blob: 30764c91e6d213508991a8e58555364bc75ff5d0 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/mp2t/es_parser_h264.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "media/base/bit_reader.h"
#include "media/base/buffers.h"
#include "media/base/stream_parser_buffer.h"
#include "media/base/video_frame.h"
#include "media/mp2t/mp2t_common.h"
#include "ui/gfx/rect.h"
#include "ui/gfx/size.h"
static const int kExtendedSar = 255;
// ISO 14496 part 10
// VUI parameters: Table E-1 "Meaning of sample aspect ratio indicator"
static const int kTableSarWidth[14] = {
0, 1, 12, 10, 16, 40, 24, 20, 32, 80, 18, 15, 64, 160
};
static const int kTableSarHeight[14] = {
0, 1, 11, 11, 11, 33, 11, 11, 11, 33, 11, 11, 33, 99
};
// Remove the start code emulation prevention ( 0x000003 )
// and return the size of the converted buffer.
// Note: Size of |buf_rbsp| should be at least |size| to accomodate
// the worst case.
static int ConvertToRbsp(const uint8* buf, int size, uint8* buf_rbsp) {
int rbsp_size = 0;
int zero_count = 0;
for (int k = 0; k < size; k++) {
if (buf[k] == 0x3 && zero_count >= 2) {
zero_count = 0;
continue;
}
if (buf[k] == 0)
zero_count++;
else
zero_count = 0;
buf_rbsp[rbsp_size++] = buf[k];
}
return rbsp_size;
}
namespace media {
namespace mp2t {
// ISO 14496 - Part 10: Table 7-1 "NAL unit type codes"
enum NalUnitType {
kNalUnitTypeNonIdrSlice = 1,
kNalUnitTypeIdrSlice = 5,
kNalUnitTypeSPS = 7,
kNalUnitTypePPS = 8,
kNalUnitTypeAUD = 9,
};
class BitReaderH264 : public BitReader {
public:
BitReaderH264(const uint8* data, off_t size)
: BitReader(data, size) { }
// Read an unsigned exp-golomb value.
// Return true if successful.
bool ReadBitsExpGolomb(uint32* exp_golomb_value);
};
bool BitReaderH264::ReadBitsExpGolomb(uint32* exp_golomb_value) {
// Get the number of leading zeros.
int zero_count = 0;
while (true) {
int one_bit;
RCHECK(ReadBits(1, &one_bit));
if (one_bit != 0)
break;
zero_count++;
}
// If zero_count is greater than 31, the calculated value will overflow.
if (zero_count > 31) {
SkipBits(zero_count);
return false;
}
// Read the actual value.
uint32 base = (1 << zero_count) - 1;
uint32 offset;
RCHECK(ReadBits(zero_count, &offset));
*exp_golomb_value = base + offset;
return true;
}
EsParserH264::EsParserH264(
const NewVideoConfigCB& new_video_config_cb,
const EmitBufferCB& emit_buffer_cb)
: new_video_config_cb_(new_video_config_cb),
emit_buffer_cb_(emit_buffer_cb),
es_pos_(0),
current_nal_pos_(-1),
current_access_unit_pos_(-1),
is_key_frame_(false) {
}
EsParserH264::~EsParserH264() {
}
bool EsParserH264::Parse(const uint8* buf, int size,
base::TimeDelta pts,
base::TimeDelta dts) {
// Note: Parse is invoked each time a PES packet has been reassembled.
// Unfortunately, a PES packet does not necessarily map
// to an h264 access unit, although the HLS recommendation is to use one PES
// for each access unit (but this is just a recommendation and some streams
// do not comply with this recommendation).
// Link position |raw_es_size| in the ES stream with a timing descriptor.
// HLS recommendation: "In AVC video, you should have both a DTS and a
// PTS in each PES header".
if (dts == kNoTimestamp() && pts == kNoTimestamp()) {
DVLOG(1) << "A timestamp must be provided for each reassembled PES";
return false;
}
TimingDesc timing_desc;
timing_desc.pts = pts;
timing_desc.dts = (dts != kNoTimestamp()) ? dts : pts;
int raw_es_size;
const uint8* raw_es;
es_byte_queue_.Peek(&raw_es, &raw_es_size);
timing_desc_list_.push_back(
std::pair<int, TimingDesc>(raw_es_size, timing_desc));
// Add the incoming bytes to the ES queue.
es_byte_queue_.Push(buf, size);
// Add NALs from the incoming buffer.
if (!ParseInternal())
return false;
// Discard emitted frames
// or every byte that was parsed so far if there is no current frame.
int skip_count =
(current_access_unit_pos_ >= 0) ? current_access_unit_pos_ : es_pos_;
DiscardEs(skip_count);
return true;
}
void EsParserH264::Flush() {
if (current_access_unit_pos_ < 0)
return;
// Force emitting the last access unit.
int next_aud_pos;
const uint8* raw_es;
es_byte_queue_.Peek(&raw_es, &next_aud_pos);
EmitFrameIfNeeded(next_aud_pos);
current_nal_pos_ = -1;
StartFrame(-1);
// Discard the emitted frame.
