blob: 72e25ab2bcce5585d6a7fd6be5de6d570448f218 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "content/renderer/media/android/audio_decoder_android.h"
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/mman.h>
#include <unistd.h>
#include <vector>
#include "base/file_descriptor_posix.h"
#include "base/logging.h"
#include "base/memory/shared_memory.h"
#include "base/posix/eintr_wrapper.h"
#include "content/common/view_messages.h"
#include "media/base/android/webaudio_media_codec_info.h"
#include "media/base/audio_bus.h"
#include "media/base/limits.h"
#include "third_party/WebKit/public/platform/WebAudioBus.h"
namespace content {
class AudioDecoderIO {
public:
AudioDecoderIO(const char* data, size_t data_size);
~AudioDecoderIO();
bool ShareEncodedToProcess(base::SharedMemoryHandle* handle);
// Returns true if AudioDecoderIO was successfully created.
bool IsValid() const;
int read_fd() const { return read_fd_; }
int write_fd() const { return write_fd_; }
private:
// Shared memory that will hold the encoded audio data. This is
// used by MediaCodec for decoding.
base::SharedMemory encoded_shared_memory_;
// A pipe used to communicate with MediaCodec. MediaCodec owns
// write_fd_ and writes to it.
int read_fd_;
int write_fd_;
DISALLOW_COPY_AND_ASSIGN(AudioDecoderIO);
};
AudioDecoderIO::AudioDecoderIO(const char* data, size_t data_size)
: read_fd_(-1),
write_fd_(-1) {
if (!data || !data_size || data_size > 0x80000000)
return;
// Create the shared memory and copy our data to it so that
// MediaCodec can access it.
encoded_shared_memory_.CreateAndMapAnonymous(data_size);
if (!encoded_shared_memory_.memory())
return;
memcpy(encoded_shared_memory_.memory(), data, data_size);
// Create a pipe for reading/writing the decoded PCM data
int pipefd[2];
if (pipe(pipefd))
return;
read_fd_ = pipefd[0];
write_fd_ = pipefd[1];
}
AudioDecoderIO::~AudioDecoderIO() {
// Close the read end of the pipe. The write end should have been
// closed by MediaCodec.
if (read_fd_ >= 0 && close(read_fd_)) {
DVLOG(1) << "Cannot close read fd " << read_fd_
<< ": " << strerror(errno);
}
}
bool AudioDecoderIO::IsValid() const {
return read_fd_ >= 0 && write_fd_ >= 0 &&
encoded_shared_memory_.memory();
}
bool AudioDecoderIO::ShareEncodedToProcess(base::SharedMemoryHandle* handle) {
return encoded_shared_memory_.ShareToProcess(
base::Process::Current().handle(),
handle);
}
static float ConvertSampleToFloat(int16_t sample) {
const float kMaxScale = 1.0f / std::numeric_limits<int16_t>::max();
const float kMinScale = -1.0f / std::numeric_limits<int16_t>::min();
return sample * (sample < 0 ? kMinScale : kMaxScale);
}
// A basic WAVE file decoder. See
// https://ccrma.stanford.edu/courses/422/projects/WaveFormat/ for a
// basic guide to the WAVE file format.
class WAVEDecoder {
public:
WAVEDecoder(const uint8* data, size_t data_size);
~WAVEDecoder();
// Try to decode the data as a WAVE file. If the data is a supported
// WAVE file, |destination_bus| is filled with the decoded data and
// DecodeWAVEFile returns true. Otherwise, DecodeWAVEFile returns
// false.
bool DecodeWAVEFile(blink::WebAudioBus* destination_bus);
private:
// Minimum number of bytes in a WAVE file to hold all of the data we
// need to interpret it as a WAVE file.
static const unsigned kMinimumWAVLength = 44;
// Number of bytes in the chunk ID field.
static const unsigned kChunkIDLength = 4;
// Number of bytes in the chunk size field.
static const unsigned kChunkSizeLength = 4;
// Number of bytes in the format field of the "RIFF" chunk.
static const unsigned kFormatFieldLength = 4;
// Number of bytes in a valid "fmt" chunk.
static const unsigned kFMTChunkLength = 16;
// Supported audio format in a WAVE file.
