blob: 91df04868c74796ef4eefc6952853b83a47e4988 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/*
* Copyright (C) 2008 Apple Inc. All rights reserved.
*
* Based on Abstract AVL Tree Template v1.5 by Walt Karas
* <http://geocities.com/wkaras/gen_cpp/avl_tree.html>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
#define CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_
#include "base/logging.h"
#include "content/browser/indexed_db/leveldb/fixed_array.h"
namespace content {
// Here is the reference class for BSet.
//
// class BSet
// {
// public:
//
// class ANY_bitref
// {
// public:
// operator bool ();
// void operator = (bool b);
// };
//
// // Does not have to initialize bits.
// BSet();
//
// // Must return a valid value for index when 0 <= index < maxDepth
// ANY_bitref operator [] (unsigned index);
//
// // Set all bits to 1.
// void Set();
//
// // Set all bits to 0.
// void Reset();
// };
template <unsigned maxDepth>
class AVLTreeDefaultBSet {
public:
bool& operator[](unsigned i) {
#if defined(ADDRESS_SANITIZER)
CHECK(i < maxDepth);
#endif
return data_[i];
}
void Set() {
for (unsigned i = 0; i < maxDepth; ++i)
data_[i] = true;
}
void Reset() {
for (unsigned i = 0; i < maxDepth; ++i)
data_[i] = false;
}
private:
FixedArray<bool, maxDepth> data_;
};
// How to determine maxDepth:
// d Minimum number of nodes
// 2 2
// 3 4
// 4 7
// 5 12
// 6 20
// 7 33
// 8 54
// 9 88
// 10 143
// 11 232
// 12 376
// 13 609
// 14 986
// 15 1,596
// 16 2,583
// 17 4,180
// 18 6,764
// 19 10,945
// 20 17,710
// 21 28,656
// 22 46,367
// 23 75,024
// 24 121,392
// 25 196,417
// 26 317,810
// 27 514,228
// 28 832,039
// 29 1,346,268
// 30 2,178,308
// 31 3,524,577
// 32 5,702,886
// 33 9,227,464
// 34 14,930,351
// 35 24,157,816
// 36 39,088,168
// 37 63,245,985
// 38 102,334,154
// 39 165,580,140
// 40 267,914,295
// 41 433,494,436
// 42 701,408,732
// 43 1,134,903,169
// 44 1,836,311,902
// 45 2,971,215,072
//
// E.g., if, in a particular instantiation, the maximum number of nodes in a
// tree instance is 1,000,000, the maximum depth should be 28.
// You pick 28 because MN(28) is 832,039, which is less than or equal to
// 1,000,000, and MN(29) is 1,346,268, which is strictly greater than 1,000,000.
template <class Abstractor,
unsigned maxDepth = 32,
class BSet = AVLTreeDefaultBSet<maxDepth> >
class AVLTree {
public:
typedef typename Abstractor::key key;
typedef typename Abstractor::handle handle;
typedef typename Abstractor::size size;
enum SearchType {
EQUAL = 1,
LESS = 2,
GREATER = 4,
LESS_EQUAL = EQUAL | LESS,
GREATER_EQUAL = EQUAL | GREATER
};
Abstractor& abstractor() { return abs_; }
inline handle Insert(handle h);
inline handle Search(key k, SearchType st = EQUAL);
inline handle SearchLeast();
inline handle SearchGreatest();
inline handle Remove(key k);
inline handle Subst(handle new_node);
void Purge() { abs_.root = Null(); }
bool IsEmpty() { return abs_.root == Null(); }
AVLTree() { abs_.root = Null(); }
class Iterator {
public:
// Initialize depth to invalid value, to indicate iterator is
// invalid. (Depth is zero-base.)
Iterator() { depth_ = ~0U; }
void StartIter(AVLTree* tree, key k, SearchType st = EQUAL) {
// Mask of high bit in an int.
const int kMaskHighBit = static_cast<int>(~((~(unsigned)0) >> 1));
// Save the tree that we're going to iterate through in a
// member variable.
tree_ = tree;
int cmp, target_cmp;
handle h = tree_->abs_.root;
unsigned d = 0;
depth_ = ~0U;
if (h == Null()) {
// Tree is empty.
return;
}
if (st & LESS) {
// Key can be greater than key of starting node.
target_cmp = 1;
} else if (st & GREATER) {
// Key can be less than key of starting node.
target_cmp = -1;
} else {
// Key must be same as key of starting node.
target_cmp = 0;
}
for (;;) {
cmp = CmpKN(k, h);
if (cmp == 0) {
if (st & EQUAL) {
// Equal node was sought and found as starting node.
