blob: 87c9f7074b6ee4388bce99eaacb3299e230b452b [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "base/bind.h"
#include "base/message_loop/message_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "media/base/audio_decoder_config.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "media/base/mock_demuxer_host.h"
#include "media/base/test_data_util.h"
#include "media/base/test_helpers.h"
#include "media/filters/chunk_demuxer.h"
#include "media/webm/cluster_builder.h"
#include "media/webm/webm_constants.h"
#include "media/webm/webm_crypto_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::AnyNumber;
using ::testing::Exactly;
using ::testing::InSequence;
using ::testing::NotNull;
using ::testing::Return;
using ::testing::SaveArg;
using ::testing::SetArgumentPointee;
using ::testing::_;
namespace media {
static const uint8 kTracksHeader[] = {
0x16, 0x54, 0xAE, 0x6B, // Tracks ID
0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // tracks(size = 0)
};
// WebM Block bytes that represent a VP8 keyframe.
static const uint8 kVP8Keyframe[] = {
0x010, 0x00, 0x00, 0x9d, 0x01, 0x2a, 0x00, 0x10, 0x00, 0x10, 0x00
};
// WebM Block bytes that represent a VP8 interframe.
static const uint8 kVP8Interframe[] = { 0x11, 0x00, 0x00 };
static const int kTracksHeaderSize = sizeof(kTracksHeader);
static const int kTracksSizeOffset = 4;
// The size of TrackEntry element in test file "webm_vorbis_track_entry" starts
// at index 1 and spans 8 bytes.
static const int kAudioTrackSizeOffset = 1;
static const int kAudioTrackSizeWidth = 8;
static const int kAudioTrackEntryHeaderSize = kAudioTrackSizeOffset +
kAudioTrackSizeWidth;
// The size of TrackEntry element in test file "webm_vp8_track_entry" starts at
// index 1 and spans 8 bytes.
static const int kVideoTrackSizeOffset = 1;
static const int kVideoTrackSizeWidth = 8;
static const int kVideoTrackEntryHeaderSize = kVideoTrackSizeOffset +
kVideoTrackSizeWidth;
static const int kVideoTrackNum = 1;
static const int kAudioTrackNum = 2;
static const int kAudioBlockDuration = 23;
static const int kVideoBlockDuration = 33;
static const int kBlockSize = 10;
static const char kSourceId[] = "SourceId";
static const char kDefaultFirstClusterRange[] = "{ [0,46) }";
static const int kDefaultFirstClusterEndTimestamp = 66;
static const int kDefaultSecondClusterEndTimestamp = 132;
base::TimeDelta kDefaultDuration() {
return base::TimeDelta::FromMilliseconds(201224);
}
// Write an integer into buffer in the form of vint that spans 8 bytes.
// The data pointed by |buffer| should be at least 8 bytes long.
// |number| should be in the range 0 <= number < 0x00FFFFFFFFFFFFFF.
static void WriteInt64(uint8* buffer, int64 number) {
DCHECK(number >= 0 && number < GG_LONGLONG(0x00FFFFFFFFFFFFFF));
buffer[0] = 0x01;
int64 tmp = number;
for (int i = 7; i > 0; i--) {
buffer[i] = tmp & 0xff;
tmp >>= 8;
}
}
MATCHER_P(HasTimestamp, timestamp_in_ms, "") {
return arg.get() && !arg->end_of_stream() &&
arg->timestamp().InMilliseconds() == timestamp_in_ms;
}
MATCHER(IsEndOfStream, "") { return arg.get() && arg->end_of_stream(); }
static void OnReadDone(const base::TimeDelta& expected_time,
bool* called,
DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>& buffer) {
EXPECT_EQ(status, DemuxerStream::kOk);
EXPECT_EQ(expected_time, buffer->timestamp());
*called = true;
}
static void OnReadDone_AbortExpected(
bool* called, DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>& buffer) {
EXPECT_EQ(status, DemuxerStream::kAborted);
EXPECT_EQ(NULL, buffer.get());
*called = true;
}
static void OnReadDone_EOSExpected(bool* called,
DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>& buffer) {
EXPECT_EQ(status, DemuxerStream::kOk);
EXPECT_TRUE(buffer->end_of_stream());
*called = true;
}
static void OnSeekDone_OKExpected(bool* called, PipelineStatus status) {
EXPECT_EQ(status, PIPELINE_OK);
*called = true;
}
class ChunkDemuxerTest : public testing::Test {
protected:
enum CodecsIndex {
AUDIO,
VIDEO,
MAX_CODECS_INDEX
};
// Default cluster to append first for simple tests.
scoped_ptr<Cluster> kDefaultFirstCluster() {
return GenerateCluster(0, 4);
}
// Default cluster to append after kDefaultFirstCluster()
// has been appended. This cluster starts with blocks that
// have timestamps consistent with the end times of the blocks
// in kDefaultFirstCluster() so that these two clusters represent
// a continuous region.
scoped_ptr<Cluster> kDefaultSecondCluster() {
return GenerateCluster(46, 66, 5);
}
ChunkDemuxerTest() {
CreateNewDemuxer();
}
void CreateNewDemuxer() {
base::Closure open_cb =
base::Bind(&ChunkDemuxerTest::DemuxerOpened, base::Unretained(this));
Demuxer::NeedKeyCB need_key_cb =
base::Bind(&ChunkDemuxerTest::DemuxerNeedKey, base::Unretained(this));
demuxer_.reset(new ChunkDemuxer(open_cb, need_key_cb, LogCB()));
}
virtual ~ChunkDemuxerTest() {
ShutdownDemuxer();
}
void CreateInitSegment(bool has_audio, bool has_video, bool has_text,
bool is_audio_encrypted, bool is_video_encrypted,
scoped_ptr<uint8[]>* buffer,
int* size) {
scoped_refptr<DecoderBuffer> ebml_header;
scoped_refptr<DecoderBuffer> info;
scoped_refptr<DecoderBuffer> audio_track_entry;
scoped_refptr<DecoderBuffer> video_track_entry;
scoped_refptr<DecoderBuffer> audio_content_encodings;
scoped_refptr<DecoderBuffer> video_content_encodings;
scoped_refptr<DecoderBuffer> text_track_entry;
ebml_header = ReadTestDataFile("webm_ebml_element");
info = ReadTestDataFile("webm_info_element");
int tracks_element_size = 0;
if (has_audio) {
audio_track_entry = ReadTestDataFile("webm_vorbis_track_entry");
tracks_element_size += audio_track_entry->data_size();
if (is_audio_encrypted) {
audio_content_encodings = ReadTestDataFile("webm_content_encodings");
tracks_element_size += audio_content_encodings->data_size();
}
}
if (has_video) {
video_track_entry = ReadTestDataFile("webm_vp8_track_entry");
tracks_element_size += video_track_entry->data_size();
if (is_video_encrypted) {
video_content_encodings = ReadTestDataFile("webm_content_encodings");
tracks_element_size += video_content_encodings->data_size();
}
}
if (has_text) {
// TODO(matthewjheaney): create an abstraction to do
// this (http://crbug/321454).
// We need it to also handle the creation of multiple text tracks.
//
// This is the track entry for a text track,
// TrackEntry [AE], size=30
// TrackNum [D7], size=1, val=3
// TrackUID [73] [C5], size=1, value=3
// TrackType [83], size=1, val=0x11
// CodecId [86], size=18, val="D_WEBVTT/SUBTITLES"
const char str[] = "\xAE\x9E\xD7\x81\x03\x73\xC5\x81\x03"
"\x83\x81\x11\x86\x92"
"D_WEBVTT/SUBTITLES";
const int len = strlen(str);
DCHECK_EQ(len, 32);
const uint8* const buf = reinterpret_cast<const uint8*>(str);
text_track_entry = DecoderBuffer::CopyFrom(buf, len);
tracks_element_size += text_track_entry->data_size();
}
*size = ebml_header->data_size() + info->data_size() +
kTracksHeaderSize + tracks_element_size;
buffer->reset(new uint8[*size]);
uint8* buf = buffer->get();
memcpy(buf, ebml_header->data(), ebml_header->data_size());
buf += ebml_header->data_size();
memcpy(buf, info->data(), info->data_size());
buf += info->data_size();
memcpy(buf, kTracksHeader, kTracksHeaderSize);
WriteInt64(buf + kTracksSizeOffset, tracks_element_size);
buf += kTracksHeaderSize;
// TODO(xhwang): Simplify this! Probably have test data files that contain
// ContentEncodings directly instead of trying to create one at run-time.
