blob: 66630ebb5b05416a4b02c39a0954bd2af193f261 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/public/cpp/utility/run_loop.h"
#include <assert.h>
#include <algorithm>
#include <vector>
#include "mojo/public/cpp/utility/lib/thread_local.h"
#include "mojo/public/cpp/utility/run_loop_handler.h"
namespace mojo {
namespace {
internal::ThreadLocalPointer<RunLoop> current_run_loop;
const MojoTimeTicks kInvalidTimeTicks = static_cast<MojoTimeTicks>(0);
} // namespace
// State needed for one iteration of WaitMany().
struct RunLoop::WaitState {
WaitState() : deadline(MOJO_DEADLINE_INDEFINITE) {}
std::vector<Handle> handles;
std::vector<MojoHandleSignals> handle_signals;
MojoDeadline deadline;
};
struct RunLoop::RunState {
RunState() : should_quit(false) {}
bool should_quit;
};
RunLoop::RunLoop()
: run_state_(NULL), next_handler_id_(0), next_sequence_number_(0) {
assert(!current());
current_run_loop.Set(this);
}
RunLoop::~RunLoop() {
assert(current() == this);
current_run_loop.Set(NULL);
}
// static
void RunLoop::SetUp() {
current_run_loop.Allocate();
}
// static
void RunLoop::TearDown() {
assert(!current());
current_run_loop.Free();
}
// static
RunLoop* RunLoop::current() {
return current_run_loop.Get();
}
void RunLoop::AddHandler(RunLoopHandler* handler,
const Handle& handle,
MojoHandleSignals handle_signals,
MojoDeadline deadline) {
assert(current() == this);
assert(handler);
assert(handle.is_valid());
// Assume it's an error if someone tries to reregister an existing handle.
assert(0u == handler_data_.count(handle));
HandlerData handler_data;
handler_data.handler = handler;
handler_data.handle_signals = handle_signals;
handler_data.deadline = (deadline == MOJO_DEADLINE_INDEFINITE) ?
kInvalidTimeTicks :
GetTimeTicksNow() + static_cast<MojoTimeTicks>(deadline);
handler_data.id = next_handler_id_++;
handler_data_[handle] = handler_data;
}
void RunLoop::RemoveHandler(const Handle& handle) {
assert(current() == this);
handler_data_.erase(handle);
}
bool RunLoop::HasHandler(const Handle& handle) const {
return handler_data_.find(handle) != handler_data_.end();
}
void RunLoop::Run() {
assert(current() == this);
RunState* old_state = run_state_;
RunState run_state;
run_state_ = &run_state;
while (!run_state.should_quit) {
DoDelayedWork();
Wait(false);
}
run_state_ = old_state;
}
void RunLoop::RunUntilIdle() {
assert(current() == this);
RunState* old_state = run_state_;
RunState run_state;
run_state_ = &run_state;
while (!run_state.should_quit) {
DoDelayedWork();
if (!Wait(true) && delayed_tasks_.empty())
break;
}
run_state_ = old_state;
}
void RunLoop::DoDelayedWork() {
MojoTimeTicks now = GetTimeTicksNow();
if (!delayed_tasks_.empty() && delayed_tasks_.top().run_time <= now) {
PendingTask task = delayed_tasks_.top();
delayed_tasks_.pop();
task.task.Run();
}
}
void RunLoop::Quit() {
assert(current() == this);
if (run_state_)
run_state_->should_quit = true;
}
void RunLoop::PostDelayedTask(const Closure& task, MojoTimeTicks delay) {
assert(current() == this);
MojoTimeTicks run_time = delay + GetTimeTicksNow();
delayed_tasks_.push(PendingTask(task, run_time, next_sequence_number_++));
}
bool RunLoop::Wait(bool non_blocking) {
const WaitState wait_state = GetWaitState(non_blocking);
if (wait_state.handles.empty() && delayed_tasks_.empty()) {
Quit();
return false;
}
const MojoResult result = WaitMany(wait_state.handles,
wait_state.handle_signals,
wait_state.deadline);
if (result >= 0) {
const size_t index = static_cast<size_t>(result);
assert(handler_data_.find(wait_state.handles[index]) !=
handler_data_.end());
handler_data_[wait_state.handles[index]].handler->OnHandleReady(
wait_state.handles[index]);
return true;
}
switch (result) {
case MOJO_RESULT_INVALID_ARGUMENT:
case MOJO_RESULT_FAILED_PRECONDITION:
return RemoveFirstInvalidHandle(wait_state);
case MOJO_RESULT_DEADLINE_EXCEEDED:
return NotifyDeadlineExceeded();
}
assert(false);
return false;
}
bool RunLoop::NotifyDeadlineExceeded() {
bool notified = false;
// Make a copy in case someone tries to add/remove new handlers as part of
// notifying.