DiscardEs(next_aud_pos);
}
void EsParserH264::Reset() {
DVLOG(1) << "EsParserH264::Reset";
es_byte_queue_.Reset();
timing_desc_list_.clear();
es_pos_ = 0;
current_nal_pos_ = -1;
StartFrame(-1);
last_video_decoder_config_ = VideoDecoderConfig();
}
bool EsParserH264::ParseInternal() {
int raw_es_size;
const uint8* raw_es;
es_byte_queue_.Peek(&raw_es, &raw_es_size);
DCHECK_GE(es_pos_, 0);
DCHECK_LT(es_pos_, raw_es_size);
// Resume h264 es parsing where it was left.
for ( ; es_pos_ < raw_es_size - 4; es_pos_++) {
// Make sure the syncword is either 00 00 00 01 or 00 00 01
if (raw_es[es_pos_ + 0] != 0 || raw_es[es_pos_ + 1] != 0)
continue;
int syncword_length = 0;
if (raw_es[es_pos_ + 2] == 0 && raw_es[es_pos_ + 3] == 1)
syncword_length = 4;
else if (raw_es[es_pos_ + 2] == 1)
syncword_length = 3;
else
continue;
// Parse the current NAL (and the new NAL then becomes the current one).
if (current_nal_pos_ >= 0) {
int nal_size = es_pos_ - current_nal_pos_;
DCHECK_GT(nal_size, 0);
RCHECK(NalParser(&raw_es[current_nal_pos_], nal_size));
}
current_nal_pos_ = es_pos_ + syncword_length;
// Retrieve the NAL type.
int nal_header = raw_es[current_nal_pos_];
int forbidden_zero_bit = (nal_header >> 7) & 0x1;
RCHECK(forbidden_zero_bit == 0);
NalUnitType nal_unit_type = static_cast<NalUnitType>(nal_header & 0x1f);
DVLOG(LOG_LEVEL_ES) << "nal: offset=" << es_pos_
<< " type=" << nal_unit_type;
// Emit a frame if needed.
if (nal_unit_type == kNalUnitTypeAUD)
EmitFrameIfNeeded(es_pos_);
// Skip the syncword.
es_pos_ += syncword_length;
}
return true;
}
void EsParserH264::EmitFrameIfNeeded(int next_aud_pos) {
// There is no current frame: start a new frame.
if (current_access_unit_pos_ < 0) {
StartFrame(next_aud_pos);
return;
}
// Get the access unit timing info.
TimingDesc current_timing_desc;
while (!timing_desc_list_.empty() &&
timing_desc_list_.front().first <= current_access_unit_pos_) {
current_timing_desc = timing_desc_list_.front().second;
timing_desc_list_.pop_front();
}
// Emit a frame.
int raw_es_size;
const uint8* raw_es;
es_byte_queue_.Peek(&raw_es, &raw_es_size);
int access_unit_size = next_aud_pos - current_access_unit_pos_;
scoped_refptr<StreamParserBuffer> stream_parser_buffer =
StreamParserBuffer::CopyFrom(
&raw_es[current_access_unit_pos_],
access_unit_size,
is_key_frame_);
stream_parser_buffer->SetDecodeTimestamp(current_timing_desc.dts);
stream_parser_buffer->set_timestamp(current_timing_desc.pts);
emit_buffer_cb_.Run(stream_parser_buffer);
// Set the current frame position to the next AUD position.
StartFrame(next_aud_pos);
}
void EsParserH264::StartFrame(int aud_pos) {
// Two cases:
// - if aud_pos < 0, clear the current frame and set |is_key_frame| to a
// default value (false).
// - if aud_pos >= 0, start a new frame and set |is_key_frame| to true
// |is_key_frame_| will be updated while parsing the NALs of that frame.