if (has_audio) {
memcpy(buf, audio_track_entry->data(),
audio_track_entry->data_size());
if (is_audio_encrypted) {
memcpy(buf + audio_track_entry->data_size(),
audio_content_encodings->data(),
audio_content_encodings->data_size());
WriteInt64(buf + kAudioTrackSizeOffset,
audio_track_entry->data_size() +
audio_content_encodings->data_size() -
kAudioTrackEntryHeaderSize);
buf += audio_content_encodings->data_size();
}
buf += audio_track_entry->data_size();
}
if (has_video) {
memcpy(buf, video_track_entry->data(),
video_track_entry->data_size());
if (is_video_encrypted) {
memcpy(buf + video_track_entry->data_size(),
video_content_encodings->data(),
video_content_encodings->data_size());
WriteInt64(buf + kVideoTrackSizeOffset,
video_track_entry->data_size() +
video_content_encodings->data_size() -
kVideoTrackEntryHeaderSize);
buf += video_content_encodings->data_size();
}
buf += video_track_entry->data_size();
}
if (has_text) {
memcpy(buf, text_track_entry->data(),
text_track_entry->data_size());
buf += text_track_entry->data_size();
}
}
ChunkDemuxer::Status AddId() {
return AddId(kSourceId, true, true);
}
ChunkDemuxer::Status AddId(const std::string& source_id,
bool has_audio, bool has_video) {
std::vector<std::string> codecs;
std::string type;
if (has_audio) {
codecs.push_back("vorbis");
type = "audio/webm";
}
if (has_video) {
codecs.push_back("vp8");
type = "video/webm";
}
if (!has_audio && !has_video) {
return AddId(kSourceId, true, true);
}
return demuxer_->AddId(source_id, type, codecs);
}
void AppendData(const uint8* data, size_t length) {
AppendData(kSourceId, data, length);
}
void AppendCluster(const std::string& source_id,
scoped_ptr<Cluster> cluster) {
AppendData(source_id, cluster->data(), cluster->size());
}
void AppendCluster(scoped_ptr<Cluster> cluster) {
AppendCluster(kSourceId, cluster.Pass());
}
void AppendCluster(int timecode, int block_count) {
AppendCluster(GenerateCluster(timecode, block_count));
}
void AppendSingleStreamCluster(const std::string& source_id, int track_number,
int timecode, int block_count) {
int block_duration = 0;
switch(track_number) {
case kVideoTrackNum:
block_duration = kVideoBlockDuration;
break;
case kAudioTrackNum:
block_duration = kAudioBlockDuration;
break;
}
ASSERT_NE(block_duration, 0);
int end_timecode = timecode + block_count * block_duration;
AppendCluster(source_id,
GenerateSingleStreamCluster(
timecode, end_timecode, track_number, block_duration));
}
void AppendSingleStreamCluster(const std::string& source_id, int track_number,
const std::string& cluster_description) {
std::vector<std::string> timestamps;
base::SplitString(cluster_description, ' ', &timestamps);
ClusterBuilder cb;
std::vector<uint8> data(10);
for (size_t i = 0; i < timestamps.size(); ++i) {
std::string timestamp_str = timestamps[i];
int block_flags = 0;
if (EndsWith(timestamp_str, "K", true)) {
block_flags = kWebMFlagKeyframe;
// Remove the "K" off of the token.
timestamp_str = timestamp_str.substr(0, timestamps[i].length() - 1);
}
int timestamp_in_ms;
CHECK(base::StringToInt(timestamp_str, &timestamp_in_ms));
if (i == 0)
cb.SetClusterTimecode(timestamp_in_ms);
cb.AddSimpleBlock(track_number, timestamp_in_ms, block_flags,
&data[0], data.size());
}
AppendCluster(source_id, cb.Finish());
}
void AppendData(const std::string& source_id,
const uint8* data, size_t length) {
EXPECT_CALL(host_, AddBufferedTimeRange(_, _)).Times(AnyNumber());
demuxer_->AppendData(source_id, data, length);
}
void AppendDataInPieces(const uint8* data, size_t length) {
AppendDataInPieces(data, length, 7);
}
void AppendDataInPieces(const uint8* data, size_t length, size_t piece_size) {
const uint8* start = data;
const uint8* end = data + length;
while (start < end) {
size_t append_size = std::min(piece_size,
static_cast<size_t>(end - start));
AppendData(start, append_size);
start += append_size;
}
}
void AppendInitSegment(bool has_audio, bool has_video) {
AppendInitSegmentWithSourceId(kSourceId, has_audio, has_video, false);
}
void AppendInitSegmentText(bool has_audio, bool has_video) {
AppendInitSegmentWithSourceId(kSourceId, has_audio, has_video, true);
}
void AppendInitSegmentWithSourceId(const std::string& source_id,
bool has_audio, bool has_video,
bool has_text) {
AppendInitSegmentWithEncryptedInfo(
source_id, has_audio, has_video, has_text, false, false);
}
void AppendInitSegmentWithEncryptedInfo(const std::string& source_id,
bool has_audio, bool has_video,
bool has_text,
bool is_audio_encrypted,
bool is_video_encrypted) {
scoped_ptr<uint8[]> info_tracks;
int info_tracks_size = 0;
CreateInitSegment(has_audio, has_video, has_text,
is_audio_encrypted, is_video_encrypted,
&info_tracks, &info_tracks_size);
AppendData(source_id, info_tracks.get(), info_tracks_size);
}
void AppendGarbage() {
// Fill up an array with gibberish.
int garbage_cluster_size = 10;
scoped_ptr<uint8[]> garbage_cluster(new uint8[garbage_cluster_size]);
for (int i = 0; i < garbage_cluster_size; ++i)
garbage_cluster[i] = i;
AppendData(garbage_cluster.get(), garbage_cluster_size);
}
void InitDoneCalled(PipelineStatus expected_status,
PipelineStatus status) {
EXPECT_EQ(status, expected_status);
}
void AppendEmptyCluster(int timecode) {
AppendCluster(GenerateEmptyCluster(timecode));
}
PipelineStatusCB CreateInitDoneCB(const base::TimeDelta& expected_duration,
PipelineStatus expected_status) {
if (expected_duration != kNoTimestamp())
EXPECT_CALL(host_, SetDuration(expected_duration));
return CreateInitDoneCB(expected_status);
}
PipelineStatusCB CreateInitDoneCB(PipelineStatus expected_status) {
return base::Bind(&ChunkDemuxerTest::InitDoneCalled,
base::Unretained(this),
expected_status);
}
bool InitDemuxer(bool has_audio, bool has_video) {
return InitDemuxerWithEncryptionInfo(has_audio, has_video, false,
false, false);
}
bool InitDemuxerText(bool has_audio, bool has_video) {
return InitDemuxerWithEncryptionInfo(has_audio, has_video, true,
false, false);
}
bool InitDemuxerWithEncryptionInfo(
bool has_audio, bool has_video, bool has_text,
bool is_audio_encrypted, bool is_video_encrypted) {
PipelineStatus expected_status =
(has_audio || has_video) ? PIPELINE_OK : DEMUXER_ERROR_COULD_NOT_OPEN;
base::TimeDelta expected_duration = kNoTimestamp();
if (expected_status == PIPELINE_OK)
expected_duration = kDefaultDuration();
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(expected_duration, expected_status), true);
if (AddId(kSourceId, has_audio, has_video) != ChunkDemuxer::kOk)
return false;
AppendInitSegmentWithEncryptedInfo(
kSourceId, has_audio, has_video, has_text,
is_audio_encrypted, is_video_encrypted);
return true;
}
bool InitDemuxerAudioAndVideoSourcesText(const std::string& audio_id,
const std::string& video_id,
bool has_text) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kDefaultDuration(), PIPELINE_OK), true);
if (AddId(audio_id, true, false) != ChunkDemuxer::kOk)
return false;
if (AddId(video_id, false, true) != ChunkDemuxer::kOk)
return false;
AppendInitSegmentWithSourceId(audio_id, true, false, has_text);
AppendInitSegmentWithSourceId(video_id, false, true, has_text);
return true;
}
bool InitDemuxerAudioAndVideoSources(const std::string& audio_id,
const std::string& video_id) {
return InitDemuxerAudioAndVideoSourcesText(audio_id, video_id, false);
}
// Initializes the demuxer with data from 2 files with different
// decoder configurations. This is used to test the decoder config change
// logic.
//
// bear-320x240.webm VideoDecoderConfig returns 320x240 for its natural_size()
// bear-640x360.webm VideoDecoderConfig returns 640x360 for its natural_size()
// The resulting video stream returns data from each file for the following
// time ranges.
