blob: 3adc8619e34afefdca49c7987340807b4e30b195 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/bind.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "media/base/mock_filters.h"
#include "media/cdm/aes_decryptor.h"
#include "media/webm/webm_constants.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::Gt;
using ::testing::IsNull;
using ::testing::NotNull;
using ::testing::SaveArg;
using ::testing::StrNe;
MATCHER(IsEmpty, "") { return arg.empty(); }
namespace media {
const uint8 kOriginalData[] = "Original subsample data.";
const int kOriginalDataSize = 24;
// In the examples below, 'k'(key) has to be 16 bytes, and will always require
// 2 bytes of padding. 'kid'(keyid) is variable length, and may require 0, 1,
// or 2 bytes of padding.
const uint8 kKeyId[] = {
// base64 equivalent is AAECAw
0x00, 0x01, 0x02, 0x03
};
const uint8 kKey[] = {
// base64 equivalent is BAUGBwgJCgsMDQ4PEBESEw
0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13
};
const char kKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
const char kWrongKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"7u7u7u7u7u7u7u7u7u7u7g\""
" }"
" ]"
"}";
const char kWrongSizedKeyAsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"AAECAw\""
" }"
" ]"
"}";
const uint8 kIv[] = {
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
// kOriginalData encrypted with kKey and kIv but without any subsamples (or
// equivalently using kSubsampleEntriesCypherOnly).
const uint8 kEncryptedData[] = {
0x2f, 0x03, 0x09, 0xef, 0x71, 0xaf, 0x31, 0x16,
0xfa, 0x9d, 0x18, 0x43, 0x1e, 0x96, 0x71, 0xb5,
0xbf, 0xf5, 0x30, 0x53, 0x9a, 0x20, 0xdf, 0x95
};
// kOriginalData encrypted with kSubsampleKey and kSubsampleIv using
// kSubsampleEntriesNormal.
const uint8 kSubsampleEncryptedData[] = {
0x4f, 0x72, 0x09, 0x16, 0x09, 0xe6, 0x79, 0xad,
0x70, 0x73, 0x75, 0x62, 0x09, 0xbb, 0x83, 0x1d,
0x4d, 0x08, 0xd7, 0x78, 0xa4, 0xa7, 0xf1, 0x2e
};
const uint8 kOriginalData2[] = "Changed Original data.";
const uint8 kIv2[] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const uint8 kKeyId2[] = {
// base64 equivalent is AAECAwQFBgcICQoLDA0ODxAREhM=
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
0x10, 0x11, 0x12, 0x13
};
const char kKey2AsJWK[] =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
" }"
" ]"
"}";
// 'k' in bytes is x14x15x16x17x18x19x1ax1bx1cx1dx1ex1fx20x21x22x23
const uint8 kEncryptedData2[] = {
0x57, 0x66, 0xf4, 0x12, 0x1a, 0xed, 0xb5, 0x79,
0x1c, 0x8e, 0x25, 0xd7, 0x17, 0xe7, 0x5e, 0x16,
0xe3, 0x40, 0x08, 0x27, 0x11, 0xe9
};
// Subsample entries for testing. The sum of |cypher_bytes| and |clear_bytes| of
// all entries must be equal to kOriginalDataSize to make the subsample entries
// valid.
const SubsampleEntry kSubsampleEntriesNormal[] = {
{ 2, 7 },
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesWrongSize[] = {
{ 3, 6 }, // This entry doesn't match the correct entry.
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesInvalidTotalSize[] = {
{ 1, 1000 }, // This entry is too large.