depth_ = d;
break;
}
cmp = -target_cmp;
} else if (target_cmp != 0) {
if (!((cmp ^ target_cmp) & kMaskHighBit)) {
// cmp and target_cmp are both negative or both positive.
depth_ = d;
}
}
h = cmp < 0 ? GetLT(h) : GetGT(h);
if (h == Null())
break;
branch_[d] = cmp > 0;
path_h_[d++] = h;
}
}
void StartIterLeast(AVLTree* tree) {
tree_ = tree;
handle h = tree_->abs_.root;
depth_ = ~0U;
branch_.Reset();
while (h != Null()) {
if (depth_ != ~0U)
path_h_[depth_] = h;
depth_++;
h = GetLT(h);
}
}
void StartIterGreatest(AVLTree* tree) {
tree_ = tree;
handle h = tree_->abs_.root;
depth_ = ~0U;
branch_.Set();
while (h != Null()) {
if (depth_ != ~0U)
path_h_[depth_] = h;
depth_++;
h = GetGT(h);
}
}
handle operator*() {
if (depth_ == ~0U)
return Null();
return depth_ == 0 ? tree_->abs_.root : path_h_[depth_ - 1];
}
void operator++() {
if (depth_ != ~0U) {
handle h = GetGT(**this);
if (h == Null()) {
do {
if (depth_ == 0) {
depth_ = ~0U;
break;
}
depth_--;
} while (branch_[depth_]);
} else {
branch_[depth_] = true;
path_h_[depth_++] = h;
for (;;) {
h = GetLT(h);
if (h == Null())
break;
branch_[depth_] = false;
path_h_[depth_++] = h;
}
}
}
}
void operator--() {
if (depth_ != ~0U) {
handle h = GetLT(**this);
if (h == Null()) {
do {
if (depth_ == 0) {
depth_ = ~0U;
break;
}
depth_--;
} while (!branch_[depth_]);
} else {
branch_[depth_] = false;
path_h_[depth_++] = h;
for (;;) {
h = GetGT(h);
if (h == Null())
break;
branch_[depth_] = true;
path_h_[depth_++] = h;
}
}
}
}
void operator++(int /*ignored*/) { ++(*this); }
void operator--(int /*ignored*/) { --(*this); }
protected:
// Tree being iterated over.
AVLTree* tree_;
// Records a path into the tree. If branch_[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch_[0] gives branch from root, and
// so on.
BSet branch_;
// Zero-based depth of path into tree.
unsigned depth_;
// Handles of nodes in path from root to current node (returned by *).
static const size_t kPathSize = maxDepth - 1;
handle path_h_[kPathSize];
int CmpKN(key k, handle h) { return tree_->abs_.CompareKeyNode(k, h); }
int CmpNN(handle h1, handle h2) {
return tree_->abs_.CompareNodeNode(h1, h2);
}
handle GetLT(handle h) { return tree_->abs_.GetLess(h); }
handle GetGT(handle h) { return tree_->abs_.GetGreater(h); }
handle Null() { return tree_->abs_.Null(); }
};
template <typename fwd_iter>
bool Build(fwd_iter p, size num_nodes) {
if (num_nodes == 0) {
abs_.root = Null();
return true;
}
// Gives path to subtree being built. If branch[N] is false, branch
// less from the node at depth N, if true branch greater.
BSet branch;
// If rem[N] is true, then for the current subtree at depth N, it's
// greater subtree has one more node than it's less subtree.
BSet rem;
// Depth of root node of current subtree.
unsigned depth = 0;
// Number of nodes in current subtree.
size num_sub = num_nodes;
// The algorithm relies on a stack of nodes whose less subtree has
// been built, but whose right subtree has not yet been built. The
// stack is implemented as linked list. The nodes are linked
// together by having the "greater" handle of a node set to the
// next node in the list. "less_parent" is the handle of the first
// node in the list.
handle less_parent = Null();
// h is root of current subtree, child is one of its children.
handle h, child;
for (;;) {
while (num_sub > 2) {
// Subtract one for root of subtree.
num_sub--;
rem[depth] = !!(num_sub & 1);
branch[depth++] = false;
num_sub >>= 1;
}
if (num_sub == 2) {
// Build a subtree with two nodes, slanting to greater.
