blob: 0c9928bc570fdf2bfe97f2d875e8533efc6151c5 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/crypto/aes_128_gcm_12_encrypter.h"
#include "net/quic/test_tools/quic_test_utils.h"
using base::StringPiece;
namespace {
// The AES GCM test vectors come from the file gcmEncryptExtIV128.rsp
// downloaded from http://csrc.nist.gov/groups/STM/cavp/index.html on
// 2013-02-01. The test vectors in that file look like this:
//
// [Keylen = 128]
// [IVlen = 96]
// [PTlen = 0]
// [AADlen = 0]
// [Taglen = 128]
//
// Count = 0
// Key = 11754cd72aec309bf52f7687212e8957
// IV = 3c819d9a9bed087615030b65
// PT =
// AAD =
// CT =
// Tag = 250327c674aaf477aef2675748cf6971
//
// Count = 1
// Key = ca47248ac0b6f8372a97ac43508308ed
// IV = ffd2b598feabc9019262d2be
// PT =
// AAD =
// CT =
// Tag = 60d20404af527d248d893ae495707d1a
//
// ...
//
// The gcmEncryptExtIV128.rsp file is huge (2.8 MB), so I selected just a
// few test vectors for this unit test.
// Describes a group of test vectors that all have a given key length, IV
// length, plaintext length, AAD length, and tag length.
struct TestGroupInfo {
size_t key_len;
size_t iv_len;
size_t pt_len;
size_t aad_len;
size_t tag_len;
};
// Each test vector consists of six strings of lowercase hexadecimal digits.
// The strings may be empty (zero length). A test vector with a NULL |key|
// marks the end of an array of test vectors.
struct TestVector {
const char* key;
const char* iv;
const char* pt;
const char* aad;
const char* ct;
const char* tag;
};
const TestGroupInfo test_group_info[] = {
{ 128, 96, 0, 0, 128 },
{ 128, 96, 0, 128, 128 },
{ 128, 96, 128, 0, 128 },
{ 128, 96, 408, 160, 128 },
{ 128, 96, 408, 720, 128 },
{ 128, 96, 104, 0, 128 },
};
const TestVector test_group_0[] = {
{ "11754cd72aec309bf52f7687212e8957",
"3c819d9a9bed087615030b65",
"",
"",
"",
"250327c674aaf477aef2675748cf6971"
},
{ "ca47248ac0b6f8372a97ac43508308ed",
"ffd2b598feabc9019262d2be",
"",
"",
"",
"60d20404af527d248d893ae495707d1a"
},
{ NULL }
};
const TestVector test_group_1[] = {
{ "77be63708971c4e240d1cb79e8d77feb",
"e0e00f19fed7ba0136a797f3",
"",
"7a43ec1d9c0a5a78a0b16533a6213cab",
"",
"209fcc8d3675ed938e9c7166709dd946"
},
{ "7680c5d3ca6154758e510f4d25b98820",
"f8f105f9c3df4965780321f8",
"",
"c94c410194c765e3dcc7964379758ed3",
"",
"94dca8edfcf90bb74b153c8d48a17930"
},
{ NULL }
};
const TestVector test_group_2[] = {
{ "7fddb57453c241d03efbed3ac44e371c",
"ee283a3fc75575e33efd4887",
"d5de42b461646c255c87bd2962d3b9a2",
"",
"2ccda4a5415cb91e135c2a0f78c9b2fd",
"b36d1df9b9d5e596f83e8b7f52971cb3"
},
{ "ab72c77b97cb5fe9a382d9fe81ffdbed",
"54cc7dc2c37ec006bcc6d1da",
"007c5e5b3e59df24a7c355584fc1518d",
"",
"0e1bde206a07a9c2c1b65300f8c64997",
"2b4401346697138c7a4891ee59867d0c"
},
{ NULL }
};
const TestVector test_group_3[] = {
{ "fe47fcce5fc32665d2ae399e4eec72ba",
"5adb9609dbaeb58cbd6e7275",
"7c0e88c88899a779228465074797cd4c2e1498d259b54390b85e3eef1c02df60e743f1"
"b840382c4bccaf3bafb4ca8429bea063",
"88319d6e1d3ffa5f987199166c8a9b56c2aeba5a",
"98f4826f05a265e6dd2be82db241c0fbbbf9ffb1c173aa83964b7cf539304373636525"
"3ddbc5db8778371495da76d269e5db3e",
"291ef1982e4defedaa2249f898556b47"
