blob: 7e1521cbbc52f710a65ab9f332bd3749339e8859 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/browser/autocomplete/shortcuts_provider.h"
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
#include "base/i18n/break_iterator.h"
#include "base/i18n/case_conversion.h"
#include "base/logging.h"
#include "base/metrics/histogram.h"
#include "base/prefs/pref_service.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/time/time.h"
#include "chrome/browser/autocomplete/autocomplete_input.h"
#include "chrome/browser/autocomplete/autocomplete_provider_listener.h"
#include "chrome/browser/autocomplete/autocomplete_result.h"
#include "chrome/browser/autocomplete/url_prefix.h"
#include "chrome/browser/history/history_notifications.h"
#include "chrome/browser/history/history_service.h"
#include "chrome/browser/history/history_service_factory.h"
#include "chrome/browser/history/shortcuts_backend_factory.h"
#include "chrome/browser/omnibox/omnibox_field_trial.h"
#include "chrome/browser/profiles/profile.h"
#include "chrome/common/pref_names.h"
#include "chrome/common/url_constants.h"
#include "url/url_parse.h"
namespace {
class DestinationURLEqualsURL {
public:
explicit DestinationURLEqualsURL(const GURL& url) : url_(url) {}
bool operator()(const AutocompleteMatch& match) const {
return match.destination_url == url_;
}
private:
const GURL url_;
};
} // namespace
ShortcutsProvider::ShortcutsProvider(AutocompleteProviderListener* listener,
Profile* profile)
: AutocompleteProvider(listener, profile,
AutocompleteProvider::TYPE_SHORTCUTS),
languages_(profile_->GetPrefs()->GetString(prefs::kAcceptLanguages)),
initialized_(false) {
scoped_refptr<history::ShortcutsBackend> backend =
ShortcutsBackendFactory::GetForProfile(profile_);
if (backend.get()) {
backend->AddObserver(this);
if (backend->initialized())
initialized_ = true;
}
}
void ShortcutsProvider::Start(const AutocompleteInput& input,
bool minimal_changes) {
matches_.clear();
if ((input.type() == AutocompleteInput::INVALID) ||
(input.type() == AutocompleteInput::FORCED_QUERY))
return;
if (input.text().empty())
return;
if (!initialized_)
return;
base::TimeTicks start_time = base::TimeTicks::Now();
GetMatches(input);
if (input.text().length() < 6) {
base::TimeTicks end_time = base::TimeTicks::Now();
std::string name = "ShortcutsProvider.QueryIndexTime." +
base::IntToString(input.text().size());
base::HistogramBase* counter = base::Histogram::FactoryGet(
name, 1, 1000, 50, base::Histogram::kUmaTargetedHistogramFlag);
counter->Add(static_cast<int>((end_time - start_time).InMilliseconds()));
}
UpdateStarredStateOfMatches();
}
void ShortcutsProvider::DeleteMatch(const AutocompleteMatch& match) {
// Copy the URL since DeleteMatchesWithURLs() will invalidate |match|.
GURL url(match.destination_url);
// When a user deletes a match, he probably means for the URL to disappear out
// of history entirely. So nuke all shortcuts that map to this URL.
scoped_refptr<history::ShortcutsBackend> backend =
ShortcutsBackendFactory::GetForProfileIfExists(profile_);
if (backend) // Can be NULL in Incognito.
backend->DeleteShortcutsWithUrl(url);
matches_.erase(std::remove_if(matches_.begin(), matches_.end(),
DestinationURLEqualsURL(url)),
matches_.end());
// NOTE: |match| is now dead!
listener_->OnProviderUpdate(true);
// Delete the match from the history DB. This will eventually result in a
// second call to DeleteShortcutsWithURLs(), which is harmless.