// I arbitrarily chose to always have the extra node in the
// greater subtree when there is an odd number of nodes to
// split between the two subtrees.
h = *p;
p++;
child = *p;
p++;
SetLT(child, Null());
SetGT(child, Null());
SetBF(child, 0);
SetGT(h, child);
SetLT(h, Null());
SetBF(h, 1);
} else { // num_sub == 1
// Build a subtree with one node.
h = *p;
p++;
SetLT(h, Null());
SetGT(h, Null());
SetBF(h, 0);
}
while (depth) {
depth--;
if (!branch[depth]) {
// We've completed a less subtree.
break;
}
// We've completed a greater subtree, so attach it to
// its parent (that is less than it). We pop the parent
// off the stack of less parents.
child = h;
h = less_parent;
less_parent = GetGT(h);
SetGT(h, child);
// num_sub = 2 * (num_sub - rem[depth]) + rem[depth] + 1
num_sub <<= 1;
num_sub += 1 - rem[depth];
if (num_sub & (num_sub - 1)) {
// num_sub is not a power of 2
SetBF(h, 0);
} else {
// num_sub is a power of 2
SetBF(h, 1);
}
}
if (num_sub == num_nodes) {
// We've completed the full tree.
break;
}
// The subtree we've completed is the less subtree of the
// next node in the sequence.
child = h;
h = *p;
p++;
SetLT(h, child);
// Put h into stack of less parents.
SetGT(h, less_parent);
less_parent = h;
// Proceed to creating greater than subtree of h.
branch[depth] = true;
num_sub += rem[depth++];
} // end for (;;)
abs_.root = h;
return true;
}
protected:
friend class Iterator;
// Create a class whose sole purpose is to take advantage of
// the "empty member" optimization.
struct abs_plus_root : public Abstractor {
// The handle of the root element in the AVL tree.
handle root;
};
abs_plus_root abs_;
handle GetLT(handle h) { return abs_.GetLess(h); }
void SetLT(handle h, handle lh) { abs_.SetLess(h, lh); }
handle GetGT(handle h) { return abs_.GetGreater(h); }
void SetGT(handle h, handle gh) { abs_.SetGreater(h, gh); }
int GetBF(handle h) { return abs_.GetBalanceFactor(h); }
void SetBF(handle h, int bf) { abs_.SetBalanceFactor(h, bf); }
int CmpKN(key k, handle h) { return abs_.CompareKeyNode(k, h); }
int CmpNN(handle h1, handle h2) { return abs_.CompareNodeNode(h1, h2); }
handle Null() { return abs_.Null(); }
private:
// Balances subtree, returns handle of root node of subtree
// after balancing.
handle Balance(handle bal_h) {
handle deep_h;
// Either the "greater than" or the "less than" subtree of
// this node has to be 2 levels deeper (or else it wouldn't
// need balancing).
if (GetBF(bal_h) > 0) {
// "Greater than" subtree is deeper.
deep_h = GetGT(bal_h);
if (GetBF(deep_h) < 0) {
handle old_h = bal_h;
bal_h = GetLT(deep_h);
SetGT(old_h, GetLT(bal_h));
SetLT(deep_h, GetGT(bal_h));
SetLT(bal_h, old_h);
SetGT(bal_h, deep_h);
int bf = GetBF(bal_h);
if (bf != 0) {
if (bf > 0) {
SetBF(old_h, -1);
SetBF(deep_h, 0);
} else {
SetBF(deep_h, 1);
SetBF(old_h, 0);
}
SetBF(bal_h, 0);
} else {
SetBF(old_h, 0);
SetBF(deep_h, 0);
}
} else {
SetGT(bal_h, GetLT(deep_h));
SetLT(deep_h, bal_h);
if (GetBF(deep_h) == 0) {
SetBF(deep_h, -1);
SetBF(bal_h, 1);
} else {
SetBF(deep_h, 0);
SetBF(bal_h, 0);
}
bal_h = deep_h;
}
} else {
// "Less than" subtree is deeper.
deep_h = GetLT(bal_h);
if (GetBF(deep_h) > 0) {
handle old_h = bal_h;
bal_h = GetGT(deep_h);
SetLT(old_h, GetGT(bal_h));
SetGT(deep_h, GetLT(bal_h));
SetGT(bal_h, old_h);
SetLT(bal_h, deep_h);
int bf = GetBF(bal_h);
if (bf != 0) {
if (bf < 0) {
SetBF(old_h, 1);
SetBF(deep_h, 0);
} else {
SetBF(deep_h, -1);
SetBF(old_h, 0);
}
SetBF(bal_h, 0);
} else {
SetBF(old_h, 0);
SetBF(deep_h, 0);
}
} else {
SetLT(bal_h, GetGT(deep_h));
SetGT(deep_h, bal_h);
if (GetBF(deep_h) == 0) {
SetBF(deep_h, 1);
SetBF(bal_h, -1);
} else {
SetBF(deep_h, 0);
SetBF(bal_h, 0);
}
bal_h = deep_h;
}
}
return bal_h;
}
};
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::Insert(handle h) {
SetLT(h, Null());
SetGT(h, Null());
SetBF(h, 0);
if (abs_.root == Null()) {
abs_.root = h;
} else {
// Last unbalanced node encountered in search for insertion point.
