blob: e6e9e8bd383e964dfc4a215fecd7afcc14f226eb [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/congestion_control/tcp_cubic_sender.h"
#include "net/quic/congestion_control/tcp_receiver.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::min;
namespace net {
namespace test {
const uint32 kDefaultWindowTCP = 10 * kDefaultTCPMSS;
// TODO(ianswett): Remove 10000 once b/10075719 is fixed.
const QuicTcpCongestionWindow kDefaultMaxCongestionWindowTCP = 10000;
class TcpCubicSenderPeer : public TcpCubicSender {
public:
TcpCubicSenderPeer(const QuicClock* clock,
bool reno,
QuicTcpCongestionWindow max_tcp_congestion_window)
: TcpCubicSender(
clock, &rtt_stats_, reno, max_tcp_congestion_window, &stats_) {
}
QuicTcpCongestionWindow congestion_window() {
return congestion_window_;
}
const HybridSlowStart& hybrid_slow_start() const {
return hybrid_slow_start_;
}
RttStats rtt_stats_;
QuicConnectionStats stats_;
using TcpCubicSender::AvailableSendWindow;
using TcpCubicSender::SendWindow;
};
class TcpCubicSenderTest : public ::testing::Test {
protected:
TcpCubicSenderTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
sender_(new TcpCubicSenderPeer(&clock_, true,
kDefaultMaxCongestionWindowTCP)),
receiver_(new TcpReceiver()),
sequence_number_(1),
acked_sequence_number_(0) {
}
int SendAvailableSendWindow() {
// Send as long as TimeUntilSend returns Zero.
int packets_sent = 0;
bool can_send = sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero();
while (can_send) {
sender_->OnPacketSent(clock_.Now(), sequence_number_++, kDefaultTCPMSS,
HAS_RETRANSMITTABLE_DATA);
++packets_sent;
can_send = sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero();
}
return packets_sent;
}
void UpdateRtt(QuicTime::Delta rtt) {
sender_->rtt_stats_.UpdateRtt(rtt, QuicTime::Delta::Zero(), clock_.Now());
sender_->OnRttUpdated(acked_sequence_number_ + 1);
}
// Normal is that TCP acks every other segment.
void AckNPackets(int n) {
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
UpdateRtt(QuicTime::Delta::FromMilliseconds(60));
sender_->OnPacketAcked(acked_sequence_number_, kDefaultTCPMSS);
}
clock_.AdvanceTime(one_ms_); // 1 millisecond.
}
void LoseNPackets(int n) {
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
sender_->OnPacketAbandoned(acked_sequence_number_, kDefaultTCPMSS);
sender_->OnPacketLost(acked_sequence_number_, clock_.Now());
}
}
const QuicTime::Delta one_ms_;
MockClock clock_;
scoped_ptr<TcpCubicSenderPeer> sender_;
scoped_ptr<TcpReceiver> receiver_;
QuicPacketSequenceNumber sequence_number_;
QuicPacketSequenceNumber acked_sequence_number_;
};
TEST_F(TcpCubicSenderTest, SimpleSender) {
QuicCongestionFeedbackFrame feedback;
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->AvailableSendWindow());
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->AvailableSendWindow());
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// There is available window, so we should be able to send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Fill the send window with data, then verify that we can't send.
SendAvailableSendWindow();
EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
}
TEST_F(TcpCubicSenderTest, ExponentialSlowStart) {
const int kNumberOfAcks = 20;
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount bytes_to_send = sender_->SendWindow();
EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks,
bytes_to_send);
}
TEST_F(TcpCubicSenderTest, SlowStartAckTrain) {
// Make sure that we fall out of slow start when we send ACK train longer
// than half the RTT, in this test case 30ms, which is more than 30 calls to
// Ack2Packets in one round.
// Since we start at 10 packet first round will be 5 second round 10 etc
// Hence we should pass 30 at 65 = 5 + 10 + 20 + 30
const int kNumberOfAcks = 65;
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// We should now have fallen out of slow start.
