);
if (!bundle)
continue;
gfx::PointF current_bundle_origin = current_screen_space_origin +
ScaleVector2d(current_horizontal, bundle_x) +
ScaleVector2d(current_vertical, bundle_y);
gfx::PointF last_bundle_origin = last_screen_space_origin +
ScaleVector2d(last_horizontal, bundle_x) +
ScaleVector2d(last_vertical, bundle_y);
gfx::RectF current_screen_rect = gfx::QuadF(
current_bundle_origin,
current_bundle_origin + current_horizontal,
current_bundle_origin + current_horizontal + current_vertical,
current_bundle_origin + current_vertical).BoundingBox();
gfx::RectF last_screen_rect = gfx::QuadF(
last_bundle_origin,
last_bundle_origin + last_horizontal,
last_bundle_origin + last_horizontal + last_vertical,
last_bundle_origin + last_vertical).BoundingBox();
float distance_to_visible_in_pixels =
current_screen_rect.ManhattanInternalDistance(view_rect);
float time_to_visible_in_seconds =
TilePriority::TimeForBoundsToIntersect(
last_screen_rect, current_screen_rect, time_delta, view_rect);
TilePriority priority(
resolution_,
time_to_visible_in_seconds,
distance_to_visible_in_pixels);
bundle->SetPriority(tree, priority);
}
} else {
for (TilingData::Iterator iter(&bundle_tiling_data_, interest_rect);
iter; ++iter) {
int bundle_x = iter.index_x();
int bundle_y = iter.index_y();
TileBundle* bundle = TileBundleAt(bundle_x, bundle_y);
if (!bundle)
continue;
gfx::Rect bundle_bounds =
bundle_tiling_data_.TileBounds(bundle_x, bundle_y);
gfx::RectF current_layer_content_rect = gfx::ScaleRect(
bundle_bounds,
current_scale,
current_scale);
gfx::RectF current_screen_rect = MathUtil::MapClippedRect(
current_screen_transform, current_layer_content_rect);
gfx::RectF last_layer_content_rect = gfx::ScaleRect(
bundle_bounds,
last_scale,
last_scale);
gfx::RectF last_screen_rect = MathUtil::MapClippedRect(
last_screen_transform, last_layer_content_rect);
float distance_to_visible_in_pixels =
current_screen_rect.ManhattanInternalDistance(view_rect);
float time_to_visible_in_seconds =
TilePriority::TimeForBoundsToIntersect(
last_screen_rect, current_screen_rect, time_delta, view_rect);
TilePriority priority(
resolution_,
time_to_visible_in_seconds,
distance_to_visible_in_pixels);
bundle->SetPriority(tree, priority);
}
}
last_impl_frame_time_in_seconds_ = current_frame_time_in_seconds;
}
void PictureLayerTiling::SetLiveTilesRect(gfx::Rect new_live_tiles_rect) {
DCHECK(new_live_tiles_rect.IsEmpty() ||
ContentRect().Contains(new_live_tiles_rect));
if (live_tiles_rect_ == new_live_tiles_rect)
return;
// Iterate to delete all tiles outside of our new live_tiles rect.
for (TilingData::DifferenceIterator iter(&tiling_data_,
live_tiles_rect_,
new_live_tiles_rect);
iter;
++iter) {
int tile_x = iter.index_x();
int tile_y = iter.index_y();
// If the tile was outside of the recorded region, it won't exist even
// though it was in the live rect.
RemoveTile(current_tree_, tile_x, tile_y);
RemoveBundleContainingTileAtIfEmpty(tile_x, tile_y);
}
const PictureLayerTiling* twin_tiling = client_->GetTwinTiling(this);
// Iterate to allocate new tiles for all regions with newly exposed area.
for (TilingData::DifferenceIterator iter(&tiling_data_,
new_live_tiles_rect,
live_tiles_rect_);
iter;
++iter) {
CreateTile(current_tree_, iter.index_x(), iter.index_y(), twin_tiling);
}
live_tiles_rect_ = new_live_tiles_rect;
}
void PictureLayerTiling::DidBecomeRecycled() {
// DidBecomeActive below will set the active priority for tiles that are
// still in the tree. Calling this first on an active tiling that is becoming
// recycled takes care of tiles that are no longer in the active tree (eg.
// due to a pending invalidation).
for (TileBundleMap::const_iterator it = tile_bundles_.begin();
it != tile_bundles_.end();
++it) {
it->second->DidBecomeRecycled();
}
// Note that recycled tree would not be accessed, and the next tree
// stage after recycled in pending, so we can just set the state to
// pending here.
current_tree_ = PENDING_TREE;
}
void PictureLayerTiling::DidBecomeActive() {
for (TileBundleMap::const_iterator it = tile_bundles_.begin();
it != tile_bundles_.end();
++it) {
it->second->DidBecomeActive();
for (TileBundle::Iterator tile_it(it->second.get(), ACTIVE_TREE);
tile_it;
++tile_it) {
// Tile holds a ref onto a picture pile. If the tile never gets
// invalidated and recreated, then that picture pile ref could exist
// indefinitely. To prevent this, ask the client to update the pile to
// its own ref. This will cause PicturePileImpls and their clones to get
// deleted once the corresponding PictureLayerImpl and any in flight
// raster jobs go out of scope.