handle unbal = Null();
// Parent of last unbalanced node.
handle parent_unbal = Null();
// Balance factor of last unbalanced node.
int unbal_bf;
// Zero-based depth in tree.
unsigned depth = 0, unbal_depth = 0;
// Records a path into the tree. If branch[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch[0] gives branch from root, and
// so on.
BSet branch;
handle hh = abs_.root;
handle parent = Null();
int cmp;
do {
if (GetBF(hh) != 0) {
unbal = hh;
parent_unbal = parent;
unbal_depth = depth;
}
cmp = CmpNN(h, hh);
if (cmp == 0) {
// Duplicate key.
return hh;
}
parent = hh;
hh = cmp < 0 ? GetLT(hh) : GetGT(hh);
branch[depth++] = cmp > 0;
} while (hh != Null());
// Add node to insert as leaf of tree.
if (cmp < 0)
SetLT(parent, h);
else
SetGT(parent, h);
depth = unbal_depth;
if (unbal == Null()) {
hh = abs_.root;
} else {
cmp = branch[depth++] ? 1 : -1;
unbal_bf = GetBF(unbal);
if (cmp < 0)
unbal_bf--;
else // cmp > 0
unbal_bf++;
hh = cmp < 0 ? GetLT(unbal) : GetGT(unbal);
if ((unbal_bf != -2) && (unbal_bf != 2)) {
// No rebalancing of tree is necessary.
SetBF(unbal, unbal_bf);
unbal = Null();
}
}
if (hh != Null()) {
while (h != hh) {
cmp = branch[depth++] ? 1 : -1;
if (cmp < 0) {
SetBF(hh, -1);
hh = GetLT(hh);
} else { // cmp > 0
SetBF(hh, 1);
hh = GetGT(hh);
}
}
}
if (unbal != Null()) {
unbal = Balance(unbal);
if (parent_unbal == Null()) {
abs_.root = unbal;
} else {
depth = unbal_depth - 1;
cmp = branch[depth] ? 1 : -1;
if (cmp < 0)
SetLT(parent_unbal, unbal);
else // cmp > 0
SetGT(parent_unbal, unbal);
}
}
}
return h;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::Search(
key k,
typename AVLTree<Abstractor, maxDepth, BSet>::SearchType st) {
const int kMaskHighBit = static_cast<int>(~((~(unsigned)0) >> 1));
int cmp, target_cmp;
handle match_h = Null();
handle h = abs_.root;
if (st & LESS)
target_cmp = 1;
else if (st & GREATER)
target_cmp = -1;
else
target_cmp = 0;
while (h != Null()) {
cmp = CmpKN(k, h);
if (cmp == 0) {
if (st & EQUAL) {
match_h = h;
break;
}
cmp = -target_cmp;
} else if (target_cmp != 0) {
if (!((cmp ^ target_cmp) & kMaskHighBit)) {
// cmp and target_cmp are both positive or both negative.
match_h = h;
}
}
h = cmp < 0 ? GetLT(h) : GetGT(h);
}
return match_h;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::SearchLeast() {
handle h = abs_.root, parent = Null();
while (h != Null()) {
parent = h;
h = GetLT(h);
}
return parent;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::SearchGreatest() {
handle h = abs_.root, parent = Null();
while (h != Null()) {
parent = h;
h = GetGT(h);
}
return parent;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::Remove(key k) {
// Zero-based depth in tree.
unsigned depth = 0, rm_depth;
// Records a path into the tree. If branch[n] is true, indicates
// take greater branch from the nth node in the path, otherwise
// take the less branch. branch[0] gives branch from root, and
// so on.
