blob: 11b59470fcd87d5be27e934cc992feac57b7c90a [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "ash/wm/workspace/snap_sizer.h"
#include <cmath>
#include "ash/screen_ash.h"
#include "ash/wm/property_util.h"
#include "ash/wm/window_resizer.h"
#include "ash/wm/window_util.h"
#include "ui/aura/window.h"
#include "ui/gfx/screen.h"
namespace ash {
namespace internal {
namespace {
// A list of ideal window width in pixel which will be used to populate the
// |usable_width_| list.
const int kIdealWidth[] = { 1280, 1024, 768, 640 };
// Windows are initially snapped to the size in |usable_width_| at index 0.
// The index into |usable_width_| is changed if any of the following happen:
// . The user stops moving the mouse for |kDelayBeforeIncreaseMS| and then
// moves the mouse again.
// . The mouse moves |kPixelsBeforeAdjust| horizontal pixels.
// . The mouse is against the edge of the screen and the mouse is moved
// |kMovesBeforeAdjust| times.
const int kDelayBeforeIncreaseMS = 500;
const int kMovesBeforeAdjust = 25;
const int kPixelsBeforeAdjust = 100;
// When the smallest resolution does not fit on the screen, we take this
// fraction of the available space.
const int kMinimumScreenPercent = 90;
// Create the list of possible width for the current screen configuration:
// Fill the |usable_width_| list with items from |kIdealWidth| which fit on
// the screen and supplement it with the 'half of screen' size. Furthermore,
// add an entry for 90% of the screen size if it is smaller then the biggest
// value in the |kIdealWidth| list (to get a step between the values).
std::vector<int> BuildIdealWidthList(aura::Window* window) {
std::vector<int> ideal_width_list;
gfx::Rect work_area(ScreenAsh::GetDisplayWorkAreaBoundsInParent(window));
int half_size = work_area.width() / 2;
int maximum_width = (kMinimumScreenPercent * work_area.width()) / 100;
for (size_t i = 0; i < arraysize(kIdealWidth); i++) {
if (maximum_width >= kIdealWidth[i]) {
if (i && !ideal_width_list.size() && maximum_width != kIdealWidth[i])
ideal_width_list.push_back(maximum_width);
if (half_size > kIdealWidth[i])
ideal_width_list.push_back(half_size);
if (half_size >= kIdealWidth[i])
half_size = 0;
ideal_width_list.push_back(kIdealWidth[i]);
}
}
if (half_size)
ideal_width_list.push_back(half_size);
return ideal_width_list;
}
} // namespace
SnapSizer::SnapSizer(aura::Window* window,
const gfx::Point& start,
Edge edge,
InputType input_type)
: window_(window),
edge_(edge),
time_last_update_(base::TimeTicks::Now()),
size_index_(0),
resize_disabled_(false),
num_moves_since_adjust_(0),
last_adjust_x_(start.x()),
last_update_x_(start.x()),
start_x_(start.x()),
input_type_(input_type),
usable_width_(BuildIdealWidthList(window)) {
DCHECK(!usable_width_.empty());
target_bounds_ = GetTargetBounds();
}
SnapSizer::~SnapSizer() {
}
void SnapSizer::SnapWindow(aura::Window* window, SnapSizer::Edge edge) {
if (!wm::CanSnapWindow(window))
return;
internal::SnapSizer sizer(window, gfx::Point(), edge,
internal::SnapSizer::OTHER_INPUT);
if (wm::IsWindowFullscreen(window) || wm::IsWindowMaximized(window)) {
// Before we can set the bounds we need to restore the window.
// Restoring the window will set the window to its restored bounds.