},
{ "ec0c2ba17aa95cd6afffe949da9cc3a8",
"296bce5b50b7d66096d627ef",
"b85b3753535b825cbe5f632c0b843c741351f18aa484281aebec2f45bb9eea2d79d987"
"b764b9611f6c0f8641843d5d58f3a242",
"f8d00f05d22bf68599bcdeb131292ad6e2df5d14",
"a7443d31c26bdf2a1c945e29ee4bd344a99cfaf3aa71f8b3f191f83c2adfc7a0716299"
"5506fde6309ffc19e716eddf1a828c5a",
"890147971946b627c40016da1ecf3e77"
},
{ NULL }
};
const TestVector test_group_4[] = {
{ "2c1f21cf0f6fb3661943155c3e3d8492",
"23cb5ff362e22426984d1907",
"42f758836986954db44bf37c6ef5e4ac0adaf38f27252a1b82d02ea949c8a1a2dbc0d6"
"8b5615ba7c1220ff6510e259f06655d8",
"5d3624879d35e46849953e45a32a624d6a6c536ed9857c613b572b0333e701557a713e"
"3f010ecdf9a6bd6c9e3e44b065208645aff4aabee611b391528514170084ccf587177f"
"4488f33cfb5e979e42b6e1cfc0a60238982a7aec",
"81824f0e0d523db30d3da369fdc0d60894c7a0a20646dd015073ad2732bd989b14a222"
"b6ad57af43e1895df9dca2a5344a62cc",
"57a3ee28136e94c74838997ae9823f3a"
},
{ "d9f7d2411091f947b4d6f1e2d1f0fb2e",
"e1934f5db57cc983e6b180e7",
"73ed042327f70fe9c572a61545eda8b2a0c6e1d6c291ef19248e973aee6c312012f490"
"c2c6f6166f4a59431e182663fcaea05a",
"0a8a18a7150e940c3d87b38e73baee9a5c049ee21795663e264b694a949822b639092d"
"0e67015e86363583fcf0ca645af9f43375f05fdb4ce84f411dcbca73c2220dea03a201"
"15d2e51398344b16bee1ed7c499b353d6c597af8",
"aaadbd5c92e9151ce3db7210b8714126b73e43436d242677afa50384f2149b831f1d57"
"3c7891c2a91fbc48db29967ec9542b23",
"21b51ca862cb637cdd03b99a0f93b134"
},
{ NULL }
};
const TestVector test_group_5[] = {
{ "fe9bb47deb3a61e423c2231841cfd1fb",
"4d328eb776f500a2f7fb47aa",
"f1cc3818e421876bb6b8bbd6c9",
"",
"b88c5c1977b35b517b0aeae967",
"43fd4727fe5cdb4b5b42818dea7ef8c9"
},
{ "6703df3701a7f54911ca72e24dca046a",
"12823ab601c350ea4bc2488c",
"793cd125b0b84a043e3ac67717",
"",
"b2051c80014f42f08735a7b0cd",
"38e6bcd29962e5f2c13626b85a877101"
},
{ NULL }
};
const TestVector* const test_group_array[] = {
test_group_0,
test_group_1,
test_group_2,
test_group_3,
test_group_4,
test_group_5,
};
// Returns true if |ch| is a lowercase hexadecimal digit.
bool IsHexDigit(char ch) {
return ('0' <= ch && ch <= '9') || ('a' <= ch && ch <= 'f');
}
// Converts a lowercase hexadecimal digit to its integer value.
int HexDigitToInt(char ch) {
if ('0' <= ch && ch <= '9') {
return ch - '0';
}
return ch - 'a' + 10;
}
// |in| is a string consisting of lowercase hexadecimal digits, where
// every two digits represent one byte. |out| is a buffer of size |max_len|.
// Converts |in| to bytes and stores the bytes in the |out| buffer. The
// number of bytes converted is returned in |*out_len|. Returns true on
// success, false on failure.
bool DecodeHexString(const char* in,
char* out,
size_t* out_len,
size_t max_len) {
*out_len = 0;
while (*in != '\0') {
if (!IsHexDigit(*in) || !IsHexDigit(*(in + 1))) {
return false;
}
if (*out_len >= max_len) {
return false;
}
out[*out_len] = HexDigitToInt(*in) * 16 + HexDigitToInt(*(in + 1));
(*out_len)++;
in += 2;
}
return true;
}
} // namespace
namespace net {
namespace test {
// EncryptWithNonce wraps the |Encrypt| method of |encrypter| to allow passing
// in an nonce and also to allocate the buffer needed for the ciphertext.