// TODO(rtoy): Consider supporting other formats here, if necessary.
static const int16_t kAudioFormatPCM = 1;
// Maximum number (inclusive) of bytes per sample supported by this
// decoder.
static const unsigned kMaximumBytesPerSample = 3;
// Read an unsigned integer of |length| bytes from |buffer|. The
// integer is interpreted as being in little-endian order.
uint32_t ReadUnsignedInteger(const uint8_t* buffer, size_t length);
// Read a PCM sample from the WAVE data at |pcm_data|.
int16_t ReadPCMSample(const uint8_t* pcm_data);
// Read a WAVE chunk header including the chunk ID and chunk size.
// Returns false if the header could not be read.
bool ReadChunkHeader();
// Read and parse the "fmt" chunk. Returns false if the fmt chunk
// could not be read or contained unsupported formats.
bool ReadFMTChunk();
// Read data chunk and save it to |destination_bus|. Returns false
// if the data chunk could not be read correctly.
bool CopyDataChunkToBus(blink::WebAudioBus* destination_bus);
// The WAVE chunk ID that identifies the chunk.
uint8_t chunk_id_[kChunkIDLength];
// The number of bytes in the data portion of the chunk.
size_t chunk_size_;
// The total number of bytes in the encoded data.
size_t data_size_;
// The current position within the WAVE file.
const uint8_t* buffer_;
// Points one byte past the end of the in-memory WAVE file. Used for
// detecting if we've reached the end of the file.
const uint8_t* buffer_end_;
size_t bytes_per_sample_;
uint16_t number_of_channels_;
// Sample rate of the WAVE data, in Hz.
uint32_t sample_rate_;
DISALLOW_COPY_AND_ASSIGN(WAVEDecoder);
};
WAVEDecoder::WAVEDecoder(const uint8_t* encoded_data, size_t data_size)
: data_size_(data_size),
buffer_(encoded_data),
buffer_end_(encoded_data + 1),
bytes_per_sample_(0),
number_of_channels_(0),
sample_rate_(0) {
if (buffer_ + data_size > buffer_)
buffer_end_ = buffer_ + data_size;
}
WAVEDecoder::~WAVEDecoder() {}
uint32_t WAVEDecoder::ReadUnsignedInteger(const uint8_t* buffer,
size_t length) {
unsigned value = 0;
if (length == 0 || length > sizeof(value)) {
DCHECK(false) << "ReadUnsignedInteger: Invalid length: " << length;
return 0;
}
// All integer fields in a WAVE file are little-endian.
for (size_t k = length; k > 0; --k)
value = (value << 8) + buffer[k - 1];
return value;
}
int16_t WAVEDecoder::ReadPCMSample(const uint8_t* pcm_data) {
uint32_t unsigned_sample = ReadUnsignedInteger(pcm_data, bytes_per_sample_);
int16_t sample;
// Convert the unsigned data into a 16-bit PCM sample.
switch (bytes_per_sample_) {
case 1:
sample = (unsigned_sample - 128) << 8;
break;
case 2:
sample = static_cast<int16_t>(unsigned_sample);
break;
case 3:
// Android currently converts 24-bit WAVE data into 16-bit
// samples by taking the high-order 16 bits without rounding.