HistoryService* const history_service =
HistoryServiceFactory::GetForProfile(profile_, Profile::EXPLICIT_ACCESS);
DCHECK(history_service && url.is_valid());
history_service->DeleteURL(url);
}
ShortcutsProvider::~ShortcutsProvider() {
scoped_refptr<history::ShortcutsBackend> backend =
ShortcutsBackendFactory::GetForProfileIfExists(profile_);
if (backend.get())
backend->RemoveObserver(this);
}
void ShortcutsProvider::OnShortcutsLoaded() {
initialized_ = true;
}
void ShortcutsProvider::GetMatches(const AutocompleteInput& input) {
scoped_refptr<history::ShortcutsBackend> backend =
ShortcutsBackendFactory::GetForProfileIfExists(profile_);
if (!backend.get())
return;
// Get the URLs from the shortcuts database with keys that partially or
// completely match the search term.
base::string16 term_string(base::i18n::ToLower(input.text()));
DCHECK(!term_string.empty());
int max_relevance;
if (!OmniboxFieldTrial::ShortcutsScoringMaxRelevance(
input.current_page_classification(), &max_relevance))
max_relevance = AutocompleteResult::kLowestDefaultScore - 1;
for (history::ShortcutsBackend::ShortcutMap::const_iterator it =
FindFirstMatch(term_string, backend.get());
it != backend->shortcuts_map().end() &&
StartsWith(it->first, term_string, true); ++it) {
// Don't return shortcuts with zero relevance.
int relevance = CalculateScore(term_string, it->second, max_relevance);
if (relevance) {
matches_.push_back(ShortcutToACMatch(
it->second, relevance, term_string,
input.prevent_inline_autocomplete()));
}
}
std::partial_sort(matches_.begin(),
matches_.begin() +
std::min(AutocompleteProvider::kMaxMatches, matches_.size()),
matches_.end(), &AutocompleteMatch::MoreRelevant);
if (matches_.size() > AutocompleteProvider::kMaxMatches) {
matches_.erase(matches_.begin() + AutocompleteProvider::kMaxMatches,
matches_.end());
}
// Reset relevance scores to guarantee no match is given a score that may
// allow it to become the highest ranked match (i.e., the default match)
// unless either it is a legal default match (i.e., inlineable) or the
// omnibox will reorder matches as necessary to correct the problem. In
// the process of resetting scores, guarantee that all scores are decreasing
// (but do not assign any scores below 1).
if (!OmniboxFieldTrial::ReorderForLegalDefaultMatch(
input.current_page_classification()) &&
(matches_.empty() || !matches_.front().allowed_to_be_default_match)) {
max_relevance = std::min(max_relevance,
AutocompleteResult::kLowestDefaultScore - 1);
}
for (ACMatches::iterator it = matches_.begin(); it != matches_.end(); ++it) {
max_relevance = std::min(max_relevance, it->relevance);
it->relevance = max_relevance;
if (max_relevance > 1)
--max_relevance;
}
}
AutocompleteMatch ShortcutsProvider::ShortcutToACMatch(
const history::ShortcutsBackend::Shortcut& shortcut,
int relevance,
const base::string16& term_string,
bool prevent_inline_autocomplete) {
DCHECK(!term_string.empty());
AutocompleteMatch match(shortcut.match_core.ToMatch());
match.provider = this;
match.relevance = relevance;
match.deletable = true;
DCHECK(match.destination_url.is_valid());
match.RecordAdditionalInfo("number of hits", shortcut.number_of_hits);
match.RecordAdditionalInfo("last access time", shortcut.last_access_time);
match.RecordAdditionalInfo("original input text", UTF16ToUTF8(shortcut.text));
// Set |inline_autocompletion| and |allowed_to_be_default_match| if possible.