// If any NAL is a non IDR NAL, it will be set to false.
current_access_unit_pos_ = aud_pos;
is_key_frame_ = (aud_pos >= 0);
}
void EsParserH264::DiscardEs(int nbytes) {
DCHECK_GE(nbytes, 0);
if (nbytes == 0)
return;
// Update the position of
// - the parser,
// - the current NAL,
// - the current access unit.
es_pos_ -= nbytes;
if (es_pos_ < 0)
es_pos_ = 0;
if (current_nal_pos_ >= 0) {
DCHECK_GE(current_nal_pos_, nbytes);
current_nal_pos_ -= nbytes;
}
if (current_access_unit_pos_ >= 0) {
DCHECK_GE(current_access_unit_pos_, nbytes);
current_access_unit_pos_ -= nbytes;
}
// Update the timing information accordingly.
std::list<std::pair<int, TimingDesc> >::iterator timing_it
= timing_desc_list_.begin();
for (; timing_it != timing_desc_list_.end(); ++timing_it)
timing_it->first -= nbytes;
// Discard |nbytes| of ES.
es_byte_queue_.Pop(nbytes);
}
bool EsParserH264::NalParser(const uint8* buf, int size) {
// Get the NAL header.
if (size < 1) {
DVLOG(1) << "NalParser: incomplete NAL";
return false;
}
int nal_header = buf[0];
buf += 1;
size -= 1;
int forbidden_zero_bit = (nal_header >> 7) & 0x1;
if (forbidden_zero_bit != 0)
return false;
int nal_ref_idc = (nal_header >> 5) & 0x3;
int nal_unit_type = nal_header & 0x1f;
// Process the NAL content.
switch (nal_unit_type) {
case kNalUnitTypeSPS:
DVLOG(LOG_LEVEL_ES) << "NAL: SPS";
// |nal_ref_idc| should not be 0 for a SPS.
if (nal_ref_idc == 0)
return false;
return ProcessSPS(buf, size);
case kNalUnitTypeIdrSlice:
DVLOG(LOG_LEVEL_ES) << "NAL: IDR slice";
return true;
case kNalUnitTypeNonIdrSlice:
DVLOG(LOG_LEVEL_ES) << "NAL: Non IDR slice";
is_key_frame_ = false;
return true;
case kNalUnitTypePPS:
DVLOG(LOG_LEVEL_ES) << "NAL: PPS";
return true;
case kNalUnitTypeAUD:
DVLOG(LOG_LEVEL_ES) << "NAL: AUD";
return true;
default:
DVLOG(LOG_LEVEL_ES) << "NAL: " << nal_unit_type;
return true;
}
NOTREACHED();
return false;
}
bool EsParserH264::ProcessSPS(const uint8* buf, int size) {
if (size <= 0)
return false;
// Removes start code emulation prevention.
// TODO(damienv): refactoring in media/base
// so as to have a unique H264 bit reader in Chrome.
scoped_ptr<uint8[]> buf_rbsp(new uint8[size]);
int rbsp_size = ConvertToRbsp(buf, size, buf_rbsp.get());
BitReaderH264 bit_reader(buf_rbsp.get(), rbsp_size);
int profile_idc;
int constraint_setX_flag;
int level_idc;
uint32 seq_parameter_set_id;
uint32 log2_max_frame_num_minus4;
uint32 pic_order_cnt_type;
RCHECK(bit_reader.ReadBits(8, &profile_idc));
RCHECK(bit_reader.ReadBits(8, &constraint_setX_flag));
RCHECK(bit_reader.ReadBits(8, &level_idc));
RCHECK(bit_reader.ReadBitsExpGolomb(&seq_parameter_set_id));
RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_frame_num_minus4));
RCHECK(bit_reader.ReadBitsExpGolomb(&pic_order_cnt_type));
// |pic_order_cnt_type| shall be in the range of 0 to 2.
RCHECK(pic_order_cnt_type <= 2);
if (pic_order_cnt_type == 0) {
uint32 log2_max_pic_order_cnt_lsb_minus4;
RCHECK(bit_reader.ReadBitsExpGolomb(&log2_max_pic_order_cnt_lsb_minus4));
} else if (pic_order_cnt_type == 1) {
// Note: |offset_for_non_ref_pic| and |offset_for_top_to_bottom_field|
// corresponds to their codenum not to their actual value.