{ 3, 11 },
{ 1, 0 }
};
const SubsampleEntry kSubsampleEntriesClearOnly[] = {
{ 7, 0 },
{ 8, 0 },
{ 9, 0 }
};
const SubsampleEntry kSubsampleEntriesCypherOnly[] = {
{ 0, 6 },
{ 0, 8 },
{ 0, 10 }
};
static scoped_refptr<DecoderBuffer> CreateEncryptedBuffer(
const std::vector<uint8>& data,
const std::vector<uint8>& key_id,
const std::vector<uint8>& iv,
int offset,
const std::vector<SubsampleEntry>& subsample_entries) {
DCHECK(!data.empty());
int padded_size = offset + data.size();
scoped_refptr<DecoderBuffer> encrypted_buffer(new DecoderBuffer(padded_size));
memcpy(encrypted_buffer->writable_data() + offset, &data[0], data.size());
CHECK(encrypted_buffer.get());
std::string key_id_string(
reinterpret_cast<const char*>(key_id.empty() ? NULL : &key_id[0]),
key_id.size());
std::string iv_string(
reinterpret_cast<const char*>(iv.empty() ? NULL : &iv[0]), iv.size());
encrypted_buffer->set_decrypt_config(scoped_ptr<DecryptConfig>(
new DecryptConfig(key_id_string, iv_string, offset, subsample_entries)));
return encrypted_buffer;
}
class AesDecryptorTest : public testing::Test {
public:
AesDecryptorTest()
: decryptor_(
base::Bind(&AesDecryptorTest::KeyAdded, base::Unretained(this)),
base::Bind(&AesDecryptorTest::KeyError, base::Unretained(this)),
base::Bind(&AesDecryptorTest::KeyMessage, base::Unretained(this))),
decrypt_cb_(base::Bind(&AesDecryptorTest::BufferDecrypted,
base::Unretained(this))),
original_data_(kOriginalData, kOriginalData + kOriginalDataSize),
encrypted_data_(kEncryptedData,
kEncryptedData + arraysize(kEncryptedData)),
subsample_encrypted_data_(
kSubsampleEncryptedData,
kSubsampleEncryptedData + arraysize(kSubsampleEncryptedData)),
key_id_(kKeyId, kKeyId + arraysize(kKeyId)),
iv_(kIv, kIv + arraysize(kIv)),
normal_subsample_entries_(
kSubsampleEntriesNormal,
kSubsampleEntriesNormal + arraysize(kSubsampleEntriesNormal)) {
}
protected:
void GenerateKeyRequest(const std::vector<uint8>& key_id) {
DCHECK(!key_id.empty());
EXPECT_CALL(*this, KeyMessage(StrNe(std::string()), key_id, ""))
.WillOnce(SaveArg<0>(&session_id_string_));
EXPECT_TRUE(decryptor_.GenerateKeyRequest(
std::string(), &key_id[0], key_id.size()));
}
enum AddKeyExpectation {
KEY_ADDED,
KEY_ERROR
};
void AddRawKeyAndExpect(const std::vector<uint8>& key_id,
const std::vector<uint8>& key,
AddKeyExpectation result) {
// TODO(jrummell): Remove once raw keys no longer supported.