QuicData* EncryptWithNonce(Aes128Gcm12Encrypter* encrypter,
StringPiece nonce,
StringPiece associated_data,
StringPiece plaintext) {
size_t ciphertext_size = encrypter->GetCiphertextSize(plaintext.length());
scoped_ptr<char[]> ciphertext(new char[ciphertext_size]);
if (!encrypter->Encrypt(nonce, associated_data, plaintext,
reinterpret_cast<unsigned char*>(ciphertext.get()))) {
return NULL;
}
return new QuicData(ciphertext.release(), ciphertext_size, true);
}
TEST(Aes128Gcm12EncrypterTest, Encrypt) {
if (!Aes128Gcm12Encrypter::IsSupported()) {
LOG(INFO) << "AES GCM not supported. Test skipped.";
return;
}
char key[1024];
size_t key_len;
char iv[1024];
size_t iv_len;
char pt[1024];
size_t pt_len;
char aad[1024];
size_t aad_len;
char ct[1024];
size_t ct_len;
char tag[1024];
size_t tag_len;
for (size_t i = 0; i < arraysize(test_group_array); i++) {
SCOPED_TRACE(i);
const TestVector* test_vector = test_group_array[i];
const TestGroupInfo& test_info = test_group_info[i];
for (size_t j = 0; test_vector[j].key != NULL; j++) {
// Decode the test vector.
ASSERT_TRUE(
DecodeHexString(test_vector[j].key, key, &key_len, sizeof(key)));
ASSERT_TRUE(DecodeHexString(test_vector[j].iv, iv, &iv_len, sizeof(iv)));
ASSERT_TRUE(DecodeHexString(test_vector[j].pt, pt, &pt_len, sizeof(pt)));
ASSERT_TRUE(
DecodeHexString(test_vector[j].aad, aad, &aad_len, sizeof(aad)));
ASSERT_TRUE(DecodeHexString(test_vector[j].ct, ct, &ct_len, sizeof(ct)));
ASSERT_TRUE(
DecodeHexString(test_vector[j].tag, tag, &tag_len, sizeof(tag)));
// The test vector's lengths should look sane. Note that the lengths
// in |test_info| are in bits.
EXPECT_EQ(test_info.key_len, key_len * 8);
EXPECT_EQ(test_info.iv_len, iv_len * 8);
EXPECT_EQ(test_info.pt_len, pt_len * 8);
EXPECT_EQ(test_info.aad_len, aad_len * 8);
EXPECT_EQ(test_info.pt_len, ct_len * 8);
EXPECT_EQ(test_info.tag_len, tag_len * 8);
Aes128Gcm12Encrypter encrypter;
ASSERT_TRUE(encrypter.SetKey(StringPiece(key, key_len)));
scoped_ptr<QuicData> encrypted(EncryptWithNonce(
&encrypter, StringPiece(iv, iv_len),
// OpenSSL fails if NULL is set as the AAD, as opposed to a
// zero-length, non-NULL pointer. This deliberately tests that we
// handle this case.
StringPiece(aad_len ? aad : NULL, aad_len), StringPiece(pt, pt_len)));
ASSERT_TRUE(encrypted.get());
// The test vectors have 16 byte authenticators but this code only uses
// the first 12.
ASSERT_LE(static_cast<size_t>(Aes128Gcm12Encrypter::kAuthTagSize),
tag_len);
tag_len = Aes128Gcm12Encrypter::kAuthTagSize;
ASSERT_EQ(ct_len + tag_len, encrypted->length());
test::CompareCharArraysWithHexError("ciphertext", encrypted->data(),
ct_len, ct, ct_len);
test::CompareCharArraysWithHexError(
"authentication tag", encrypted->data() + ct_len, tag_len, tag,
tag_len);
}
}
}
TEST(Aes128Gcm12EncrypterTest, GetMaxPlaintextSize) {
Aes128Gcm12Encrypter encrypter;
EXPECT_EQ(1000u, encrypter.GetMaxPlaintextSize(1012));
EXPECT_EQ(100u, encrypter.GetMaxPlaintextSize(112));
EXPECT_EQ(10u, encrypter.GetMaxPlaintextSize(22));
}
TEST(Aes128Gcm12EncrypterTest, GetCiphertextSize) {
Aes128Gcm12Encrypter encrypter;
EXPECT_EQ(1012u, encrypter.GetCiphertextSize(1000));
EXPECT_EQ(112u, encrypter.GetCiphertextSize(100));
EXPECT_EQ(22u, encrypter.GetCiphertextSize(10));
}
} // namespace test
} // namespace net