// bear-320x240.webm : [0-501) [801-2737)
// bear-640x360.webm : [527-793)
//
// bear-320x240.webm AudioDecoderConfig returns 3863 for its extra_data_size()
// bear-640x360.webm AudioDecoderConfig returns 3935 for its extra_data_size()
// The resulting audio stream returns data from each file for the following
// time ranges.
// bear-320x240.webm : [0-524) [779-2737)
// bear-640x360.webm : [527-759)
bool InitDemuxerWithConfigChangeData() {
scoped_refptr<DecoderBuffer> bear1 = ReadTestDataFile("bear-320x240.webm");
scoped_refptr<DecoderBuffer> bear2 = ReadTestDataFile("bear-640x360.webm");
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(base::TimeDelta::FromMilliseconds(2744),
PIPELINE_OK), true);
if (AddId(kSourceId, true, true) != ChunkDemuxer::kOk)
return false;
// Append the whole bear1 file.
AppendData(bear1->data(), bear1->data_size());
CheckExpectedRanges(kSourceId, "{ [0,2737) }");
// Append initialization segment for bear2.
// Note: Offsets here and below are derived from
// media/test/data/bear-640x360-manifest.js and
// media/test/data/bear-320x240-manifest.js which were
// generated from media/test/data/bear-640x360.webm and
// media/test/data/bear-320x240.webm respectively.
AppendData(bear2->data(), 4340);
// Append a media segment that goes from [0.527000, 1.014000).
AppendData(bear2->data() + 55290, 18785);
CheckExpectedRanges(kSourceId, "{ [0,1028) [1201,2737) }");
// Append initialization segment for bear1 & fill gap with [779-1197)
// segment.
AppendData(bear1->data(), 4370);
AppendData(bear1->data() + 72737, 28183);
CheckExpectedRanges(kSourceId, "{ [0,2737) }");
MarkEndOfStream(PIPELINE_OK);
return true;
}
void ShutdownDemuxer() {
if (demuxer_) {
demuxer_->Shutdown();
message_loop_.RunUntilIdle();
}
}
void AddSimpleBlock(ClusterBuilder* cb, int track_num, int64 timecode) {
uint8 data[] = { 0x00 };
cb->AddSimpleBlock(track_num, timecode, 0, data, sizeof(data));
}
scoped_ptr<Cluster> GenerateCluster(int timecode, int block_count) {
return GenerateCluster(timecode, timecode, block_count);
}
void AddVideoBlockGroup(ClusterBuilder* cb, int track_num, int64 timecode,
int duration, int flags) {
const uint8* data =
(flags & kWebMFlagKeyframe) != 0 ? kVP8Keyframe : kVP8Interframe;
int size = (flags & kWebMFlagKeyframe) != 0 ? sizeof(kVP8Keyframe) :
sizeof(kVP8Interframe);
cb->AddBlockGroup(track_num, timecode, duration, flags, data, size);
}
scoped_ptr<Cluster> GenerateCluster(int first_audio_timecode,
int first_video_timecode,
int block_count) {
CHECK_GT(block_count, 0);
int size = 10;
scoped_ptr<uint8[]> data(new uint8[size]);
ClusterBuilder cb;
cb.SetClusterTimecode(std::min(first_audio_timecode, first_video_timecode));
if (block_count == 1) {
cb.AddBlockGroup(kAudioTrackNum, first_audio_timecode,
kAudioBlockDuration, kWebMFlagKeyframe,
data.get(), size);
return cb.Finish();
}
int audio_timecode = first_audio_timecode;
int video_timecode = first_video_timecode;
// Create simple blocks for everything except the last 2 blocks.
// The first video frame must be a keyframe.
uint8 video_flag = kWebMFlagKeyframe;
for (int i = 0; i < block_count - 2; i++) {
if (audio_timecode <= video_timecode) {
cb.AddSimpleBlock(kAudioTrackNum, audio_timecode, kWebMFlagKeyframe,
data.get(), size);
audio_timecode += kAudioBlockDuration;
continue;
}
cb.AddSimpleBlock(kVideoTrackNum, video_timecode, video_flag, data.get(),
size);
video_timecode += kVideoBlockDuration;
video_flag = 0;
}
// Make the last 2 blocks BlockGroups so that they don't get delayed by the
// block duration calculation logic.
if (audio_timecode <= video_timecode) {
cb.AddBlockGroup(kAudioTrackNum, audio_timecode, kAudioBlockDuration,
kWebMFlagKeyframe, data.get(), size);
AddVideoBlockGroup(&cb, kVideoTrackNum, video_timecode,
kVideoBlockDuration, video_flag);
} else {
AddVideoBlockGroup(&cb, kVideoTrackNum, video_timecode,
kVideoBlockDuration, video_flag);
cb.AddBlockGroup(kAudioTrackNum, audio_timecode, kAudioBlockDuration,
kWebMFlagKeyframe, data.get(), size);
}
return cb.Finish();
}
scoped_ptr<Cluster> GenerateSingleStreamCluster(int timecode,
int end_timecode,
int track_number,
int block_duration) {
CHECK_GT(end_timecode, timecode);
std::vector<uint8> data(kBlockSize);
ClusterBuilder cb;
cb.SetClusterTimecode(timecode);
// Create simple blocks for everything except the last block.
for (int i = 0; timecode < (end_timecode - block_duration); i++) {
cb.AddSimpleBlock(track_number, timecode, kWebMFlagKeyframe,
&data[0], data.size());
timecode += block_duration;
}
// Make the last block a BlockGroup so that it doesn't get delayed by the
// block duration calculation logic.
if (track_number == kVideoTrackNum) {
AddVideoBlockGroup(&cb, track_number, timecode, block_duration,
kWebMFlagKeyframe);
} else {
cb.AddBlockGroup(track_number, timecode, block_duration,
kWebMFlagKeyframe, &data[0], data.size());
}
return cb.Finish();
}
void Read(DemuxerStream::Type type, const DemuxerStream::ReadCB& read_cb) {
demuxer_->GetStream(type)->Read(read_cb);
message_loop_.RunUntilIdle();
}
void ReadAudio(const DemuxerStream::ReadCB& read_cb) {
Read(DemuxerStream::AUDIO, read_cb);
}
void ReadVideo(const DemuxerStream::ReadCB& read_cb) {
Read(DemuxerStream::VIDEO, read_cb);
}
void GenerateExpectedReads(int timecode, int block_count) {
GenerateExpectedReads(timecode, timecode, block_count);
}
void GenerateExpectedReads(int start_audio_timecode,
int start_video_timecode,
int block_count) {
CHECK_GT(block_count, 0);
if (block_count == 1) {
ExpectRead(DemuxerStream::AUDIO, start_audio_timecode);
return;
}
int audio_timecode = start_audio_timecode;
int video_timecode = start_video_timecode;
for (int i = 0; i < block_count; i++) {
if (audio_timecode <= video_timecode) {
ExpectRead(DemuxerStream::AUDIO, audio_timecode);
audio_timecode += kAudioBlockDuration;
continue;
}
ExpectRead(DemuxerStream::VIDEO, video_timecode);
video_timecode += kVideoBlockDuration;
}
}
void GenerateSingleStreamExpectedReads(int timecode,
int block_count,
DemuxerStream::Type type,
int block_duration) {
CHECK_GT(block_count, 0);
int stream_timecode = timecode;
for (int i = 0; i < block_count; i++) {
ExpectRead(type, stream_timecode);
stream_timecode += block_duration;
}
}
void GenerateAudioStreamExpectedReads(int timecode, int block_count) {
GenerateSingleStreamExpectedReads(
timecode, block_count, DemuxerStream::AUDIO, kAudioBlockDuration);
}
void GenerateVideoStreamExpectedReads(int timecode, int block_count) {
GenerateSingleStreamExpectedReads(
timecode, block_count, DemuxerStream::VIDEO, kVideoBlockDuration);
}
scoped_ptr<Cluster> GenerateEmptyCluster(int timecode) {
ClusterBuilder cb;
cb.SetClusterTimecode(timecode);
return cb.Finish();
}
void CheckExpectedRanges(const std::string& expected) {
CheckExpectedRanges(kSourceId, expected);
}
void CheckExpectedRanges(const std::string& id,
const std::string& expected) {
Ranges<base::TimeDelta> r = demuxer_->GetBufferedRanges(id);
std::stringstream ss;
ss << "{ ";
for (size_t i = 0; i < r.size(); ++i) {
ss << "[" << r.start(i).InMilliseconds() << ","
<< r.end(i).InMilliseconds() << ") ";
}
ss << "}";