const HandleToHandlerData cloned_handlers(handler_data_);
const MojoTimeTicks now(GetTimeTicksNow());
for (HandleToHandlerData::const_iterator i = cloned_handlers.begin();
i != cloned_handlers.end(); ++i) {
// Since we're iterating over a clone of the handlers, verify the handler is
// still valid before notifying.
if (i->second.deadline != kInvalidTimeTicks &&
i->second.deadline < now &&
handler_data_.find(i->first) != handler_data_.end() &&
handler_data_[i->first].id == i->second.id) {
handler_data_.erase(i->first);
i->second.handler->OnHandleError(i->first, MOJO_RESULT_DEADLINE_EXCEEDED);
notified = true;
}
}
return notified;
}
bool RunLoop::RemoveFirstInvalidHandle(const WaitState& wait_state) {
for (size_t i = 0; i < wait_state.handles.size(); ++i) {
const MojoResult result =
mojo::Wait(wait_state.handles[i], wait_state.handle_signals[i],
static_cast<MojoDeadline>(0));
if (result == MOJO_RESULT_INVALID_ARGUMENT ||
result == MOJO_RESULT_FAILED_PRECONDITION) {
// Remove the handle first, this way if OnHandleError() tries to remove
// the handle our iterator isn't invalidated.
assert(handler_data_.find(wait_state.handles[i]) != handler_data_.end());
RunLoopHandler* handler =
handler_data_[wait_state.handles[i]].handler;
handler_data_.erase(wait_state.handles[i]);
handler->OnHandleError(wait_state.handles[i], result);
return true;
}
assert(MOJO_RESULT_DEADLINE_EXCEEDED == result);
}
return false;
}
RunLoop::WaitState RunLoop::GetWaitState(bool non_blocking) const {
WaitState wait_state;
MojoTimeTicks min_time = kInvalidTimeTicks;
for (HandleToHandlerData::const_iterator i = handler_data_.begin();
i != handler_data_.end(); ++i) {
wait_state.handles.push_back(i->first);
wait_state.handle_signals.push_back(i->second.handle_signals);
if (!non_blocking && i->second.deadline != kInvalidTimeTicks &&
(min_time == kInvalidTimeTicks || i->second.deadline < min_time)) {
min_time = i->second.deadline;
}
}
if (!delayed_tasks_.empty()) {
MojoTimeTicks delayed_min_time = delayed_tasks_.top().run_time;
if (min_time == kInvalidTimeTicks)
min_time = delayed_min_time;
else
min_time = std::min(min_time, delayed_min_time);
}
if (non_blocking) {
wait_state.deadline = static_cast<MojoDeadline>(0);
} else if (min_time != kInvalidTimeTicks) {
const MojoTimeTicks now = GetTimeTicksNow();
if (min_time < now)
wait_state.deadline = static_cast<MojoDeadline>(0);
else
wait_state.deadline = static_cast<MojoDeadline>(min_time - now);
}
return wait_state;
}
RunLoop::PendingTask::PendingTask(const Closure& task,
MojoTimeTicks run_time,
uint64_t sequence_number)
: task(task), run_time(run_time), sequence_number(sequence_number) {
}
RunLoop::PendingTask::~PendingTask() {
}
bool RunLoop::PendingTask::operator<(const RunLoop::PendingTask& other) const {
if (run_time != other.run_time) {
// std::priority_queue<> puts the least element at the end of the queue. We
// want the soonest eligible task to be at the head of the queue, so
// run_times further in the future are considered lesser.
return run_time > other.run_time;
}
return sequence_number > other.sequence_number;
}
} // namespace mojo