// If the match is a search query this is easy: simply check whether the
// user text is a prefix of the query. If the match is a navigation, we
// assume the fill_into_edit looks something like a URL, so we use
// BestURLPrefix() to try and strip off any prefixes that the user might
// not think would change the meaning, but would otherwise prevent inline
// autocompletion. This allows, for example, the input of "foo.c" to
// autocomplete to "foo.com" for a fill_into_edit of "http://foo.com".
if (AutocompleteMatch::IsSearchType(match.type)) {
if (StartsWith(match.fill_into_edit, term_string, false)) {
match.inline_autocompletion =
match.fill_into_edit.substr(term_string.length());
match.allowed_to_be_default_match =
!prevent_inline_autocomplete || match.inline_autocompletion.empty();
}
} else {
const URLPrefix* best_prefix =
URLPrefix::BestURLPrefix(match.fill_into_edit, term_string);
URLPrefix www_prefix(ASCIIToUTF16("www."), 1);
if ((best_prefix == NULL) ||
(best_prefix->num_components < www_prefix.num_components)) {
// Sometimes |fill_into_edit| can start with "www." without having a
// protocol at the beginning. Because "www." is not on the default
// prefix list, we test for it explicitly here and use that match if
// the default list didn't have a match or the default list's match
// was shorter than it could've been.
if (URLPrefix::PrefixMatch(www_prefix, match.fill_into_edit, term_string))
best_prefix = &www_prefix;
}
if (best_prefix != NULL) {
match.inline_autocompletion = match.fill_into_edit.substr(
best_prefix->prefix.length() + term_string.length());
match.allowed_to_be_default_match =
!prevent_inline_autocomplete || match.inline_autocompletion.empty();
}
}
// Try to mark pieces of the contents and description as matches if they
// appear in |term_string|.
WordMap terms_map(CreateWordMapForString(term_string));
if (!terms_map.empty()) {
match.contents_class = ClassifyAllMatchesInString(term_string, terms_map,
match.contents, match.contents_class);
match.description_class = ClassifyAllMatchesInString(term_string, terms_map,
match.description, match.description_class);
}
return match;
}
// static
ShortcutsProvider::WordMap ShortcutsProvider::CreateWordMapForString(
const base::string16& text) {
// First, convert |text| to a vector of the unique words in it.
WordMap word_map;
base::i18n::BreakIterator word_iter(text,
base::i18n::BreakIterator::BREAK_WORD);
if (!word_iter.Init())
return word_map;
std::vector<string16> words;
while (word_iter.Advance()) {
if (word_iter.IsWord())
words.push_back(word_iter.GetString());
}
if (words.empty())
return word_map;
std::sort(words.begin(), words.end());
words.erase(std::unique(words.begin(), words.end()), words.end());
// Now create a map from (first character) to (words beginning with that
// character). We insert in reverse lexicographical order and rely on the
// multimap preserving insertion order for values with the same key. (This
// is mandated in C++11, and part of that decision was based on a survey of
// existing implementations that found that it was already true everywhere.)
std::reverse(words.begin(), words.end());
for (std::vector<string16>::const_iterator i(words.begin()); i != words.end();
++i)
word_map.insert(std::make_pair((*i)[0], *i));
return word_map;
}
// static
ACMatchClassifications ShortcutsProvider::ClassifyAllMatchesInString(
const base::string16& find_text,
const WordMap& find_words,
const base::string16& text,
const ACMatchClassifications& original_class) {
DCHECK(!find_text.empty());
DCHECK(!find_words.empty());
// The code below assumes |text| is nonempty and therefore the resulting
// classification vector should always be nonempty as well. Returning early
// if |text| is empty assures we'll return the (correct) empty vector rather
// than a vector with a single (0, NONE) match.
if (text.empty())
return original_class;
// First check whether |text| begins with |find_text| and mark that whole
// section as a match if so.
base::string16 text_lowercase(base::i18n::ToLower(text));
ACMatchClassifications match_class;
size_t last_position = 0;
if (StartsWith(text_lowercase, find_text, true)) {
match_class.push_back(
ACMatchClassification(0, ACMatchClassification::MATCH));
last_position = find_text.length();
// If |text_lowercase| is actually equal to |find_text|, we don't need to
// (and in fact shouldn't) put a trailing NONE classification after the end
// of the string.
if (last_position < text_lowercase.length()) {
match_class.push_back(
ACMatchClassification(last_position, ACMatchClassification::NONE));
}
} else {
// |match_class| should start at position 0. If the first matching word is
// found at position 0, this will be popped from the vector further down.