// We do the same here for consistency.
sample = static_cast<int16_t>(unsigned_sample >> 8);
break;
default:
sample = 0;
break;
}
return sample;
}
bool WAVEDecoder::ReadChunkHeader() {
if (buffer_ + kChunkIDLength + kChunkSizeLength >= buffer_end_)
return false;
memcpy(chunk_id_, buffer_, kChunkIDLength);
chunk_size_ = ReadUnsignedInteger(buffer_ + kChunkIDLength, kChunkSizeLength);
// Adjust for padding
if (chunk_size_ % 2)
++chunk_size_;
// Check for completely bogus chunk size.
if (chunk_size_ > data_size_)
return false;
return true;
}
bool WAVEDecoder::ReadFMTChunk() {
// The fmt chunk has basic info about the format of the audio
// data. Only a basic PCM format is supported.
if (chunk_size_ < kFMTChunkLength) {
DVLOG(1) << "FMT chunk too short: " << chunk_size_;
return 0;
}
uint16_t audio_format = ReadUnsignedInteger(buffer_, 2);
if (audio_format != kAudioFormatPCM) {
DVLOG(1) << "Audio format not supported: " << audio_format;
return false;
}
number_of_channels_ = ReadUnsignedInteger(buffer_ + 2, 2);
sample_rate_ = ReadUnsignedInteger(buffer_ + 4, 4);
unsigned bits_per_sample = ReadUnsignedInteger(buffer_ + 14, 2);
// Sanity checks.
if (!number_of_channels_ ||
number_of_channels_ > media::limits::kMaxChannels) {
DVLOG(1) << "Unsupported number of channels: " << number_of_channels_;
return false;
}
if (sample_rate_ < media::limits::kMinSampleRate ||
sample_rate_ > media::limits::kMaxSampleRate) {
DVLOG(1) << "Unsupported sample rate: " << sample_rate_;
return false;
}
// We only support 8, 16, and 24 bits per sample.
if (bits_per_sample == 8 || bits_per_sample == 16 || bits_per_sample == 24) {
bytes_per_sample_ = bits_per_sample / 8;
return true;
}
DVLOG(1) << "Unsupported bits per sample: " << bits_per_sample;
return false;
}
bool WAVEDecoder::CopyDataChunkToBus(blink::WebAudioBus* destination_bus) {
// The data chunk contains the audio data itself.
if (!bytes_per_sample_ || bytes_per_sample_ > kMaximumBytesPerSample) {
DVLOG(1) << "WARNING: data chunk without preceeding fmt chunk,"
<< " or invalid bytes per sample.";
return false;
}
VLOG(0) << "Decoding WAVE file: " << number_of_channels_ << " channels, "
<< sample_rate_ << " kHz, "
<< chunk_size_ / bytes_per_sample_ / number_of_channels_
<< " frames, " << 8 * bytes_per_sample_ << " bits/sample";
// Create the destination bus of the appropriate size and then decode
// the data into the bus.
size_t number_of_frames =
chunk_size_ / bytes_per_sample_ / number_of_channels_;
destination_bus->initialize(
number_of_channels_, number_of_frames, sample_rate_);
for (size_t m = 0; m < number_of_frames; ++m) {
for (uint16_t k = 0; k < number_of_channels_; ++k) {
int16_t sample = ReadPCMSample(buffer_);
buffer_ += bytes_per_sample_;
destination_bus->channelData(k)[m] = ConvertSampleToFloat(sample);
}
}
return true;
}
bool WAVEDecoder::DecodeWAVEFile(blink::WebAudioBus* destination_bus) {
// Parse and decode WAVE file. If we can't parse it, return false.
if (buffer_ + kMinimumWAVLength > buffer_end_) {
DVLOG(1) << "Buffer too small to contain full WAVE header: ";
return false;
}
// Do we have a RIFF file?
ReadChunkHeader();
if (memcmp(chunk_id_, "RIFF", kChunkIDLength) != 0) {
DVLOG(1) << "RIFF missing";
return false;
}
buffer_ += kChunkIDLength + kChunkSizeLength;
// Check the format field of the RIFF chunk
memcpy(chunk_id_, buffer_, kFormatFieldLength);
if (memcmp(chunk_id_, "WAVE", kFormatFieldLength) != 0) {
DVLOG(1) << "Invalid WAVE file: missing WAVE header";
return false;
}
// Advance past the format field
buffer_ += kFormatFieldLength;
// We have a WAVE file. Start parsing the chunks.