client_->UpdatePile(*tile_it);
}
}
current_tree_ = ACTIVE_TREE;
}
void PictureLayerTiling::UpdateTilesToCurrentPile() {
for (TileBundleMap::const_iterator it = tile_bundles_.begin();
it != tile_bundles_.end();
++it) {
for (TileBundle::Iterator tile_it(it->second.get(), PENDING_TREE);
tile_it;
++tile_it) {
client_->UpdatePile(*tile_it);
}
}
}
scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
state->SetInteger("num_tile_bundles", tile_bundles_.size());
state->SetDouble("content_scale", contents_scale_);
state->Set("content_bounds",
MathUtil::AsValue(ContentRect().size()).release());
return state.PassAs<base::Value>();
}
size_t PictureLayerTiling::GPUMemoryUsageInBytes() const {
size_t amount = 0;
for (TileBundleMap::const_iterator it = tile_bundles_.begin();
it != tile_bundles_.end();
++it) {
for (TileBundle::Iterator tile_it(it->second.get()); tile_it; ++tile_it)
amount += tile_it->GPUMemoryUsageInBytes();
}
return amount;
}
PictureLayerTiling::RectExpansionCache::RectExpansionCache()
: previous_target(0) {
}
namespace {
// This struct represents an event at which the expending rect intersects
// one of its boundaries. 4 intersection events will occur during expansion.
struct EdgeEvent {
enum { BOTTOM, TOP, LEFT, RIGHT } edge;
int* num_edges;
int distance;
};
// Compute the delta to expand from edges to cover target_area.
int ComputeExpansionDelta(int num_x_edges, int num_y_edges,
int width, int height,
int64 target_area) {
// Compute coefficients for the quadratic equation:
// a*x^2 + b*x + c = 0
int a = num_y_edges * num_x_edges;
int b = num_y_edges * width + num_x_edges * height;
int64 c = static_cast<int64>(width) * height - target_area;
// Compute the delta for our edges using the quadratic equation.
return a == 0 ? -c / b :
(-b + static_cast<int>(
std::sqrt(static_cast<int64>(b) * b - 4.0 * a * c))) / (2 * a);
}
} // namespace
gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
gfx::Rect starting_rect,
int64 target_area,
gfx::Rect bounding_rect,
RectExpansionCache* cache) {
if (starting_rect.IsEmpty())
return starting_rect;
if (cache &&
cache->previous_start == starting_rect &&
cache->previous_bounds == bounding_rect &&
cache->previous_target == target_area)
return cache->previous_result;
if (cache) {
cache->previous_start = starting_rect;
cache->previous_bounds = bounding_rect;
cache->previous_target = target_area;
}
DCHECK(!bounding_rect.IsEmpty());
DCHECK_GT(target_area, 0);
// Expand the starting rect to cover target_area, if it is smaller than it.
int delta = ComputeExpansionDelta(
2, 2, starting_rect.width(), starting_rect.height(), target_area);
gfx::Rect expanded_starting_rect = starting_rect;
if (delta > 0)
expanded_starting_rect.Inset(-delta, -delta);
gfx::Rect rect = IntersectRects(expanded_starting_rect, bounding_rect);
if (rect.IsEmpty()) {
// The starting_rect and bounding_rect are far away.
if (cache)
cache->previous_result = rect;
return rect;
}
if (delta >= 0 && rect == expanded_starting_rect) {
// The starting rect already covers the entire bounding_rect and isn't too
// large for the target_area.
if (cache)
cache->previous_result = rect;
return rect;
}
// Continue to expand/shrink rect to let it cover target_area.
// These values will be updated by the loop and uses as the output.
int origin_x = rect.x();
int origin_y = rect.y();
int width = rect.width();
int height = rect.height();
// In the beginning we will consider 2 edges in each dimension.
int num_y_edges = 2;
int num_x_edges = 2;
// Create an event list.
EdgeEvent events[] = {
{ EdgeEvent::BOTTOM, &num_y_edges, rect.y() - bounding_rect.y() },
{ EdgeEvent::TOP, &num_y_edges, bounding_rect.bottom() - rect.bottom() },
{ EdgeEvent::LEFT, &num_x_edges, rect.x() - bounding_rect.x() },
{ EdgeEvent::RIGHT, &num_x_edges, bounding_rect.right() - rect.right() }
};
// Sort the events by distance (closest first).
if (events[0].distance > events[1].distance) std::swap(events[0], events[1]);
if (events[2].distance > events[3].distance) std::swap(events[2], events[3]);
if (events[0].distance > events[2].distance) std::swap(events[0], events[2]);
if (events[1].distance > events[3].distance) std::swap(events[1], events[3]);
if (events[1].distance > events[2].distance) std::swap(events[1], events[2]);
for (int event_index = 0; event_index < 4; event_index++) {
const EdgeEvent& event = events[event_index];
int delta = ComputeExpansionDelta(
num_x_edges, num_y_edges, width, height, target_area);
// Clamp delta to our event distance.
if (delta > event.distance)
delta = event.distance;
// Adjust the edge count for this kind of edge.
--*event.num_edges;
// Apply the delta to the edges and edge events.
for (int i = event_index; i < 4; i++) {
switch (events[i].edge) {
case EdgeEvent::BOTTOM:
origin_y -= delta;
height += delta;
break;
case EdgeEvent::TOP:
height += delta;
break;
case EdgeEvent::LEFT:
origin_x -= delta;
width += delta;
break;
case EdgeEvent::RIGHT:
width += delta;
break;
}
events[i].distance -= delta;
}
// If our delta is less then our event distance, we're done.
if (delta < event.distance)
break;
}
gfx::Rect result(origin_x, origin_y, width, height);
if (cache)
cache->previous_result = result;
return result;
}
} // namespace cc