// To avoid an unnecessary bounds changes (which may have side effects)
// we set the restore bounds to the bounds we want, restore the window,
// then reset the restore bounds. This way no unnecessary bounds
// changes occurs and the original restore bounds is remembered.
gfx::Rect restore = *GetRestoreBoundsInScreen(window);
SetRestoreBoundsInParent(window, sizer.GetSnapBounds(window->bounds()));
wm::RestoreWindow(window);
SetRestoreBoundsInScreen(window, restore);
} else {
window->SetBounds(sizer.GetSnapBounds(window->bounds()));
}
}
void SnapSizer::Update(const gfx::Point& location) {
// See description above for details on this behavior.
num_moves_since_adjust_++;
if ((base::TimeTicks::Now() - time_last_update_).InMilliseconds() >
kDelayBeforeIncreaseMS) {
ChangeBounds(location.x(),
CalculateIncrement(location.x(), last_update_x_));
} else {
bool along_edge = AlongEdge(location.x());
int pixels_before_adjust = kPixelsBeforeAdjust;
if (input_type_ == TOUCH_MAXIMIZE_BUTTON_INPUT) {
const gfx::Rect& workspace_bounds = window_->parent()->bounds();
if (start_x_ > location.x()) {
pixels_before_adjust =
std::min(pixels_before_adjust, start_x_ / 10);
} else {
pixels_before_adjust =
std::min(pixels_before_adjust,
(workspace_bounds.width() - start_x_) / 10);
}
}
if (std::abs(location.x() - last_adjust_x_) >= pixels_before_adjust ||
(along_edge && num_moves_since_adjust_ >= kMovesBeforeAdjust)) {
ChangeBounds(location.x(),
CalculateIncrement(location.x(), last_adjust_x_));
}
}
last_update_x_ = location.x();
time_last_update_ = base::TimeTicks::Now();
}
gfx::Rect SnapSizer::GetSnapBounds(const gfx::Rect& bounds) {
int current = 0;
if (!resize_disabled_) {
for (current = usable_width_.size() - 1; current >= 0; current--) {
gfx::Rect target = GetTargetBoundsForSize(current);
if (target == bounds) {
++current;
break;
}
}
}
return GetTargetBoundsForSize(current % usable_width_.size());
}
void SnapSizer::SelectDefaultSizeAndDisableResize() {
resize_disabled_ = true;
size_index_ = 0;
target_bounds_ = GetTargetBounds();
}
gfx::Rect SnapSizer::GetTargetBoundsForSize(size_t size_index) const {
gfx::Rect work_area(ScreenAsh::GetDisplayWorkAreaBoundsInParent(window_));
int y = work_area.y();
// We don't align to the bottom of the grid as the launcher may not
// necessarily align to the grid (happens when auto-hidden).
int max_y = work_area.bottom();
int width = 0;
if (resize_disabled_) {
// Make sure that we keep the size of the window smaller then a certain
// fraction of the screen space.
int minimum_size = (kMinimumScreenPercent * work_area.width()) / 100;
width = std::max(std::min(minimum_size, 1024), work_area.width() / 2);
} else {
DCHECK(size_index < usable_width_.size());
width = usable_width_[size_index];
}
if (edge_ == LEFT_EDGE) {
int x = work_area.x();
int mid_x = x + width;
return gfx::Rect(x, y, mid_x - x, max_y - y);
}
int max_x = work_area.right();
int x = max_x - width;
return gfx::Rect(x , y, max_x - x, max_y - y);
}
int SnapSizer::CalculateIncrement(int x, int reference_x) const {
if (AlongEdge(x))
return 1;
if (x == reference_x)
return 0;
if (edge_ == LEFT_EDGE) {
if (x < reference_x)
return 1;
return -1;
}
// edge_ == RIGHT_EDGE.
if (x > reference_x)
return 1;
return -1;
}
void SnapSizer::ChangeBounds(int x, int delta) {
int index = std::min(static_cast<int>(usable_width_.size()) - 1,
std::max(size_index_ + delta, 0));
if (index != size_index_) {
size_index_ = index;
target_bounds_ = GetTargetBounds();
}
num_moves_since_adjust_ = 0;
last_adjust_x_ = x;
}
gfx::Rect SnapSizer::GetTargetBounds() const {
return GetTargetBoundsForSize(size_index_);
}
bool SnapSizer::AlongEdge(int x) const {
gfx::Rect area(ScreenAsh::GetDisplayBoundsInParent(window_));
return (x <= area.x()) || (x >= area.right() - 1);
}
} // namespace internal
} // namespace ash