blob: d19ff39109c5aebc21d312162e4814c20bb952fd [file] [log] [blame]
// Copyright (c) 2006-2009 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_SCOPED_PTR_H__
#define BASE_SCOPED_PTR_H__
// This is an implementation designed to match the anticipated future TR2
// implementation of the scoped_ptr class, and its closely-related brethren,
// scoped_array, scoped_ptr_malloc, and make_scoped_ptr.
//
// See http://wiki/Main/ScopedPointerInterface for the spec that drove this
// file.
#include <assert.h>
#include <stdlib.h>
#include <cstddef>
#ifdef OS_EMBEDDED_QNX
// NOTE(akirmse):
// The C++ standard says that <stdlib.h> declares both ::foo and std::foo
// But this isn't done in QNX version 6.3.2 200709062316.
using std::free;
using std::malloc;
using std::realloc;
#endif
template <class C> class scoped_ptr;
template <class C, class Free> class scoped_ptr_malloc;
template <class C> class scoped_array;
template <class C>
scoped_ptr<C> make_scoped_ptr(C *);
// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
// automatically deletes the pointer it holds (if any).
// That is, scoped_ptr<T> owns the T object that it points to.
// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
// Also like T*, scoped_ptr<T> is thread-compatible, and once you
// dereference it, you get the threadsafety guarantees of T.
//
// The size of a scoped_ptr is small:
// sizeof(scoped_ptr<C>) == sizeof(C*)
template <class C>
class scoped_ptr {
public:
// The element type
typedef C element_type;
// Constructor. Defaults to intializing with NULL.
// There is no way to create an uninitialized scoped_ptr.
// The input parameter must be allocated with new.
explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_ptr() {
enum { type_must_be_complete = sizeof(C) };
delete ptr_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != ptr_) {
enum { type_must_be_complete = sizeof(C) };
delete ptr_;
ptr_ = p;
}
}
// Accessors to get the owned object.
// operator* and operator-> will assert() if there is no current object.
C& operator*() const {
assert(ptr_ != NULL);
return *ptr_;
}
C* operator->() const {
assert(ptr_ != NULL);
return ptr_;
}
C* get() const { return ptr_; }
// Comparison operators.
// These return whether a scoped_ptr and a raw pointer refer to
// the same object, not just to two different but equal objects.
bool operator==(const C* p) const { return ptr_ == p; }
bool operator!=(const C* p) const { return ptr_ != p; }
// Swap two scoped pointers.
void swap(scoped_ptr& p2) {
C* tmp = ptr_;
ptr_ = p2.ptr_;
p2.ptr_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* retVal = ptr_;
ptr_ = NULL;
return retVal;
}
private:
C* ptr_;
// google3 friend class that can access copy ctor (although if it actually
// calls a copy ctor, there will be a problem) see below
friend scoped_ptr<C> make_scoped_ptr<C>(C *p);
// Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't
// make sense, and if C2 == C, it still doesn't make sense because you should
// never have the same object owned by two different scoped_ptrs.
template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
// Disallow evil constructors
scoped_ptr(const scoped_ptr&);
void operator=(const scoped_ptr&);
};
// Free functions
template <class C>
inline void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
p1.swap(p2);
}
template <class C>
inline bool operator==(const C* p1, const scoped_ptr<C>& p2) {
return p1 == p2.get();
}
template <class C>
inline bool operator==(const C* p1, const scoped_ptr<const C>& p2) {
return p1 == p2.get();
}
template <class C>
inline bool operator!=(const C* p1, const scoped_ptr<C>& p2) {
return p1 != p2.get();
}
template <class C>
inline bool operator!=(const C* p1, const scoped_ptr<const C>& p2) {
return p1 != p2.get();
}
template <class C>
scoped_ptr<C> make_scoped_ptr(C *p) {
// This does nothing but to return a scoped_ptr of the type that the passed
// pointer is of. (This eliminates the need to specify the name of T when
// making a scoped_ptr that is used anonymously/temporarily.) From an
// access control point of view, we construct an unnamed scoped_ptr here
// which we return and thus copy-construct. Hence, we need to have access
// to scoped_ptr::scoped_ptr(scoped_ptr const &). However, it is guaranteed
// that we never actually call the copy constructor, which is a good thing
// as we would call the temporary's object destructor (and thus delete p)
// if we actually did copy some object, here.
return scoped_ptr<C>(p);
}
// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
// with new [] and the destructor deletes objects with delete [].
//
// As with scoped_ptr<C>, a scoped_array<C> either points to an object
// or is NULL. A scoped_array<C> owns the object that it points to.
// scoped_array<T> is thread-compatible, and once you index into it,
// the returned objects have only the threadsafety guarantees of T.
//
// Size: sizeof(scoped_array<C>) == sizeof(C*)
template <class C>
class scoped_array {
public:
// The element type
typedef C element_type;
// Constructor. Defaults to intializing with NULL.
// There is no way to create an uninitialized scoped_array.
// The input parameter must be allocated with new [].
explicit scoped_array(C* p = NULL) : array_(p) { }
// Destructor. If there is a C object, delete it.
// We don't need to test ptr_ == NULL because C++ does that for us.
~scoped_array() {
enum { type_must_be_complete = sizeof(C) };
delete[] array_;
}
// Reset. Deletes the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (p != array_) {
enum { type_must_be_complete = sizeof(C) };
delete[] array_;
array_ = p;
}
}
// Get one element of the current object.
