blob: 9d6476b07d562e5bff097c01ca16594da1fbbd67 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/base/simd/convert_yuv_to_rgb.h"
#include "media/base/simd/yuv_to_rgb_table.h"
namespace media {
#define packuswb(x) ((x) < 0 ? 0 : ((x) > 255 ? 255 : (x)))
#define paddsw(x, y) (((x) + (y)) < -32768 ? -32768 : \
(((x) + (y)) > 32767 ? 32767 : ((x) + (y))))
// On Android, pixel layout is RGBA (see skia/include/core/SkColorPriv.h);
// however, other Chrome platforms use BGRA (see skia/config/SkUserConfig.h).
// Ideally, android should not use the functions here due to performance issue
// (http://crbug.com/249980).
#if defined(OS_ANDROID)
#define SK_R32_SHIFT 0
#define SK_G32_SHIFT 8
#define SK_B32_SHIFT 16
#define SK_A32_SHIFT 24
#define R_INDEX 0
#define G_INDEX 1
#define B_INDEX 2
#define A_INDEX 3
#else
#define SK_B32_SHIFT 0
#define SK_G32_SHIFT 8
#define SK_R32_SHIFT 16
#define SK_A32_SHIFT 24
#define B_INDEX 0
#define G_INDEX 1
#define R_INDEX 2
#define A_INDEX 3
#endif
static inline void ConvertYUVToRGB32_C(uint8 y,
uint8 u,
uint8 v,
uint8* rgb_buf,
const int16 convert_table[1024][4]) {
int b = convert_table[256+u][B_INDEX];
int g = convert_table[256+u][G_INDEX];
int r = convert_table[256+u][R_INDEX];
int a = convert_table[256+u][A_INDEX];
b = paddsw(b, convert_table[512+v][B_INDEX]);
g = paddsw(g, convert_table[512+v][G_INDEX]);
r = paddsw(r, convert_table[512+v][R_INDEX]);
a = paddsw(a, convert_table[512+v][A_INDEX]);
b = paddsw(b, convert_table[y][B_INDEX]);
g = paddsw(g, convert_table[y][G_INDEX]);
r = paddsw(r, convert_table[y][R_INDEX]);
a = paddsw(a, convert_table[y][A_INDEX]);
b >>= 6;
g >>= 6;
r >>= 6;
a >>= 6;
*reinterpret_cast<uint32*>(rgb_buf) = (packuswb(b) << SK_B32_SHIFT) |
(packuswb(g) << SK_G32_SHIFT) |
(packuswb(r) << SK_R32_SHIFT) |
(packuswb(a) << SK_A32_SHIFT);
}
static inline void ConvertYUVAToARGB_C(uint8 y,
uint8 u,
uint8 v,
uint8 a,
uint8* rgb_buf,
const int16 convert_table[1024][4]) {
int b = convert_table[256+u][0];
int g = convert_table[256+u][1];
int r = convert_table[256+u][2];
b = paddsw(b, convert_table[512+v][0]);
g = paddsw(g, convert_table[512+v][1]);
r = paddsw(r, convert_table[512+v][2]);
b = paddsw(b, convert_table[y][0]);
g = paddsw(g, convert_table[y][1]);
r = paddsw(r, convert_table[y][2]);
b >>= 6;
g >>= 6;
r >>= 6;
b = packuswb(b) * a >> 8;
g = packuswb(g) * a >> 8;
r = packuswb(r) * a >> 8;
*reinterpret_cast<uint32*>(rgb_buf) = (b << SK_B32_SHIFT) |
(g << SK_G32_SHIFT) |
(r << SK_R32_SHIFT) |
(a << SK_A32_SHIFT);
}
void ConvertYUVToRGB32Row_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
ptrdiff_t width,
const int16 convert_table[1024][4]) {
for (int x = 0; x < width; x += 2) {
uint8 u = u_buf[x >> 1];
uint8 v = v_buf[x >> 1];
uint8 y0 = y_buf[x];
ConvertYUVToRGB32_C(y0, u, v, rgb_buf, convert_table);
if ((x + 1) < width) {
uint8 y1 = y_buf[x + 1];
ConvertYUVToRGB32_C(y1, u, v, rgb_buf + 4, convert_table);
}
rgb_buf += 8; // Advance 2 pixels.
}
}
void ConvertYUVAToARGBRow_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
const uint8* a_buf,
uint8* rgba_buf,
ptrdiff_t width,
const int16 convert_table[1024][4]) {
for (int x = 0; x < width; x += 2) {
uint8 u = u_buf[x >> 1];
uint8 v = v_buf[x >> 1];
uint8 y0 = y_buf[x];
uint8 a0 = a_buf[x];
ConvertYUVAToARGB_C(y0, u, v, a0, rgba_buf, convert_table);
if ((x + 1) < width) {
uint8 y1 = y_buf[x + 1];
uint8 a1 = a_buf[x + 1];
ConvertYUVAToARGB_C(y1, u, v, a1, rgba_buf + 4, convert_table);
}
rgba_buf += 8; // Advance 2 pixels.