match_class.push_back(
ACMatchClassification(0, ACMatchClassification::NONE));
}
// Now, starting with |last_position|, check each character in
// |text_lowercase| to see if we have words starting with that character in
// |find_words|. If so, check each of them to see if they match the portion
// of |text_lowercase| beginning with |last_position|. Accept the first
// matching word found (which should be the longest possible match at this
// location, given the construction of |find_words|) and add a MATCH region to
// |match_class|, moving |last_position| to be after the matching word. If we
// found no matching words, move to the next character and repeat.
while (last_position < text_lowercase.length()) {
std::pair<WordMap::const_iterator, WordMap::const_iterator> range(
find_words.equal_range(text_lowercase[last_position]));
size_t next_character = last_position + 1;
for (WordMap::const_iterator i(range.first); i != range.second; ++i) {
const base::string16& word = i->second;
size_t word_end = last_position + word.length();
if ((word_end <= text_lowercase.length()) &&
!text_lowercase.compare(last_position, word.length(), word)) {
// Collapse adjacent ranges into one.
if (match_class.back().offset == last_position)
match_class.pop_back();
AutocompleteMatch::AddLastClassificationIfNecessary(&match_class,
last_position, ACMatchClassification::MATCH);
if (word_end < text_lowercase.length()) {
match_class.push_back(
ACMatchClassification(word_end, ACMatchClassification::NONE));
}
last_position = word_end;
break;
}
}
last_position = std::max(last_position, next_character);
}
return AutocompleteMatch::MergeClassifications(original_class, match_class);
}
history::ShortcutsBackend::ShortcutMap::const_iterator
ShortcutsProvider::FindFirstMatch(const base::string16& keyword,
history::ShortcutsBackend* backend) {
DCHECK(backend);
history::ShortcutsBackend::ShortcutMap::const_iterator it =
backend->shortcuts_map().lower_bound(keyword);
// Lower bound not necessarily matches the keyword, check for item pointed by
// the lower bound iterator to at least start with keyword.
return ((it == backend->shortcuts_map().end()) ||
StartsWith(it->first, keyword, true)) ? it :
backend->shortcuts_map().end();
}
int ShortcutsProvider::CalculateScore(
const base::string16& terms,
const history::ShortcutsBackend::Shortcut& shortcut,
int max_relevance) {
DCHECK(!terms.empty());
DCHECK_LE(terms.length(), shortcut.text.length());
// The initial score is based on how much of the shortcut the user has typed.
// Using the square root of the typed fraction boosts the base score rapidly
// as characters are typed, compared with simply using the typed fraction
// directly. This makes sense since the first characters typed are much more
// important for determining how likely it is a user wants a particular
// shortcut than are the remaining continued characters.
double base_score = max_relevance *
sqrt(static_cast<double>(terms.length()) / shortcut.text.length());
// Then we decay this by half each week.
const double kLn2 = 0.6931471805599453;
base::TimeDelta time_passed = base::Time::Now() - shortcut.last_access_time;
// Clamp to 0 in case time jumps backwards (e.g. due to DST).
double decay_exponent = std::max(0.0, kLn2 * static_cast<double>(
time_passed.InMicroseconds()) / base::Time::kMicrosecondsPerWeek);
// We modulate the decay factor based on how many times the shortcut has been
// used. Newly created shortcuts decay at full speed; otherwise, decaying by
// half takes |n| times as much time, where n increases by
// (1.0 / each 5 additional hits), up to a maximum of 5x as long.
const double kMaxDecaySpeedDivisor = 5.0;
const double kNumUsesPerDecaySpeedDivisorIncrement = 5.0;
double decay_divisor = std::min(kMaxDecaySpeedDivisor,
(shortcut.number_of_hits + kNumUsesPerDecaySpeedDivisorIncrement - 1) /
kNumUsesPerDecaySpeedDivisorIncrement);
return static_cast<int>((base_score / exp(decay_exponent / decay_divisor)) +
0.5);
}