DCHECK(!key_id.empty());
DCHECK(!key.empty());
if (result == KEY_ADDED) {
EXPECT_CALL(*this, KeyAdded(session_id_string_));
} else if (result == KEY_ERROR) {
EXPECT_CALL(*this, KeyError(session_id_string_,
MediaKeys::kUnknownError, 0));
} else {
NOTREACHED();
}
decryptor_.AddKey(&key[0], key.size(), &key_id[0], key_id.size(),
session_id_string_);
}
void AddKeyAndExpect(const std::string& key, AddKeyExpectation result) {
DCHECK(!key.empty());
if (result == KEY_ADDED) {
EXPECT_CALL(*this, KeyAdded(session_id_string_));
} else if (result == KEY_ERROR) {
EXPECT_CALL(*this,
KeyError(session_id_string_, MediaKeys::kUnknownError, 0));
} else {
NOTREACHED();
}
decryptor_.AddKey(reinterpret_cast<const uint8*>(key.c_str()), key.length(),
NULL, 0,
session_id_string_);
}
MOCK_METHOD2(BufferDecrypted, void(Decryptor::Status,
const scoped_refptr<DecoderBuffer>&));
enum DecryptExpectation {
SUCCESS,
DATA_MISMATCH,
DATA_AND_SIZE_MISMATCH,
DECRYPT_ERROR
};
void DecryptAndExpect(const scoped_refptr<DecoderBuffer>& encrypted,
const std::vector<uint8>& plain_text,
DecryptExpectation result) {
scoped_refptr<DecoderBuffer> decrypted;
if (result != DECRYPT_ERROR) {
EXPECT_CALL(*this, BufferDecrypted(Decryptor::kSuccess, NotNull()))
.WillOnce(SaveArg<1>(&decrypted));
} else {
EXPECT_CALL(*this, BufferDecrypted(Decryptor::kError, IsNull()))
.WillOnce(SaveArg<1>(&decrypted));
}
decryptor_.Decrypt(Decryptor::kVideo, encrypted, decrypt_cb_);
std::vector<uint8> decrypted_text;
if (decrypted && decrypted->data_size()) {
decrypted_text.assign(
decrypted->data(), decrypted->data() + decrypted->data_size());
}
switch (result) {
case SUCCESS:
EXPECT_EQ(plain_text, decrypted_text);
break;
case DATA_MISMATCH:
EXPECT_EQ(plain_text.size(), decrypted_text.size());
EXPECT_NE(plain_text, decrypted_text);
break;
case DATA_AND_SIZE_MISMATCH:
EXPECT_NE(plain_text.size(), decrypted_text.size());
break;
case DECRYPT_ERROR:
EXPECT_TRUE(decrypted_text.empty());
break;
}
}
MOCK_METHOD1(KeyAdded, void(const std::string&));
MOCK_METHOD3(KeyError, void(const std::string&,
MediaKeys::KeyError, int));
MOCK_METHOD3(KeyMessage, void(const std::string& session_id,
const std::vector<uint8>& message,
const std::string& default_url));
AesDecryptor decryptor_;
std::string session_id_string_;
AesDecryptor::DecryptCB decrypt_cb_;
// Constants for testing.
const std::vector<uint8> original_data_;
const std::vector<uint8> encrypted_data_;
const std::vector<uint8> subsample_encrypted_data_;
const std::vector<uint8> key_id_;
const std::vector<uint8> iv_;
const std::vector<SubsampleEntry> normal_subsample_entries_;
const std::vector<SubsampleEntry> no_subsample_entries_;
};
TEST_F(AesDecryptorTest, GenerateKeyRequestWithNullInitData) {
EXPECT_CALL(*this, KeyMessage(StrNe(std::string()), IsEmpty(), ""));
EXPECT_TRUE(decryptor_.GenerateKeyRequest(std::string(), NULL, 0));
}
TEST_F(AesDecryptorTest, NormalDecryption) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, DecryptionWithOffset) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 23, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, UnencryptedFrame) {
// An empty iv string signals that the frame is unencrypted.
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
original_data_, key_id_, std::vector<uint8>(), 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, WrongKey) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kWrongKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, NoKey) {
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
EXPECT_CALL(*this, BufferDecrypted(AesDecryptor::kNoKey, IsNull()));
decryptor_.Decrypt(Decryptor::kVideo, encrypted_buffer, decrypt_cb_);
}
TEST_F(AesDecryptorTest, KeyReplacement) {
GenerateKeyRequest(key_id_);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
AddKeyAndExpect(kWrongKeyAsJWK, KEY_ADDED);
ASSERT_NO_FATAL_FAILURE(DecryptAndExpect(
encrypted_buffer, original_data_, DATA_MISMATCH));
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
}
TEST_F(AesDecryptorTest, WrongSizedKey) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kWrongSizedKeyAsJWK, KEY_ERROR);
// Repeat for a raw key. Use "-1" to create a wrong sized key.
std::vector<uint8> wrong_sized_key(kKey, kKey + arraysize(kKey) - 1);
AddRawKeyAndExpect(key_id_, wrong_sized_key, KEY_ERROR);
}
TEST_F(AesDecryptorTest, MultipleKeysAndFrames) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 10, no_subsample_entries_);
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
AddKeyAndExpect(kKey2AsJWK, KEY_ADDED);
// The first key is still available after we added a second key.