int delta_pic_order_always_zero_flag;
uint32 offset_for_non_ref_pic;
uint32 offset_for_top_to_bottom_field;
uint32 num_ref_frames_in_pic_order_cnt_cycle;
RCHECK(bit_reader.ReadBits(1, &delta_pic_order_always_zero_flag));
RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_non_ref_pic));
RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_top_to_bottom_field));
RCHECK(
bit_reader.ReadBitsExpGolomb(&num_ref_frames_in_pic_order_cnt_cycle));
for (uint32 i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++) {
uint32 offset_for_ref_frame_codenum;
RCHECK(bit_reader.ReadBitsExpGolomb(&offset_for_ref_frame_codenum));
}
}
uint32 num_ref_frames;
int gaps_in_frame_num_value_allowed_flag;
uint32 pic_width_in_mbs_minus1;
uint32 pic_height_in_map_units_minus1;
RCHECK(bit_reader.ReadBitsExpGolomb(&num_ref_frames));
RCHECK(bit_reader.ReadBits(1, &gaps_in_frame_num_value_allowed_flag));
RCHECK(bit_reader.ReadBitsExpGolomb(&pic_width_in_mbs_minus1));
RCHECK(bit_reader.ReadBitsExpGolomb(&pic_height_in_map_units_minus1));
int frame_mbs_only_flag;
RCHECK(bit_reader.ReadBits(1, &frame_mbs_only_flag));
if (!frame_mbs_only_flag) {
int mb_adaptive_frame_field_flag;
RCHECK(bit_reader.ReadBits(1, &mb_adaptive_frame_field_flag));
}
int direct_8x8_inference_flag;
RCHECK(bit_reader.ReadBits(1, &direct_8x8_inference_flag));
int frame_cropping_flag;
uint32 frame_crop_left_offset = 0;
uint32 frame_crop_right_offset = 0;
uint32 frame_crop_top_offset = 0;
uint32 frame_crop_bottom_offset = 0;
RCHECK(bit_reader.ReadBits(1, &frame_cropping_flag));
if (frame_cropping_flag) {
RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_left_offset));
RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_right_offset));
RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_top_offset));
RCHECK(bit_reader.ReadBitsExpGolomb(&frame_crop_bottom_offset));
}
int vui_parameters_present_flag;
RCHECK(bit_reader.ReadBits(1, &vui_parameters_present_flag));
int sar_width = 1;
int sar_height = 1;
if (vui_parameters_present_flag) {
// Read only the aspect ratio information from the VUI section.
// TODO(damienv): check whether other VUI info are useful.
int aspect_ratio_info_present_flag;
RCHECK(bit_reader.ReadBits(1, &aspect_ratio_info_present_flag));
if (aspect_ratio_info_present_flag) {
int aspect_ratio_idc;
RCHECK(bit_reader.ReadBits(8, &aspect_ratio_idc));
if (aspect_ratio_idc == kExtendedSar) {
RCHECK(bit_reader.ReadBits(16, &sar_width));
RCHECK(bit_reader.ReadBits(16, &sar_height));
} else if (aspect_ratio_idc < 14) {
sar_width = kTableSarWidth[aspect_ratio_idc];
sar_height = kTableSarHeight[aspect_ratio_idc];
}
}
}
if (sar_width == 0 || sar_height == 0) {
DVLOG(1) << "Unspecified SAR not supported";
return false;
}
// TODO(damienv): a MAP unit can be either 16 or 32 pixels.
// although it's 16 pixels for progressive non MBAFF frames.
gfx::Size coded_size((pic_width_in_mbs_minus1 + 1) * 16,
(pic_height_in_map_units_minus1 + 1) * 16);
gfx::Rect visible_rect(
frame_crop_left_offset,
frame_crop_top_offset,
(coded_size.width() - frame_crop_right_offset) - frame_crop_left_offset,
(coded_size.height() - frame_crop_bottom_offset) - frame_crop_top_offset);
if (visible_rect.width() <= 0 || visible_rect.height() <= 0)
return false;
gfx::Size natural_size((visible_rect.width() * sar_width) / sar_height,
visible_rect.height());
if (natural_size.width() == 0)
return false;
// TODO(damienv):
// Assuming the SPS is used right away by the PPS
// and the slice headers is a strong assumption.
// In theory, we should process the SPS and PPS
// and only when one of the slice header is switching
// the PPS id, the video decoder config should be changed.
VideoDecoderConfig video_decoder_config(
kCodecH264,
VIDEO_CODEC_PROFILE_UNKNOWN, // TODO(damienv)
VideoFrame::YV12,
coded_size,
visible_rect,
natural_size,
NULL, 0,
false);
if (!video_decoder_config.Matches(last_video_decoder_config_)) {
DVLOG(1) << "Profile IDC: " << profile_idc;
DVLOG(1) << "Level IDC: " << level_idc;
DVLOG(1) << "Pic width: " << (pic_width_in_mbs_minus1 + 1) * 16;
DVLOG(1) << "Pic height: " << (pic_height_in_map_units_minus1 + 1) * 16;
DVLOG(1) << "log2_max_frame_num_minus4: " << log2_max_frame_num_minus4;
DVLOG(1) << "SAR: width=" << sar_width << " height=" << sar_height;
last_video_decoder_config_ = video_decoder_config;
new_video_config_cb_.Run(video_decoder_config);
}
return true;
}
} // namespace mp2t
} // namespace media