EXPECT_EQ(ss.str(), expected);
}
MOCK_METHOD2(ReadDone, void(DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>&));
void StoreStatusAndBuffer(DemuxerStream::Status* status_out,
scoped_refptr<DecoderBuffer>* buffer_out,
DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>& buffer) {
*status_out = status;
*buffer_out = buffer;
}
void ReadUntilNotOkOrEndOfStream(DemuxerStream::Type type,
DemuxerStream::Status* status,
base::TimeDelta* last_timestamp) {
DemuxerStream* stream = demuxer_->GetStream(type);
scoped_refptr<DecoderBuffer> buffer;
*last_timestamp = kNoTimestamp();
do {
stream->Read(base::Bind(&ChunkDemuxerTest::StoreStatusAndBuffer,
base::Unretained(this), status, &buffer));
base::MessageLoop::current()->RunUntilIdle();
if (*status == DemuxerStream::kOk && !buffer->end_of_stream())
*last_timestamp = buffer->timestamp();
} while (*status == DemuxerStream::kOk && !buffer->end_of_stream());
}
void ExpectEndOfStream(DemuxerStream::Type type) {
EXPECT_CALL(*this, ReadDone(DemuxerStream::kOk, IsEndOfStream()));
demuxer_->GetStream(type)->Read(base::Bind(
&ChunkDemuxerTest::ReadDone, base::Unretained(this)));
message_loop_.RunUntilIdle();
}
void ExpectRead(DemuxerStream::Type type, int64 timestamp_in_ms) {
EXPECT_CALL(*this, ReadDone(DemuxerStream::kOk,
HasTimestamp(timestamp_in_ms)));
demuxer_->GetStream(type)->Read(base::Bind(
&ChunkDemuxerTest::ReadDone, base::Unretained(this)));
message_loop_.RunUntilIdle();
}
void ExpectConfigChanged(DemuxerStream::Type type) {
EXPECT_CALL(*this, ReadDone(DemuxerStream::kConfigChanged, _));
demuxer_->GetStream(type)->Read(base::Bind(
&ChunkDemuxerTest::ReadDone, base::Unretained(this)));
message_loop_.RunUntilIdle();
}
void CheckExpectedBuffers(DemuxerStream* stream,
const std::string& expected) {
std::vector<std::string> timestamps;
base::SplitString(expected, ' ', &timestamps);
std::stringstream ss;
for (size_t i = 0; i < timestamps.size(); ++i) {
DemuxerStream::Status status;
scoped_refptr<DecoderBuffer> buffer;
stream->Read(base::Bind(&ChunkDemuxerTest::StoreStatusAndBuffer,
base::Unretained(this), &status, &buffer));
base::MessageLoop::current()->RunUntilIdle();
if (status != DemuxerStream::kOk || buffer->end_of_stream())
break;
if (i > 0)
ss << " ";
ss << buffer->timestamp().InMilliseconds();
}
EXPECT_EQ(expected, ss.str());
}
MOCK_METHOD1(Checkpoint, void(int id));
struct BufferTimestamps {
int video_time_ms;
int audio_time_ms;
};
static const int kSkip = -1;
// Test parsing a WebM file.
// |filename| - The name of the file in media/test/data to parse.
// |timestamps| - The expected timestamps on the parsed buffers.
// a timestamp of kSkip indicates that a Read() call for that stream
// shouldn't be made on that iteration of the loop. If both streams have
// a kSkip then the loop will terminate.
bool ParseWebMFile(const std::string& filename,
const BufferTimestamps* timestamps,
const base::TimeDelta& duration) {
return ParseWebMFile(filename, timestamps, duration, true, true);
}
bool ParseWebMFile(const std::string& filename,
const BufferTimestamps* timestamps,
const base::TimeDelta& duration,
bool has_audio, bool has_video) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(duration, PIPELINE_OK), true);
if (AddId(kSourceId, has_audio, has_video) != ChunkDemuxer::kOk)
return false;
// Read a WebM file into memory and send the data to the demuxer.
scoped_refptr<DecoderBuffer> buffer = ReadTestDataFile(filename);
AppendDataInPieces(buffer->data(), buffer->data_size(), 512);
// Verify that the timestamps on the first few packets match what we
// expect.
for (size_t i = 0;
(timestamps[i].audio_time_ms != kSkip ||
timestamps[i].video_time_ms != kSkip);
i++) {
bool audio_read_done = false;
bool video_read_done = false;
if (timestamps[i].audio_time_ms != kSkip) {
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(
timestamps[i].audio_time_ms),
&audio_read_done));
EXPECT_TRUE(audio_read_done);
}
if (timestamps[i].video_time_ms != kSkip) {
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(
timestamps[i].video_time_ms),
&video_read_done));
EXPECT_TRUE(video_read_done);
}
}
return true;
}
MOCK_METHOD0(DemuxerOpened, void());
// TODO(xhwang): This is a workaround of the issue that move-only parameters
// are not supported in mocked methods. Remove this when the issue is fixed
// (http://code.google.com/p/googletest/issues/detail?id=395) or when we use
// std::string instead of scoped_ptr<uint8[]> (http://crbug.com/130689).
MOCK_METHOD3(NeedKeyMock, void(const std::string& type,
const uint8* init_data, int init_data_size));
void DemuxerNeedKey(const std::string& type,
const std::vector<uint8>& init_data) {
const uint8* init_data_ptr = init_data.empty() ? NULL : &init_data[0];
NeedKeyMock(type, init_data_ptr, init_data.size());
}
void Seek(base::TimeDelta seek_time) {
demuxer_->StartWaitingForSeek(seek_time);
demuxer_->Seek(seek_time, NewExpectedStatusCB(PIPELINE_OK));
message_loop_.RunUntilIdle();
}
void MarkEndOfStream(PipelineStatus status) {
demuxer_->MarkEndOfStream(status);
message_loop_.RunUntilIdle();
}
base::MessageLoop message_loop_;
MockDemuxerHost host_;
scoped_ptr<ChunkDemuxer> demuxer_;
private:
DISALLOW_COPY_AND_ASSIGN(ChunkDemuxerTest);
};
TEST_F(ChunkDemuxerTest, Init) {
// Test no streams, audio-only, video-only, and audio & video scenarios.
// Audio and video streams can be encrypted or not encrypted.
for (int i = 0; i < 16; i++) {
bool has_audio = (i & 0x1) != 0;
bool has_video = (i & 0x2) != 0;
bool is_audio_encrypted = (i & 0x4) != 0;
bool is_video_encrypted = (i & 0x8) != 0;
// No test on invalid combination.
if ((!has_audio && is_audio_encrypted) ||
(!has_video && is_video_encrypted)) {
continue;
}
CreateNewDemuxer();
if (is_audio_encrypted || is_video_encrypted) {
int need_key_count = (is_audio_encrypted ? 1 : 0) +
(is_video_encrypted ? 1 : 0);
EXPECT_CALL(*this, NeedKeyMock(kWebMEncryptInitDataType, NotNull(),
DecryptConfig::kDecryptionKeySize))
.Times(Exactly(need_key_count));
}
ASSERT_TRUE(InitDemuxerWithEncryptionInfo(
has_audio, has_video, false, is_audio_encrypted, is_video_encrypted));
DemuxerStream* audio_stream = demuxer_->GetStream(DemuxerStream::AUDIO);
if (has_audio) {
ASSERT_TRUE(audio_stream);
const AudioDecoderConfig& config = audio_stream->audio_decoder_config();
EXPECT_EQ(kCodecVorbis, config.codec());
EXPECT_EQ(32, config.bits_per_channel());
EXPECT_EQ(CHANNEL_LAYOUT_STEREO, config.channel_layout());
EXPECT_EQ(44100, config.samples_per_second());
EXPECT_TRUE(config.extra_data());
EXPECT_GT(config.extra_data_size(), 0u);
EXPECT_EQ(kSampleFormatPlanarF32, config.sample_format());
EXPECT_EQ(is_audio_encrypted,
audio_stream->audio_decoder_config().is_encrypted());
} else {
EXPECT_FALSE(audio_stream);
}
DemuxerStream* video_stream = demuxer_->GetStream(DemuxerStream::VIDEO);
if (has_video) {
EXPECT_TRUE(video_stream);
EXPECT_EQ(is_video_encrypted,
video_stream->video_decoder_config().is_encrypted());
} else {
EXPECT_FALSE(video_stream);
}
ShutdownDemuxer();
demuxer_.reset();
}
}
TEST_F(ChunkDemuxerTest, InitText) {
// Test with 1 video stream and 1 text streams, and 0 or 1 audio streams.