// Testing Reno phase.
// We should need 140(65*2+10) ACK:ed packets before increasing window by
// one.
for (int i = 0; i < 69; ++i) {
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
SendAvailableSendWindow();
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLoss) {
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
const int kNumberOfAcks = 10;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
++acked_sequence_number_;
// Make sure that we can send right now due to limited transmit.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Testing Reno phase.
// We need to ack half of the pending packet before we can send again.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
AckNPackets(number_of_packets_in_window);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(0u, sender_->AvailableSendWindow());
// We need to ack every packet in the window before we exit recovery.
for (size_t i = 0; i < number_of_packets_in_window; ++i) {
AckNPackets(1);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// We need to ack another window before we increase CWND by 1.
for (size_t i = 0; i < number_of_packets_in_window - 2; ++i) {
AckNPackets(1);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLossPRR) {
// Test based on the first example in RFC6937.
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Send 1 packet to simulate limited transmit.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
EXPECT_EQ(1, SendAvailableSendWindow());
// Testing TCP proportional rate reduction.
// We should send one packet for every two received acks over the remaining
// 18 outstanding packets.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
// The number of packets before we exit recovery is the original CWND minus
// the packet that has been lost and the one which triggered the loss.
size_t remaining_packets_in_recovery = number_of_packets_in_window * 2 - 1;
for (size_t i = 0; i < remaining_packets_in_recovery - 1; i += 2) {
AckNPackets(2);
EXPECT_TRUE(sender_->TimeUntilSend(
clock_.Now(), HAS_RETRANSMITTABLE_DATA).IsZero());
EXPECT_EQ(0u, sender_->AvailableSendWindow());
EXPECT_EQ(1, SendAvailableSendWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// If there is one more packet to ack before completing recovery, ack it.
if (remaining_packets_in_recovery % 2 == 1) {
AckNPackets(1);
}
// We need to ack another window before we increase CWND by 1.
for (size_t i = 0; i < number_of_packets_in_window - 1; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, SlowStartBurstPacketLossPRR) {
// Test based on the second example in RFC6937, though we also implement
// forward acknowledgements, so the first two incoming acks will trigger
// PRR immediately.
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Ack a packet with a 15 packet gap, losing 13 of them due to FACK.
sender_->OnPacketAcked(acked_sequence_number_ + 15, kDefaultTCPMSS);
LoseNPackets(13);
// We should now have fallen out of slow start.
// We expect window to be cut in half by Reno.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Only 2 packets should be allowed to be sent, per PRR-SSRB
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
sender_->OnPacketAcked(acked_sequence_number_ + 4, kDefaultTCPMSS);
LoseNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
sender_->OnPacketAcked(acked_sequence_number_ + 4, kDefaultTCPMSS);
LoseNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
AckNPackets(1);
EXPECT_EQ(2, SendAvailableSendWindow());
AckNPackets(1);
EXPECT_EQ(2, SendAvailableSendWindow());
// The window should not have changed.
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Exit recovery and return to sending at the new rate.
for (int i = 0; i < kNumberOfAcks; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
}
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindow) {
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
// Expect the window to decrease to the minimum once the RTO fires.
sender_->OnRetransmissionTimeout(true);
EXPECT_EQ(2 * kDefaultTCPMSS, sender_->SendWindow());
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindowNoRetransmission) {
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
// Expect the window to remain unchanged if the RTO fires but no
// packets are retransmitted.
sender_->OnRetransmissionTimeout(false);
EXPECT_EQ(kDefaultWindowTCP, sender_->SendWindow());
}
TEST_F(TcpCubicSenderTest, RetransmissionDelay) {
const int64 kRttMs = 10;
const int64 kDeviationMs = 3;
EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay());
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs));
// Initial value is to set the median deviation to half of the initial
// rtt, the median in then multiplied by a factor of 4 and finally the
// smoothed rtt is added which is the initial rtt.
QuicTime::Delta expected_delay =
QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
EXPECT_EQ(expected_delay, sender_->RetransmissionDelay());
for (int i = 0; i < 100; ++i) {
// Run to make sure that we converge.