// Will assert() if there is no current object, or index i is negative.
C& operator[](std::ptrdiff_t i) const {
assert(i >= 0);
assert(array_ != NULL);
return array_[i];
}
// Get a pointer to the zeroth element of the current object.
// If there is no current object, return NULL.
C* get() const {
return array_;
}
// Comparison operators.
// These return whether a scoped_array and a raw pointer refer to
// the same array, not just to two different but equal arrays.
bool operator==(const C* p) const { return array_ == p; }
bool operator!=(const C* p) const { return array_ != p; }
// Swap two scoped arrays.
void swap(scoped_array& p2) {
C* tmp = array_;
array_ = p2.array_;
p2.array_ = tmp;
}
// Release an array.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* retVal = array_;
array_ = NULL;
return retVal;
}
private:
C* array_;
// Forbid comparison of different scoped_array types.
template <class C2> bool operator==(scoped_array<C2> const& p2) const;
template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
// Disallow evil constructors
scoped_array(const scoped_array&);
void operator=(const scoped_array&);
};
// Free functions
template <class C>
inline void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
p1.swap(p2);
}
template <class C>
inline bool operator==(const C* p1, const scoped_array<C>& p2) {
return p1 == p2.get();
}
template <class C>
inline bool operator==(const C* p1, const scoped_array<const C>& p2) {
return p1 == p2.get();
}
template <class C>
inline bool operator!=(const C* p1, const scoped_array<C>& p2) {
return p1 != p2.get();
}
template <class C>
inline bool operator!=(const C* p1, const scoped_array<const C>& p2) {
return p1 != p2.get();
}
// This class wraps the c library function free() in a class that can be
// passed as a template argument to scoped_ptr_malloc below.
class ScopedPtrMallocFree {
public:
inline void operator()(void* x) const {
free(x);
}
};
// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
// second template argument, the functor used to free the object.
template<class C, class FreeProc = ScopedPtrMallocFree>
class scoped_ptr_malloc {
public:
// The element type
typedef C element_type;
// Construction with no arguments sets ptr_ to NULL.
// There is no way to create an uninitialized scoped_ptr.
// The input parameter must be allocated with an allocator that matches the
// Free functor. For the default Free functor, this is malloc, calloc, or
// realloc.
explicit scoped_ptr_malloc(): ptr_(NULL) { }
// Construct with a C*, and provides an error with a D*.
template<class must_be_C>
explicit scoped_ptr_malloc(must_be_C* p): ptr_(p) { }
// Construct with a void*, such as you get from malloc.
explicit scoped_ptr_malloc(void *p): ptr_(static_cast<C*>(p)) { }
// Destructor. If there is a C object, call the Free functor.
~scoped_ptr_malloc() {
free_(ptr_);
}
// Reset. Calls the Free functor on the current owned object, if any.
// Then takes ownership of a new object, if given.
// this->reset(this->get()) works.
void reset(C* p = NULL) {
if (ptr_ != p) {
free_(ptr_);
ptr_ = p;
}
}
// Reallocates the existing pointer, and returns 'true' if
// the reallcation is succesfull. If the reallocation failed, then
// the pointer remains in its previous state.
//
// Note: this calls realloc() directly, even if an alternate 'free'
// functor is provided in the template instantiation.
bool try_realloc(size_t new_size) {
C* new_ptr = static_cast<C*>(realloc(ptr_, new_size));
if (new_ptr == NULL) {
return false;
}
ptr_ = new_ptr;
return true;
}
// Get the current object.
// operator* and operator-> will cause an assert() failure if there is
// no current object.
C& operator*() const {
assert(ptr_ != NULL);
return *ptr_;
}
C* operator->() const {
assert(ptr_ != NULL);
return ptr_;
}
C* get() const {
return ptr_;
}
// Comparison operators.
// These return whether a scoped_ptr_malloc and a plain pointer refer
// to the same object, not just to two different but equal objects.
// For compatibility with the boost-derived implementation, these
// take non-const arguments.
bool operator==(C* p) const {
return ptr_ == p;
}
bool operator!=(C* p) const {
return ptr_ != p;
}
// Swap two scoped pointers.
void swap(scoped_ptr_malloc & b) {
C* tmp = b.ptr_;
b.ptr_ = ptr_;
ptr_ = tmp;
}
// Release a pointer.
// The return value is the current pointer held by this object.
// If this object holds a NULL pointer, the return value is NULL.
// After this operation, this object will hold a NULL pointer,
// and will not own the object any more.
C* release() {
C* tmp = ptr_;
ptr_ = NULL;
return tmp;
}
private:
C* ptr_;
// no reason to use these: each scoped_ptr_malloc should have its own object
template <class C2, class GP>
bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
template <class C2, class GP>
bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
static FreeProc const free_;
// Disallow evil constructors
scoped_ptr_malloc(const scoped_ptr_malloc&);
void operator=(const scoped_ptr_malloc&);
};
template<class C, class FP>
FP const scoped_ptr_malloc<C, FP>::free_ = FP();
template<class C, class FP> inline
void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
a.swap(b);
}
template<class C, class FP> inline
bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
return p == b.get();
}
template<class C, class FP> inline
bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
return p != b.get();
}
#endif // BASE_SCOPED_PTR_H__