// No encryption cases handled here.
bool has_video = true;
bool is_audio_encrypted = false;
bool is_video_encrypted = false;
for (int i = 0; i < 2; i++) {
bool has_audio = (i & 0x1) != 0;
CreateNewDemuxer();
DemuxerStream* text_stream = NULL;
TextTrackConfig text_config;
EXPECT_CALL(host_, AddTextStream(_,_))
.WillOnce(DoAll(SaveArg<0>(&text_stream),
SaveArg<1>(&text_config)));
ASSERT_TRUE(InitDemuxerWithEncryptionInfo(
has_audio, has_video, true, is_audio_encrypted, is_video_encrypted));
ASSERT_TRUE(text_stream);
EXPECT_EQ(DemuxerStream::TEXT, text_stream->type());
EXPECT_EQ(kTextSubtitles, text_config.kind());
DemuxerStream* audio_stream = demuxer_->GetStream(DemuxerStream::AUDIO);
if (has_audio) {
ASSERT_TRUE(audio_stream);
const AudioDecoderConfig& config = audio_stream->audio_decoder_config();
EXPECT_EQ(kCodecVorbis, config.codec());
EXPECT_EQ(32, config.bits_per_channel());
EXPECT_EQ(CHANNEL_LAYOUT_STEREO, config.channel_layout());
EXPECT_EQ(44100, config.samples_per_second());
EXPECT_TRUE(config.extra_data());
EXPECT_GT(config.extra_data_size(), 0u);
EXPECT_EQ(kSampleFormatPlanarF32, config.sample_format());
EXPECT_EQ(is_audio_encrypted,
audio_stream->audio_decoder_config().is_encrypted());
} else {
EXPECT_FALSE(audio_stream);
}
DemuxerStream* video_stream = demuxer_->GetStream(DemuxerStream::VIDEO);
if (has_video) {
EXPECT_TRUE(video_stream);
EXPECT_EQ(is_video_encrypted,
video_stream->video_decoder_config().is_encrypted());
} else {
EXPECT_FALSE(video_stream);
}
ShutdownDemuxer();
demuxer_.reset();
}
}
// Make sure that the demuxer reports an error if Shutdown()
// is called before all the initialization segments are appended.
TEST_F(ChunkDemuxerTest, ShutdownBeforeAllInitSegmentsAppended) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(
kDefaultDuration(), DEMUXER_ERROR_COULD_NOT_OPEN), true);
EXPECT_EQ(AddId("audio", true, false), ChunkDemuxer::kOk);
EXPECT_EQ(AddId("video", false, true), ChunkDemuxer::kOk);
AppendInitSegmentWithSourceId("audio", true, false, false);
}
TEST_F(ChunkDemuxerTest, ShutdownBeforeAllInitSegmentsAppendedText) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(
kDefaultDuration(), DEMUXER_ERROR_COULD_NOT_OPEN), true);
EXPECT_EQ(AddId("audio", true, false), ChunkDemuxer::kOk);
EXPECT_EQ(AddId("video", false, true), ChunkDemuxer::kOk);
EXPECT_CALL(host_, AddTextStream(_,_))
.Times(Exactly(1));
AppendInitSegmentWithSourceId("video", false, true, true);
}
// Test that Seek() completes successfully when the first cluster
// arrives.
TEST_F(ChunkDemuxerTest, AppendDataAfterSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
InSequence s;
EXPECT_CALL(*this, Checkpoint(1));
Seek(base::TimeDelta::FromMilliseconds(46));
EXPECT_CALL(*this, Checkpoint(2));
Checkpoint(1);
AppendCluster(kDefaultSecondCluster());
message_loop_.RunUntilIdle();
Checkpoint(2);
}
// Test that parsing errors are handled for clusters appended after init.
TEST_F(ChunkDemuxerTest, ErrorWhileParsingClusterAfterInit) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
AppendGarbage();
}
// Test the case where a Seek() is requested while the parser
// is in the middle of cluster. This is to verify that the parser
// does not reset itself on a seek.
TEST_F(ChunkDemuxerTest, SeekWhileParsingCluster) {
ASSERT_TRUE(InitDemuxer(true, true));
InSequence s;
scoped_ptr<Cluster> cluster_a(GenerateCluster(0, 6));
// Split the cluster into two appends at an arbitrary point near the end.
int first_append_size = cluster_a->size() - 11;
int second_append_size = cluster_a->size() - first_append_size;
// Append the first part of the cluster.
AppendData(cluster_a->data(), first_append_size);
ExpectRead(DemuxerStream::AUDIO, 0);
ExpectRead(DemuxerStream::VIDEO, 0);
ExpectRead(DemuxerStream::AUDIO, kAudioBlockDuration);
// Note: We skip trying to read a video buffer here because computing
// the duration for this block relies on successfully parsing the last block
// in the cluster the cluster.
ExpectRead(DemuxerStream::AUDIO, 2 * kAudioBlockDuration);
Seek(base::TimeDelta::FromSeconds(5));
// Append the rest of the cluster.
AppendData(cluster_a->data() + first_append_size, second_append_size);
// Append the new cluster and verify that only the blocks
// in the new cluster are returned.
AppendCluster(GenerateCluster(5000, 6));
GenerateExpectedReads(5000, 6);
}
// Test the case where AppendData() is called before Init().
TEST_F(ChunkDemuxerTest, AppendDataBeforeInit) {
scoped_ptr<uint8[]> info_tracks;
int info_tracks_size = 0;
CreateInitSegment(true, true, false,
false, false, &info_tracks, &info_tracks_size);
demuxer_->AppendData(kSourceId, info_tracks.get(), info_tracks_size);
}
// Make sure Read() callbacks are dispatched with the proper data.
TEST_F(ChunkDemuxerTest, Read) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&video_read_done));
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
}
TEST_F(ChunkDemuxerTest, OutOfOrderClusters) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
AppendCluster(GenerateCluster(10, 4));
// Make sure that AppendCluster() does not fail with a cluster that has
// overlaps with the previously appended cluster.
AppendCluster(GenerateCluster(5, 4));
// Verify that AppendData() can still accept more data.
scoped_ptr<Cluster> cluster_c(GenerateCluster(45, 2));
demuxer_->AppendData(kSourceId, cluster_c->data(), cluster_c->size());
}
TEST_F(ChunkDemuxerTest, NonMonotonicButAboveClusterTimecode) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
ClusterBuilder cb;
// Test the case where block timecodes are not monotonically
// increasing but stay above the cluster timecode.
cb.SetClusterTimecode(5);
AddSimpleBlock(&cb, kAudioTrackNum, 5);
AddSimpleBlock(&cb, kVideoTrackNum, 10);
AddSimpleBlock(&cb, kAudioTrackNum, 7);
AddSimpleBlock(&cb, kVideoTrackNum, 15);
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
AppendCluster(cb.Finish());
// Verify that AppendData() ignores data after the error.
scoped_ptr<Cluster> cluster_b(GenerateCluster(20, 2));
demuxer_->AppendData(kSourceId, cluster_b->data(), cluster_b->size());
}
TEST_F(ChunkDemuxerTest, BackwardsAndBeforeClusterTimecode) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
ClusterBuilder cb;
// Test timecodes going backwards and including values less than the cluster
// timecode.
cb.SetClusterTimecode(5);
AddSimpleBlock(&cb, kAudioTrackNum, 5);
AddSimpleBlock(&cb, kVideoTrackNum, 5);
AddSimpleBlock(&cb, kAudioTrackNum, 3);
AddSimpleBlock(&cb, kVideoTrackNum, 3);
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
AppendCluster(cb.Finish());
// Verify that AppendData() ignores data after the error.
scoped_ptr<Cluster> cluster_b(GenerateCluster(6, 2));
demuxer_->AppendData(kSourceId, cluster_b->data(), cluster_b->size());
}
TEST_F(ChunkDemuxerTest, PerStreamMonotonicallyIncreasingTimestamps) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
ClusterBuilder cb;
// Test monotonic increasing timestamps on a per stream
// basis.
cb.SetClusterTimecode(5);
AddSimpleBlock(&cb, kAudioTrackNum, 5);
AddSimpleBlock(&cb, kVideoTrackNum, 5);
AddSimpleBlock(&cb, kAudioTrackNum, 4);
AddSimpleBlock(&cb, kVideoTrackNum, 7);
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
AppendCluster(cb.Finish());
}
// Test the case where a cluster is passed to AppendCluster() before
// INFO & TRACKS data.
TEST_F(ChunkDemuxerTest, ClusterBeforeInitSegment) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, NewExpectedStatusCB(DEMUXER_ERROR_COULD_NOT_OPEN), true);
ASSERT_EQ(AddId(), ChunkDemuxer::kOk);
AppendCluster(GenerateCluster(0, 1));
}
// Test cases where we get an MarkEndOfStream() call during initialization.