BSet branch;
handle h = abs_.root;
handle parent = Null(), child;
int cmp, cmp_shortened_sub_with_path = 0;
for (;;) {
if (h == Null()) {
// No node in tree with given key.
return Null();
}
cmp = CmpKN(k, h);
if (cmp == 0) {
// Found node to remove.
break;
}
parent = h;
h = cmp < 0 ? GetLT(h) : GetGT(h);
branch[depth++] = cmp > 0;
cmp_shortened_sub_with_path = cmp;
}
handle rm = h;
handle parent_rm = parent;
rm_depth = depth;
// If the node to remove is not a leaf node, we need to get a
// leaf node, or a node with a single leaf as its child, to put
// in the place of the node to remove. We will get the greatest
// node in the less subtree (of the node to remove), or the least
// node in the greater subtree. We take the leaf node from the
// deeper subtree, if there is one.
if (GetBF(h) < 0) {
child = GetLT(h);
branch[depth] = false;
cmp = -1;
} else {
child = GetGT(h);
branch[depth] = true;
cmp = 1;
}
depth++;
if (child != Null()) {
cmp = -cmp;
do {
parent = h;
h = child;
if (cmp < 0) {
child = GetLT(h);
branch[depth] = false;
} else {
child = GetGT(h);
branch[depth] = true;
}
depth++;
} while (child != Null());
if (parent == rm) {
// Only went through do loop once. Deleted node will be replaced
// in the tree structure by one of its immediate children.
cmp_shortened_sub_with_path = -cmp;
} else {
cmp_shortened_sub_with_path = cmp;
}
// Get the handle of the opposite child, which may not be null.
child = cmp > 0 ? GetLT(h) : GetGT(h);
}
if (parent == Null()) {
// There were only 1 or 2 nodes in this tree.
abs_.root = child;
} else if (cmp_shortened_sub_with_path < 0) {
SetLT(parent, child);
} else {
SetGT(parent, child);
}
// "path" is the parent of the subtree being eliminated or reduced
// from a depth of 2 to 1. If "path" is the node to be removed, we
// set path to the node we're about to poke into the position of the
// node to be removed.
handle path = parent == rm ? h : parent;
if (h != rm) {
// Poke in the replacement for the node to be removed.
SetLT(h, GetLT(rm));
SetGT(h, GetGT(rm));
SetBF(h, GetBF(rm));
if (parent_rm == Null()) {
abs_.root = h;
} else {
depth = rm_depth - 1;
if (branch[depth])
SetGT(parent_rm, h);
else
SetLT(parent_rm, h);
}
}
if (path != Null()) {
// Create a temporary linked list from the parent of the path node
// to the root node.
h = abs_.root;
parent = Null();
depth = 0;
while (h != path) {
if (branch[depth++]) {
child = GetGT(h);
SetGT(h, parent);
} else {
child = GetLT(h);
SetLT(h, parent);
}
parent = h;
h = child;
}
// Climb from the path node to the root node using the linked
// list, restoring the tree structure and rebalancing as necessary.
bool reduced_depth = true;
int bf;
cmp = cmp_shortened_sub_with_path;
for (;;) {
if (reduced_depth) {
bf = GetBF(h);
if (cmp < 0)
bf++;
else // cmp > 0
bf--;
if ((bf == -2) || (bf == 2)) {
h = Balance(h);
bf = GetBF(h);
} else {
SetBF(h, bf);
}
reduced_depth = (bf == 0);
}
if (parent == Null())
break;
child = h;
h = parent;
cmp = branch[--depth] ? 1 : -1;
if (cmp < 0) {
parent = GetLT(h);
SetLT(h, child);
} else {
parent = GetGT(h);
SetGT(h, child);
}
}
abs_.root = h;
}
return rm;
}
template <class Abstractor, unsigned maxDepth, class BSet>
inline typename AVLTree<Abstractor, maxDepth, BSet>::handle
AVLTree<Abstractor, maxDepth, BSet>::Subst(handle new_node) {
handle h = abs_.root;
handle parent = Null();
int cmp, last_cmp;
// Search for node already in tree with same key.
for (;;) {
if (h == Null()) {
// No node in tree with same key as new node.
return Null();
}
cmp = CmpNN(new_node, h);
if (cmp == 0) {
// Found the node to substitute new one for.
break;
}
last_cmp = cmp;
parent = h;
h = cmp < 0 ? GetLT(h) : GetGT(h);
}
// Copy tree housekeeping fields from node in tree to new node.
SetLT(new_node, GetLT(h));
SetGT(new_node, GetGT(h));
SetBF(new_node, GetBF(h));
if (parent == Null()) {
// New node is also new root.
abs_.root = new_node;
} else {
// Make parent point to new node.
if (last_cmp < 0)
SetLT(parent, new_node);
else
SetGT(parent, new_node);
}
return h;
}
} // namespace content
#endif // CONTENT_BROWSER_INDEXED_DB_LEVELDB_AVLTREE_H_