ASSERT_NO_FATAL_FAILURE(
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS));
// The second key is also available.
encrypted_buffer = CreateEncryptedBuffer(
std::vector<uint8>(kEncryptedData2,
kEncryptedData2 + arraysize(kEncryptedData2)),
std::vector<uint8>(kKeyId2, kKeyId2 + arraysize(kKeyId2)),
std::vector<uint8>(kIv2, kIv2 + arraysize(kIv2)),
30,
no_subsample_entries_);
ASSERT_NO_FATAL_FAILURE(DecryptAndExpect(
encrypted_buffer,
std::vector<uint8>(kOriginalData2,
kOriginalData2 + arraysize(kOriginalData2) - 1),
SUCCESS));
}
TEST_F(AesDecryptorTest, CorruptedIv) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<uint8> bad_iv = iv_;
bad_iv[1]++;
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, bad_iv, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, CorruptedData) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<uint8> bad_data = encrypted_data_;
bad_data[1]++;
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
bad_data, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, EncryptedAsUnencryptedFailure) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, std::vector<uint8>(), 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, SubsampleDecryption) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0, normal_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
// Ensures noninterference of data offset and subsample mechanisms. We never
// expect to encounter this in the wild, but since the DecryptConfig doesn't
// disallow such a configuration, it should be covered.
TEST_F(AesDecryptorTest, SubsampleDecryptionWithOffset) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 23, normal_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, SubsampleWrongSize) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<SubsampleEntry> subsample_entries_wrong_size(
kSubsampleEntriesWrongSize,
kSubsampleEntriesWrongSize + arraysize(kSubsampleEntriesWrongSize));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0, subsample_entries_wrong_size);
DecryptAndExpect(encrypted_buffer, original_data_, DATA_MISMATCH);
}
TEST_F(AesDecryptorTest, SubsampleInvalidTotalSize) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<SubsampleEntry> subsample_entries_invalid_total_size(
kSubsampleEntriesInvalidTotalSize,
kSubsampleEntriesInvalidTotalSize +
arraysize(kSubsampleEntriesInvalidTotalSize));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
subsample_encrypted_data_, key_id_, iv_, 0,
subsample_entries_invalid_total_size);
DecryptAndExpect(encrypted_buffer, original_data_, DECRYPT_ERROR);
}
// No cypher bytes in any of the subsamples.
TEST_F(AesDecryptorTest, SubsampleClearBytesOnly) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<SubsampleEntry> clear_only_subsample_entries(
kSubsampleEntriesClearOnly,
kSubsampleEntriesClearOnly + arraysize(kSubsampleEntriesClearOnly));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
original_data_, key_id_, iv_, 0, clear_only_subsample_entries);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
// No clear bytes in any of the subsamples.
TEST_F(AesDecryptorTest, SubsampleCypherBytesOnly) {
GenerateKeyRequest(key_id_);
AddKeyAndExpect(kKeyAsJWK, KEY_ADDED);
std::vector<SubsampleEntry> cypher_only_subsample_entries(
kSubsampleEntriesCypherOnly,
kSubsampleEntriesCypherOnly + arraysize(kSubsampleEntriesCypherOnly));
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, cypher_only_subsample_entries);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
TEST_F(AesDecryptorTest, JWKKey) {
// Try a simple JWK key (i.e. not in a set)
const std::string key1 =
"{"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
"}";
AddKeyAndExpect(key1, KEY_ERROR);
// Try a key list with multiple entries.