TEST_F(ChunkDemuxerTest, EOSDuringInit) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, NewExpectedStatusCB(DEMUXER_ERROR_COULD_NOT_OPEN), true);
MarkEndOfStream(PIPELINE_OK);
}
TEST_F(ChunkDemuxerTest, EndOfStreamWithNoAppend) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, NewExpectedStatusCB(DEMUXER_ERROR_COULD_NOT_OPEN), true);
ASSERT_EQ(AddId(), ChunkDemuxer::kOk);
CheckExpectedRanges("{ }");
MarkEndOfStream(PIPELINE_OK);
ShutdownDemuxer();
CheckExpectedRanges("{ }");
demuxer_->RemoveId(kSourceId);
demuxer_.reset();
}
TEST_F(ChunkDemuxerTest, EndOfStreamWithNoMediaAppend) {
ASSERT_TRUE(InitDemuxer(true, true));
CheckExpectedRanges("{ }");
MarkEndOfStream(PIPELINE_OK);
CheckExpectedRanges("{ }");
}
TEST_F(ChunkDemuxerTest, DecodeErrorEndOfStream) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
CheckExpectedRanges(kDefaultFirstClusterRange);
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
MarkEndOfStream(PIPELINE_ERROR_DECODE);
CheckExpectedRanges(kDefaultFirstClusterRange);
}
TEST_F(ChunkDemuxerTest, NetworkErrorEndOfStream) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
CheckExpectedRanges(kDefaultFirstClusterRange);
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_NETWORK));
MarkEndOfStream(PIPELINE_ERROR_NETWORK);
}
// Helper class to reduce duplicate code when testing end of stream
// Read() behavior.
class EndOfStreamHelper {
public:
explicit EndOfStreamHelper(Demuxer* demuxer)
: demuxer_(demuxer),
audio_read_done_(false),
video_read_done_(false) {
}
// Request a read on the audio and video streams.
void RequestReads() {
EXPECT_FALSE(audio_read_done_);
EXPECT_FALSE(video_read_done_);
DemuxerStream* audio = demuxer_->GetStream(DemuxerStream::AUDIO);
DemuxerStream* video = demuxer_->GetStream(DemuxerStream::VIDEO);
audio->Read(base::Bind(&OnEndOfStreamReadDone, &audio_read_done_));
video->Read(base::Bind(&OnEndOfStreamReadDone, &video_read_done_));
base::MessageLoop::current()->RunUntilIdle();
}
// Check to see if |audio_read_done_| and |video_read_done_| variables
// match |expected|.
void CheckIfReadDonesWereCalled(bool expected) {
base::MessageLoop::current()->RunUntilIdle();
EXPECT_EQ(expected, audio_read_done_);
EXPECT_EQ(expected, video_read_done_);
}
private:
static void OnEndOfStreamReadDone(
bool* called,
DemuxerStream::Status status,
const scoped_refptr<DecoderBuffer>& buffer) {
EXPECT_EQ(status, DemuxerStream::kOk);
EXPECT_TRUE(buffer->end_of_stream());
*called = true;
}
Demuxer* demuxer_;
bool audio_read_done_;
bool video_read_done_;
DISALLOW_COPY_AND_ASSIGN(EndOfStreamHelper);
};
// Make sure that all pending reads that we don't have media data for get an
// "end of stream" buffer when MarkEndOfStream() is called.
TEST_F(ChunkDemuxerTest, EndOfStreamWithPendingReads) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(GenerateCluster(0, 2));
bool audio_read_done_1 = false;
bool video_read_done_1 = false;
EndOfStreamHelper end_of_stream_helper_1(demuxer_.get());
EndOfStreamHelper end_of_stream_helper_2(demuxer_.get());
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&audio_read_done_1));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&video_read_done_1));
message_loop_.RunUntilIdle();
EXPECT_TRUE(audio_read_done_1);
EXPECT_TRUE(video_read_done_1);
end_of_stream_helper_1.RequestReads();
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(kVideoBlockDuration)));
MarkEndOfStream(PIPELINE_OK);
end_of_stream_helper_1.CheckIfReadDonesWereCalled(true);
end_of_stream_helper_2.RequestReads();
end_of_stream_helper_2.CheckIfReadDonesWereCalled(true);
}
// Make sure that all Read() calls after we get an MarkEndOfStream()
// call return an "end of stream" buffer.
TEST_F(ChunkDemuxerTest, ReadsAfterEndOfStream) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(GenerateCluster(0, 2));
bool audio_read_done_1 = false;
bool video_read_done_1 = false;
EndOfStreamHelper end_of_stream_helper_1(demuxer_.get());
EndOfStreamHelper end_of_stream_helper_2(demuxer_.get());
EndOfStreamHelper end_of_stream_helper_3(demuxer_.get());
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&audio_read_done_1));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&video_read_done_1));
end_of_stream_helper_1.RequestReads();
EXPECT_TRUE(audio_read_done_1);
EXPECT_TRUE(video_read_done_1);
end_of_stream_helper_1.CheckIfReadDonesWereCalled(false);
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(kVideoBlockDuration)));
MarkEndOfStream(PIPELINE_OK);
end_of_stream_helper_1.CheckIfReadDonesWereCalled(true);
// Request a few more reads and make sure we immediately get
// end of stream buffers.
end_of_stream_helper_2.RequestReads();
end_of_stream_helper_2.CheckIfReadDonesWereCalled(true);
end_of_stream_helper_3.RequestReads();
end_of_stream_helper_3.CheckIfReadDonesWereCalled(true);
}
TEST_F(ChunkDemuxerTest, EndOfStreamDuringCanceledSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(0, 10);
EXPECT_CALL(host_, SetDuration(base::TimeDelta::FromMilliseconds(138)));
MarkEndOfStream(PIPELINE_OK);
// Start the first seek.
Seek(base::TimeDelta::FromMilliseconds(20));
// Simulate another seek being requested before the first
// seek has finished prerolling.
base::TimeDelta seek_time2 = base::TimeDelta::FromMilliseconds(30);
demuxer_->CancelPendingSeek(seek_time2);
// Finish second seek.
Seek(seek_time2);
DemuxerStream::Status status;
base::TimeDelta last_timestamp;
// Make sure audio can reach end of stream.
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kOk);
// Make sure video can reach end of stream.
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kOk);
}
// Make sure AppendData() will accept elements that span multiple calls.
TEST_F(ChunkDemuxerTest, AppendingInPieces) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kDefaultDuration(), PIPELINE_OK), true);
ASSERT_EQ(AddId(), ChunkDemuxer::kOk);
scoped_ptr<uint8[]> info_tracks;
int info_tracks_size = 0;
CreateInitSegment(true, true, false,
false, false, &info_tracks, &info_tracks_size);
scoped_ptr<Cluster> cluster_a(kDefaultFirstCluster());
scoped_ptr<Cluster> cluster_b(kDefaultSecondCluster());
size_t buffer_size = info_tracks_size + cluster_a->size() + cluster_b->size();
scoped_ptr<uint8[]> buffer(new uint8[buffer_size]);
uint8* dst = buffer.get();
memcpy(dst, info_tracks.get(), info_tracks_size);
dst += info_tracks_size;
memcpy(dst, cluster_a->data(), cluster_a->size());
dst += cluster_a->size();
memcpy(dst, cluster_b->data(), cluster_b->size());
dst += cluster_b->size();
AppendDataInPieces(buffer.get(), buffer_size);
GenerateExpectedReads(0, 9);
}
TEST_F(ChunkDemuxerTest, WebMFile_AudioAndVideo) {
struct BufferTimestamps buffer_timestamps[] = {
{0, 0},
{33, 3},
{67, 6},
{100, 9},
{133, 12},
{kSkip, kSkip},
};
ASSERT_TRUE(ParseWebMFile("bear-320x240.webm", buffer_timestamps,
base::TimeDelta::FromMilliseconds(2744)));
}
TEST_F(ChunkDemuxerTest, WebMFile_LiveAudioAndVideo) {
struct BufferTimestamps buffer_timestamps[] = {
{0, 0},
{33, 3},
{67, 6},
{100, 9},
{133, 12},
{kSkip, kSkip},
};
ASSERT_TRUE(ParseWebMFile("bear-320x240-live.webm", buffer_timestamps,
kInfiniteDuration()));
}
TEST_F(ChunkDemuxerTest, WebMFile_AudioOnly) {
struct BufferTimestamps buffer_timestamps[] = {
{kSkip, 0},
{kSkip, 3},
{kSkip, 6},
{kSkip, 9},
{kSkip, 12},
{kSkip, kSkip},
};
ASSERT_TRUE(ParseWebMFile("bear-320x240-audio-only.webm", buffer_timestamps,
base::TimeDelta::FromMilliseconds(2744),
true, false));
}
TEST_F(ChunkDemuxerTest, WebMFile_VideoOnly) {
struct BufferTimestamps buffer_timestamps[] = {
{0, kSkip},
{33, kSkip},
{67, kSkip},
{100, kSkip},
{133, kSkip},
{kSkip, kSkip},
};
ASSERT_TRUE(ParseWebMFile("bear-320x240-video-only.webm", buffer_timestamps,
base::TimeDelta::FromMilliseconds(2703),
false, true));
}
TEST_F(ChunkDemuxerTest, WebMFile_AltRefFrames) {
struct BufferTimestamps buffer_timestamps[] = {
{0, 0},
{33, 3},
{33, 6},
{67, 9},
{100, 12},
{kSkip, kSkip},
};
ASSERT_TRUE(ParseWebMFile("bear-320x240-altref.webm", buffer_timestamps,
base::TimeDelta::FromMilliseconds(2767)));
}
// Verify that we output buffers before the entire cluster has been parsed.