while (buffer_ < buffer_end_) {
if (!ReadChunkHeader()) {
DVLOG(1) << "Couldn't read chunk header";
return false;
}
// Consume the chunk ID and chunk size
buffer_ += kChunkIDLength + kChunkSizeLength;
// Make sure we can read all chunk_size bytes.
if (buffer_ + chunk_size_ > buffer_end_) {
DVLOG(1) << "Insufficient bytes to read chunk of size " << chunk_size_;
return false;
}
if (memcmp(chunk_id_, "fmt ", kChunkIDLength) == 0) {
if (!ReadFMTChunk())
return false;
} else if (memcmp(chunk_id_, "data", kChunkIDLength) == 0) {
// Return after reading the data chunk, whether we succeeded or
// not.
return CopyDataChunkToBus(destination_bus);
} else {
// Ignore these chunks that we don't know about.
DVLOG(0) << "Ignoring WAVE chunk `" << chunk_id_ << "' size "
<< chunk_size_;
}
// Advance to next chunk.
buffer_ += chunk_size_;
}
// If we get here, that means we didn't find a data chunk, so we
// couldn't handle this WAVE file.
return false;
}
// The number of frames is known so preallocate the destination
// bus and copy the pcm data to the destination bus as it's being
// received.
static void CopyPcmDataToBus(int input_fd,
blink::WebAudioBus* destination_bus,
size_t number_of_frames,
unsigned number_of_channels,
double file_sample_rate) {
destination_bus->initialize(number_of_channels,
number_of_frames,
file_sample_rate);
int16_t pipe_data[PIPE_BUF / sizeof(int16_t)];
size_t decoded_frames = 0;
size_t current_sample_in_frame = 0;
ssize_t nread;
while ((nread = HANDLE_EINTR(read(input_fd, pipe_data, sizeof(pipe_data)))) >
0) {
size_t samples_in_pipe = nread / sizeof(int16_t);
// The pipe may not contain a whole number of frames. This is
// especially true if the number of channels is greater than
// 2. Thus, keep track of which sample in a frame is being
// processed, so we handle the boundary at the end of the pipe
// correctly.
for (size_t m = 0; m < samples_in_pipe; ++m) {
if (decoded_frames >= number_of_frames)
break;
destination_bus->channelData(current_sample_in_frame)[decoded_frames] =
ConvertSampleToFloat(pipe_data[m]);
++current_sample_in_frame;
if (current_sample_in_frame >= number_of_channels) {
current_sample_in_frame = 0;
++decoded_frames;
}
}
}
// number_of_frames is only an estimate. Resize the buffer with the
// actual number of received frames.
if (decoded_frames < number_of_frames)
destination_bus->resizeSmaller(decoded_frames);
}
// The number of frames is unknown, so keep reading and buffering
// until there's no more data and then copy the data to the
// destination bus.
static void BufferAndCopyPcmDataToBus(int input_fd,
blink::WebAudioBus* destination_bus,
unsigned number_of_channels,
double file_sample_rate) {
int16_t pipe_data[PIPE_BUF / sizeof(int16_t)];
std::vector<int16_t> decoded_samples;
ssize_t nread;
while ((nread = HANDLE_EINTR(read(input_fd, pipe_data, sizeof(pipe_data)))) >
0) {
size_t samples_in_pipe = nread / sizeof(int16_t);
if (decoded_samples.size() + samples_in_pipe > decoded_samples.capacity()) {
decoded_samples.reserve(std::max(samples_in_pipe,
2 * decoded_samples.capacity()));
}
std::copy(pipe_data,
pipe_data + samples_in_pipe,
back_inserter(decoded_samples));
}
DVLOG(1) << "Total samples read = " << decoded_samples.size();
// Convert the samples and save them in the audio bus.