const std::string key2 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAwQFBgcICQoLDA0ODxAREhM\","
" \"k\": \"FBUWFxgZGhscHR4fICEiIw\""
" },"
" {"
" \"kty\": \"oct\","
" \"kid\": \"JCUmJygpKissLS4vMA\","
" \"k\":\"MTIzNDU2Nzg5Ojs8PT4/QA\""
" }"
" ]"
"}";
AddKeyAndExpect(key2, KEY_ADDED);
// Try a key with no spaces and some \n plus additional fields.
const std::string key3 =
"\n\n{\"something\":1,\"keys\":[{\n\n\"kty\":\"oct\",\"alg\":\"A128KW\","
"\"kid\":\"AAECAwQFBgcICQoLDA0ODxAREhM\",\"k\":\"GawgguFyGrWKav7AX4VKUg"
"\",\"foo\":\"bar\"}]}\n\n";
AddKeyAndExpect(key3, KEY_ADDED);
// Try some non-ASCII characters.
AddKeyAndExpect("This is not ASCII due to \xff\xfe\xfd in it.", KEY_ERROR);
// Try a badly formatted key. Assume that the JSON parser is fully tested,
// so we won't try a lot of combinations. However, need a test to ensure
// that the code doesn't crash if invalid JSON received.
AddKeyAndExpect("This is not a JSON key.", KEY_ERROR);
// Try passing some valid JSON that is not a dictionary at the top level.
AddKeyAndExpect("40", KEY_ERROR);
// Try an empty dictionary.
AddKeyAndExpect("{ }", KEY_ERROR);
// Try an empty 'keys' dictionary.
AddKeyAndExpect("{ \"keys\": [] }", KEY_ERROR);
// Try with 'keys' not a dictionary.
AddKeyAndExpect("{ \"keys\":\"1\" }", KEY_ERROR);
// Try with 'keys' a list of integers.
AddKeyAndExpect("{ \"keys\": [ 1, 2, 3 ] }", KEY_ERROR);
// TODO(jrummell): The next 2 tests should fail once checking for padding
// characters is enabled.
// Try a key with padding(=) at end of base64 string.
const std::string key4 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw==\""
" }"
" ]"
"}";
AddKeyAndExpect(key4, KEY_ADDED);
// Try a key ID with padding(=) at end of base64 string.
const std::string key5 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"AAECAw==\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
AddKeyAndExpect(key5, KEY_ADDED);
// Try a key with invalid base64 encoding.
const std::string key6 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"!@#$%^&*()\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
AddKeyAndExpect(key6, KEY_ERROR);
// Try a key where no padding is required. 'k' has to be 16 bytes, so it
// will always require padding. (Test above using |key2| has 2 'kid's that
// require 1 and 2 padding bytes).
const std::string key7 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"Kiss\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
AddKeyAndExpect(key7, KEY_ADDED);
// Empty key id.
const std::string key8 =
"{"
" \"keys\": ["
" {"
" \"kty\": \"oct\","
" \"kid\": \"\","
" \"k\": \"BAUGBwgJCgsMDQ4PEBESEw\""
" }"
" ]"
"}";
AddKeyAndExpect(key8, KEY_ERROR);
}
TEST_F(AesDecryptorTest, RawKey) {
// Verify that v0.1b keys (raw key) is still supported. Raw keys are
// 16 bytes long. Use the undecoded value of |kKey|.
GenerateKeyRequest(key_id_);
AddRawKeyAndExpect(
key_id_, std::vector<uint8>(kKey, kKey + arraysize(kKey)), KEY_ADDED);
scoped_refptr<DecoderBuffer> encrypted_buffer = CreateEncryptedBuffer(
encrypted_data_, key_id_, iv_, 0, no_subsample_entries_);
DecryptAndExpect(encrypted_buffer, original_data_, SUCCESS);
}
} // namespace media