TEST_F(ChunkDemuxerTest, IncrementalClusterParsing) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendEmptyCluster(0);
scoped_ptr<Cluster> cluster(GenerateCluster(0, 6));
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&video_read_done));
// Make sure the reads haven't completed yet.
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
// Append data one byte at a time until the audio read completes.
int i = 0;
for (; i < cluster->size() && !audio_read_done; ++i) {
AppendData(cluster->data() + i, 1);
message_loop_.RunUntilIdle();
}
EXPECT_TRUE(audio_read_done);
EXPECT_FALSE(video_read_done);
EXPECT_GT(i, 0);
EXPECT_LT(i, cluster->size());
// Append data one byte at a time until the video read completes.
for (; i < cluster->size() && !video_read_done; ++i) {
AppendData(cluster->data() + i, 1);
message_loop_.RunUntilIdle();
}
EXPECT_TRUE(video_read_done);
EXPECT_LT(i, cluster->size());
audio_read_done = false;
video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(23),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(33),
&video_read_done));
// Make sure the reads haven't completed yet.
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
// Append the remaining data.
ASSERT_LT(i, cluster->size());
AppendData(cluster->data() + i, cluster->size() - i);
message_loop_.RunUntilIdle();
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
}
TEST_F(ChunkDemuxerTest, ParseErrorDuringInit) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(
kNoTimestamp(), DEMUXER_ERROR_COULD_NOT_OPEN), true);
ASSERT_EQ(AddId(), ChunkDemuxer::kOk);
uint8 tmp = 0;
demuxer_->AppendData(kSourceId, &tmp, 1);
}
TEST_F(ChunkDemuxerTest, AVHeadersWithAudioOnlyType) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kNoTimestamp(),
DEMUXER_ERROR_COULD_NOT_OPEN), true);
std::vector<std::string> codecs(1);
codecs[0] = "vorbis";
ASSERT_EQ(demuxer_->AddId(kSourceId, "audio/webm", codecs),
ChunkDemuxer::kOk);
AppendInitSegment(true, true);
}
TEST_F(ChunkDemuxerTest, AVHeadersWithVideoOnlyType) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kNoTimestamp(),
DEMUXER_ERROR_COULD_NOT_OPEN), true);
std::vector<std::string> codecs(1);
codecs[0] = "vp8";
ASSERT_EQ(demuxer_->AddId(kSourceId, "video/webm", codecs),
ChunkDemuxer::kOk);
AppendInitSegment(true, true);
}
TEST_F(ChunkDemuxerTest, MultipleHeaders) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
// Append another identical initialization segment.
AppendInitSegment(true, true);
AppendCluster(kDefaultSecondCluster());
GenerateExpectedReads(0, 9);
}
TEST_F(ChunkDemuxerTest, AddSeparateSourcesForAudioAndVideo) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
// Append audio and video data into separate source ids.
AppendCluster(audio_id,
GenerateSingleStreamCluster(0, 92, kAudioTrackNum, kAudioBlockDuration));
GenerateAudioStreamExpectedReads(0, 4);
AppendCluster(video_id,
GenerateSingleStreamCluster(0, 132, kVideoTrackNum, kVideoBlockDuration));
GenerateVideoStreamExpectedReads(0, 4);
}
TEST_F(ChunkDemuxerTest, AddSeparateSourcesForAudioAndVideoText) {
// TODO(matthewjheaney): Here and elsewhere, we need more tests
// for inband text tracks (http://crbug/321455).
std::string audio_id = "audio1";
std::string video_id = "video1";
EXPECT_CALL(host_, AddTextStream(_,_))
.Times(Exactly(2));
ASSERT_TRUE(InitDemuxerAudioAndVideoSourcesText(audio_id, video_id, true));
// Append audio and video data into separate source ids.
AppendCluster(audio_id,
GenerateSingleStreamCluster(0, 92, kAudioTrackNum, kAudioBlockDuration));
GenerateAudioStreamExpectedReads(0, 4);
AppendCluster(video_id,
GenerateSingleStreamCluster(0, 132, kVideoTrackNum, kVideoBlockDuration));
GenerateVideoStreamExpectedReads(0, 4);
}
TEST_F(ChunkDemuxerTest, AddIdFailures) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kDefaultDuration(), PIPELINE_OK), true);
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_EQ(AddId(audio_id, true, false), ChunkDemuxer::kOk);
// Adding an id with audio/video should fail because we already added audio.
ASSERT_EQ(AddId(), ChunkDemuxer::kReachedIdLimit);
AppendInitSegmentWithSourceId(audio_id, true, false, false);
// Adding an id after append should fail.
ASSERT_EQ(AddId(video_id, false, true), ChunkDemuxer::kReachedIdLimit);
}
// Test that Read() calls after a RemoveId() return "end of stream" buffers.
TEST_F(ChunkDemuxerTest, RemoveId) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
// Append audio and video data into separate source ids.
AppendCluster(audio_id,
GenerateSingleStreamCluster(0, 92, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id,
GenerateSingleStreamCluster(0, 132, kVideoTrackNum, kVideoBlockDuration));
// Read() from audio should return normal buffers.
GenerateAudioStreamExpectedReads(0, 4);
// Remove the audio id.
demuxer_->RemoveId(audio_id);
// Read() from audio should return "end of stream" buffers.
bool audio_read_done = false;
ReadAudio(base::Bind(&OnReadDone_EOSExpected, &audio_read_done));
message_loop_.RunUntilIdle();
EXPECT_TRUE(audio_read_done);
// Read() from video should still return normal buffers.
GenerateVideoStreamExpectedReads(0, 4);
}
// Test that removing an ID immediately after adding it does not interfere with
// quota for new IDs in the future.
TEST_F(ChunkDemuxerTest, RemoveAndAddId) {
std::string audio_id_1 = "audio1";
ASSERT_TRUE(AddId(audio_id_1, true, false) == ChunkDemuxer::kOk);
demuxer_->RemoveId(audio_id_1);
std::string audio_id_2 = "audio2";
ASSERT_TRUE(AddId(audio_id_2, true, false) == ChunkDemuxer::kOk);
}
TEST_F(ChunkDemuxerTest, SeekCanceled) {
ASSERT_TRUE(InitDemuxer(true, true));
// Append cluster at the beginning of the stream.
AppendCluster(GenerateCluster(0, 4));
// Seek to an unbuffered region.
Seek(base::TimeDelta::FromSeconds(50));
// Attempt to read in unbuffered area; should not fulfill the read.
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone_AbortExpected, &audio_read_done));
ReadVideo(base::Bind(&OnReadDone_AbortExpected, &video_read_done));
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
// Now cancel the pending seek, which should flush the reads with empty
// buffers.
base::TimeDelta seek_time = base::TimeDelta::FromSeconds(0);
demuxer_->CancelPendingSeek(seek_time);
message_loop_.RunUntilIdle();
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
// A seek back to the buffered region should succeed.
Seek(seek_time);
GenerateExpectedReads(0, 4);
}
TEST_F(ChunkDemuxerTest, SeekCanceledWhileWaitingForSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
// Append cluster at the beginning of the stream.
AppendCluster(GenerateCluster(0, 4));
// Start waiting for a seek.
base::TimeDelta seek_time1 = base::TimeDelta::FromSeconds(50);
base::TimeDelta seek_time2 = base::TimeDelta::FromSeconds(0);
demuxer_->StartWaitingForSeek(seek_time1);
// Now cancel the upcoming seek to an unbuffered region.
demuxer_->CancelPendingSeek(seek_time2);
demuxer_->Seek(seek_time1, NewExpectedStatusCB(PIPELINE_OK));
// Read requests should be fulfilled with empty buffers.