}
}
// 16.16 fixed point is used. A shift by 16 isolates the integer.
// A shift by 17 is used to further subsample the chrominence channels.
// & 0xffff isolates the fixed point fraction. >> 2 to get the upper 2 bits,
// for 1/65536 pixel accurate interpolation.
void ScaleYUVToRGB32Row_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
ptrdiff_t width,
ptrdiff_t source_dx,
const int16 convert_table[1024][4]) {
int x = 0;
for (int i = 0; i < width; i += 2) {
int y = y_buf[x >> 16];
int u = u_buf[(x >> 17)];
int v = v_buf[(x >> 17)];
ConvertYUVToRGB32_C(y, u, v, rgb_buf, convert_table);
x += source_dx;
if ((i + 1) < width) {
y = y_buf[x >> 16];
ConvertYUVToRGB32_C(y, u, v, rgb_buf+4, convert_table);
x += source_dx;
}
rgb_buf += 8;
}
}
void LinearScaleYUVToRGB32Row_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
ptrdiff_t width,
ptrdiff_t source_dx,
const int16 convert_table[1024][4]) {
// Avoid point-sampling for down-scaling by > 2:1.
int source_x = 0;
if (source_dx >= 0x20000)
source_x += 0x8000;
LinearScaleYUVToRGB32RowWithRange_C(y_buf, u_buf, v_buf, rgb_buf, width,
source_x, source_dx, convert_table);
}
void LinearScaleYUVToRGB32RowWithRange_C(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int dest_width,
int x,
int source_dx,
const int16 convert_table[1024][4]) {
for (int i = 0; i < dest_width; i += 2) {
int y0 = y_buf[x >> 16];
int y1 = y_buf[(x >> 16) + 1];
int u0 = u_buf[(x >> 17)];
int u1 = u_buf[(x >> 17) + 1];
int v0 = v_buf[(x >> 17)];
int v1 = v_buf[(x >> 17) + 1];
int y_frac = (x & 65535);
int uv_frac = ((x >> 1) & 65535);
int y = (y_frac * y1 + (y_frac ^ 65535) * y0) >> 16;
int u = (uv_frac * u1 + (uv_frac ^ 65535) * u0) >> 16;
int v = (uv_frac * v1 + (uv_frac ^ 65535) * v0) >> 16;
ConvertYUVToRGB32_C(y, u, v, rgb_buf, convert_table);
x += source_dx;
if ((i + 1) < dest_width) {
y0 = y_buf[x >> 16];
y1 = y_buf[(x >> 16) + 1];
y_frac = (x & 65535);
y = (y_frac * y1 + (y_frac ^ 65535) * y0) >> 16;
ConvertYUVToRGB32_C(y, u, v, rgb_buf+4, convert_table);
x += source_dx;
}
rgb_buf += 8;
}
}
void ConvertYUVToRGB32_C(const uint8* yplane,
const uint8* uplane,
const uint8* vplane,
uint8* rgbframe,
int width,
int height,
int ystride,
int uvstride,
int rgbstride,
YUVType yuv_type) {
unsigned int y_shift = GetVerticalShift(yuv_type);
for (int y = 0; y < height; ++y) {
uint8* rgb_row = rgbframe + y * rgbstride;
const uint8* y_ptr = yplane + y * ystride;
const uint8* u_ptr = uplane + (y >> y_shift) * uvstride;
const uint8* v_ptr = vplane + (y >> y_shift) * uvstride;
ConvertYUVToRGB32Row_C(y_ptr,
u_ptr,
v_ptr,
rgb_row,
width,
GetLookupTable(yuv_type));
}
}
void ConvertYUVAToARGB_C(const uint8* yplane,
const uint8* uplane,
const uint8* vplane,
const uint8* aplane,
uint8* rgbaframe,
int width,
int height,
int ystride,
int uvstride,
int astride,
int rgbastride,
YUVType yuv_type) {
unsigned int y_shift = yuv_type;
for (int y = 0; y < height; y++) {
uint8* rgba_row = rgbaframe + y * rgbastride;
const uint8* y_ptr = yplane + y * ystride;
const uint8* u_ptr = uplane + (y >> y_shift) * uvstride;
const uint8* v_ptr = vplane + (y >> y_shift) * uvstride;
const uint8* a_ptr = aplane + y * astride;
ConvertYUVAToARGBRow_C(y_ptr,
u_ptr,
v_ptr,
a_ptr,
rgba_row,
width,
GetLookupTable(yuv_type));
}
}
} // namespace media