size_t number_of_samples = decoded_samples.size();
size_t number_of_frames = decoded_samples.size() / number_of_channels;
size_t decoded_frames = 0;
destination_bus->initialize(number_of_channels,
number_of_frames,
file_sample_rate);
for (size_t m = 0; m < number_of_samples; m += number_of_channels) {
for (size_t k = 0; k < number_of_channels; ++k) {
int16_t sample = decoded_samples[m + k];
destination_bus->channelData(k)[decoded_frames] =
ConvertSampleToFloat(sample);
}
++decoded_frames;
}
// number_of_frames is only an estimate. Resize the buffer with the
// actual number of received frames.
if (decoded_frames < number_of_frames)
destination_bus->resizeSmaller(decoded_frames);
}
static bool TryWAVEFileDecoder(blink::WebAudioBus* destination_bus,
const uint8_t* encoded_data,
size_t data_size) {
WAVEDecoder decoder(encoded_data, data_size);
return decoder.DecodeWAVEFile(destination_bus);
}
// To decode audio data, we want to use the Android MediaCodec class.
// But this can't run in a sandboxed process so we need initiate the
// request to MediaCodec in the browser. To do this, we create a
// shared memory buffer that holds the audio data. We send a message
// to the browser to start the decoder using this buffer and one end
// of a pipe. The MediaCodec class will decode the data from the
// shared memory and write the PCM samples back to us over a pipe.
bool DecodeAudioFileData(blink::WebAudioBus* destination_bus, const char* data,
size_t data_size,
scoped_refptr<ThreadSafeSender> sender) {
// Try to decode the data as a WAVE file first. If it can't be
// decoded, use MediaCodec. See crbug.com/259048.
if (TryWAVEFileDecoder(
destination_bus, reinterpret_cast<const uint8_t*>(data), data_size)) {
return true;
}
AudioDecoderIO audio_decoder(data, data_size);
if (!audio_decoder.IsValid())
return false;
base::SharedMemoryHandle encoded_data_handle;
audio_decoder.ShareEncodedToProcess(&encoded_data_handle);
base::FileDescriptor fd(audio_decoder.write_fd(), true);
DVLOG(1) << "DecodeAudioFileData: Starting MediaCodec";
// Start MediaCodec processing in the browser which will read from
// encoded_data_handle for our shared memory and write the decoded
// PCM samples (16-bit integer) to our pipe.
sender->Send(new ViewHostMsg_RunWebAudioMediaCodec(
encoded_data_handle, fd, data_size));
// First, read the number of channels, the sample rate, and the
// number of frames and a flag indicating if the file is an
// ogg/vorbis file. This must be coordinated with
// WebAudioMediaCodecBridge!
//
// If we know the number of samples, we can create the destination
// bus directly and do the conversion directly to the bus instead of
// buffering up everything before saving the data to the bus.
int input_fd = audio_decoder.read_fd();
struct media::WebAudioMediaCodecInfo info;
DVLOG(1) << "Reading audio file info from fd " << input_fd;
ssize_t nread = HANDLE_EINTR(read(input_fd, &info, sizeof(info)));
DVLOG(1) << "read: " << nread << " bytes:\n"
<< " 0: number of channels = " << info.channel_count << "\n"
<< " 1: sample rate = " << info.sample_rate << "\n"
<< " 2: number of frames = " << info.number_of_frames << "\n";
if (nread != sizeof(info))
return false;
unsigned number_of_channels = info.channel_count;
double file_sample_rate = static_cast<double>(info.sample_rate);
size_t number_of_frames = info.number_of_frames;
// Sanity checks
if (!number_of_channels ||
number_of_channels > media::limits::kMaxChannels ||
file_sample_rate < media::limits::kMinSampleRate ||
file_sample_rate > media::limits::kMaxSampleRate) {
return false;
}
if (number_of_frames > 0) {
CopyPcmDataToBus(input_fd,
destination_bus,
number_of_frames,
number_of_channels,
file_sample_rate);
} else {
BufferAndCopyPcmDataToBus(input_fd,
destination_bus,
number_of_channels,
file_sample_rate);
}
return true;
}
} // namespace content