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs));
UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs));
}
expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);
EXPECT_NEAR(kRttMs, sender_->rtt_stats_.SmoothedRtt().ToMilliseconds(), 1);
EXPECT_NEAR(expected_delay.ToMilliseconds(),
sender_->RetransmissionDelay().ToMilliseconds(),
1);
EXPECT_EQ(static_cast<int64>(
sender_->GetCongestionWindow() * kNumMicrosPerSecond /
sender_->rtt_stats_.SmoothedRtt().ToMicroseconds()),
sender_->BandwidthEstimate().ToBytesPerSecond());
}
TEST_F(TcpCubicSenderTest, SlowStartMaxSendWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 100;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpRenoMaxCongestionWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 1000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, true, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpCubicMaxCongestionWindow) {
const QuicTcpCongestionWindow kMaxCongestionWindowTCP = 50;
// Set to 10000 to compensate for small cubic alpha.
const int kNumberOfAcks = 10000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, MultipleLossesInOneWindow) {
SendAvailableSendWindow();
const QuicByteCount initial_window = sender_->GetCongestionWindow();
sender_->OnPacketLost(acked_sequence_number_ + 1, clock_.Now());
const QuicByteCount post_loss_window = sender_->GetCongestionWindow();
EXPECT_GT(initial_window, post_loss_window);
sender_->OnPacketLost(acked_sequence_number_ + 3, clock_.Now());
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
sender_->OnPacketLost(sequence_number_ - 1, clock_.Now());
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
// Lose a later packet and ensure the window decreases.
sender_->OnPacketLost(sequence_number_, clock_.Now());
EXPECT_GT(post_loss_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, SendWindowNotAffectedByAcks) {
QuicByteCount send_window = sender_->AvailableSendWindow();
// Send a packet with no retransmittable data, and ensure that the congestion
// window doesn't change.
QuicByteCount bytes_in_packet = min(kDefaultTCPMSS, send_window);
sender_->OnPacketSent(clock_.Now(), sequence_number_++, bytes_in_packet,
NO_RETRANSMITTABLE_DATA);
EXPECT_EQ(send_window, sender_->AvailableSendWindow());
// Send a data packet with retransmittable data, and ensure that the
// congestion window has shrunk.
sender_->OnPacketSent(clock_.Now(), sequence_number_++, bytes_in_packet,
HAS_RETRANSMITTABLE_DATA);
EXPECT_GT(send_window, sender_->AvailableSendWindow());
}
TEST_F(TcpCubicSenderTest, ConfigureMaxInitialWindow) {
QuicTcpCongestionWindow congestion_window = sender_->congestion_window();
QuicConfig config;
QuicConfigPeer::SetReceivedInitialWindow(&config, 2 * congestion_window);
sender_->SetFromConfig(config, true);
EXPECT_EQ(2 * congestion_window, sender_->congestion_window());
}
TEST_F(TcpCubicSenderTest, CongestionAvoidanceAtEndOfRecovery) {
// Make sure that we fall out of slow start when we encounter a packet loss.
QuicCongestionFeedbackFrame feedback;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
HAS_RETRANSMITTABLE_DATA).IsZero());
// Get default QuicCongestionFeedbackFrame from receiver.
ASSERT_TRUE(receiver_->GenerateCongestionFeedback(&feedback));
sender_->OnIncomingQuicCongestionFeedbackFrame(feedback, clock_.Now());
// Ack 10 packets in 5 acks to raise the CWND to 20.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start, and window should be cut in
// half by Reno. New cwnd should be 10.
expected_send_window /= 2;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// No congestion window growth should occur in recovery phase, i.e.,
// until the currently outstanding 20 packets are acked.
for (int i = 0; i < 10; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// Out of recovery now. Congestion window should not grow during RTT.
for (int i = 0; i < 4; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// Next ack should cause congestion window to grow by 1MSS.
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
} // namespace test
} // namespace net