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone_AbortExpected, &audio_read_done));
ReadVideo(base::Bind(&OnReadDone_AbortExpected, &video_read_done));
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
// A seek back to the buffered region should succeed.
Seek(seek_time2);
GenerateExpectedReads(0, 4);
}
// Test that Seek() successfully seeks to all source IDs.
TEST_F(ChunkDemuxerTest, SeekAudioAndVideoSources) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
AppendCluster(
audio_id,
GenerateSingleStreamCluster(0, 92, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(
video_id,
GenerateSingleStreamCluster(0, 132, kVideoTrackNum, kVideoBlockDuration));
// Read() should return buffers at 0.
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(0),
&video_read_done));
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
// Seek to 3 (an unbuffered region).
Seek(base::TimeDelta::FromSeconds(3));
audio_read_done = false;
video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromSeconds(3),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromSeconds(3),
&video_read_done));
// Read()s should not return until after data is appended at the Seek point.
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
AppendCluster(audio_id,
GenerateSingleStreamCluster(
3000, 3092, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id,
GenerateSingleStreamCluster(
3000, 3132, kVideoTrackNum, kVideoBlockDuration));
message_loop_.RunUntilIdle();
// Read() should return buffers at 3.
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
}
// Test that Seek() completes successfully when EndOfStream
// is called before data is available for that seek point.
// This scenario might be useful if seeking past the end of stream
// of either audio or video (or both).
TEST_F(ChunkDemuxerTest, EndOfStreamAfterPastEosSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(GenerateSingleStreamCluster(0, 120, kAudioTrackNum, 10));
AppendCluster(GenerateSingleStreamCluster(0, 100, kVideoTrackNum, 5));
// Seeking past the end of video.
// Note: audio data is available for that seek point.
bool seek_cb_was_called = false;
base::TimeDelta seek_time = base::TimeDelta::FromMilliseconds(110);
demuxer_->StartWaitingForSeek(seek_time);
demuxer_->Seek(seek_time,
base::Bind(OnSeekDone_OKExpected, &seek_cb_was_called));
message_loop_.RunUntilIdle();
EXPECT_FALSE(seek_cb_was_called);
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(120)));
MarkEndOfStream(PIPELINE_OK);
message_loop_.RunUntilIdle();
EXPECT_TRUE(seek_cb_was_called);
ShutdownDemuxer();
}
// Test that EndOfStream is ignored if coming during a pending seek
// whose seek time is before some existing ranges.
TEST_F(ChunkDemuxerTest, EndOfStreamDuringPendingSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(GenerateSingleStreamCluster(0, 120, kAudioTrackNum, 10));
AppendCluster(GenerateSingleStreamCluster(0, 100, kVideoTrackNum, 5));
AppendCluster(GenerateSingleStreamCluster(200, 300, kAudioTrackNum, 10));
AppendCluster(GenerateSingleStreamCluster(200, 300, kVideoTrackNum, 5));
bool seek_cb_was_called = false;
base::TimeDelta seek_time = base::TimeDelta::FromMilliseconds(160);
demuxer_->StartWaitingForSeek(seek_time);
demuxer_->Seek(seek_time,
base::Bind(OnSeekDone_OKExpected, &seek_cb_was_called));
message_loop_.RunUntilIdle();
EXPECT_FALSE(seek_cb_was_called);
EXPECT_CALL(host_, SetDuration(base::TimeDelta::FromMilliseconds(300)));
MarkEndOfStream(PIPELINE_OK);
message_loop_.RunUntilIdle();
EXPECT_FALSE(seek_cb_was_called);
demuxer_->UnmarkEndOfStream();
AppendCluster(GenerateSingleStreamCluster(140, 180, kAudioTrackNum, 10));
AppendCluster(GenerateSingleStreamCluster(140, 180, kVideoTrackNum, 5));
message_loop_.RunUntilIdle();
EXPECT_TRUE(seek_cb_was_called);
ShutdownDemuxer();
}
// Test ranges in an audio-only stream.
TEST_F(ChunkDemuxerTest, GetBufferedRanges_AudioIdOnly) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kDefaultDuration(), PIPELINE_OK), true);
ASSERT_EQ(AddId(kSourceId, true, false), ChunkDemuxer::kOk);
AppendInitSegment(true, false);
// Test a simple cluster.
AppendCluster(
GenerateSingleStreamCluster(0, 92, kAudioTrackNum, kAudioBlockDuration));
CheckExpectedRanges("{ [0,92) }");
// Append a disjoint cluster to check for two separate ranges.
AppendCluster(GenerateSingleStreamCluster(
150, 219, kAudioTrackNum, kAudioBlockDuration));
CheckExpectedRanges("{ [0,92) [150,219) }");
}
// Test ranges in a video-only stream.
TEST_F(ChunkDemuxerTest, GetBufferedRanges_VideoIdOnly) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kDefaultDuration(), PIPELINE_OK), true);
ASSERT_EQ(AddId(kSourceId, false, true), ChunkDemuxer::kOk);
AppendInitSegment(false, true);
// Test a simple cluster.
AppendCluster(
GenerateSingleStreamCluster(0, 132, kVideoTrackNum, kVideoBlockDuration));
CheckExpectedRanges("{ [0,132) }");
// Append a disjoint cluster to check for two separate ranges.
AppendCluster(GenerateSingleStreamCluster(
200, 299, kVideoTrackNum, kVideoBlockDuration));
CheckExpectedRanges("{ [0,132) [200,299) }");
}
TEST_F(ChunkDemuxerTest, GetBufferedRanges_AudioVideo) {
ASSERT_TRUE(InitDemuxer(true, true));
// Audio: 0 -> 23
// Video: 0 -> 33
// Buffered Range: 0 -> 23
// Audio block duration is smaller than video block duration,
// so the buffered ranges should correspond to the audio blocks.
AppendCluster(GenerateSingleStreamCluster(
0, kAudioBlockDuration, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(GenerateSingleStreamCluster(
0, kVideoBlockDuration, kVideoTrackNum, kVideoBlockDuration));
CheckExpectedRanges("{ [0,23) }");
// Audio: 300 -> 400
// Video: 320 -> 420
// Buffered Range: 320 -> 400 (end overlap)
AppendCluster(GenerateSingleStreamCluster(300, 400, kAudioTrackNum, 50));
AppendCluster(GenerateSingleStreamCluster(320, 420, kVideoTrackNum, 50));
CheckExpectedRanges("{ [0,23) [320,400) }");
// Audio: 520 -> 590
// Video: 500 -> 570
// Buffered Range: 520 -> 570 (front overlap)
AppendCluster(GenerateSingleStreamCluster(520, 590, kAudioTrackNum, 70));
AppendCluster(GenerateSingleStreamCluster(500, 570, kVideoTrackNum, 70));
CheckExpectedRanges("{ [0,23) [320,400) [520,570) }");
// Audio: 720 -> 750
// Video: 700 -> 770
// Buffered Range: 720 -> 750 (complete overlap, audio)
AppendCluster(GenerateSingleStreamCluster(720, 750, kAudioTrackNum, 30));
AppendCluster(GenerateSingleStreamCluster(700, 770, kVideoTrackNum, 70));
CheckExpectedRanges("{ [0,23) [320,400) [520,570) [720,750) }");
// Audio: 900 -> 970
// Video: 920 -> 950
// Buffered Range: 920 -> 950 (complete overlap, video)
AppendCluster(GenerateSingleStreamCluster(900, 970, kAudioTrackNum, 70));
AppendCluster(GenerateSingleStreamCluster(920, 950, kVideoTrackNum, 30));
CheckExpectedRanges("{ [0,23) [320,400) [520,570) [720,750) [920,950) }");
// Appending within buffered range should not affect buffered ranges.
AppendCluster(GenerateSingleStreamCluster(930, 950, kAudioTrackNum, 20));
CheckExpectedRanges("{ [0,23) [320,400) [520,570) [720,750) [920,950) }");
// Appending to single stream outside buffered ranges should not affect
// buffered ranges.
AppendCluster(GenerateSingleStreamCluster(1230, 1240, kVideoTrackNum, 10));
CheckExpectedRanges("{ [0,23) [320,400) [520,570) [720,750) [920,950) }");
}
// Once MarkEndOfStream() is called, GetBufferedRanges should not cut off any
// over-hanging tails at the end of the ranges as this is likely due to block
// duration differences.
TEST_F(ChunkDemuxerTest, GetBufferedRanges_EndOfStream) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(GenerateSingleStreamCluster(0, 90, kAudioTrackNum, 90));
AppendCluster(GenerateSingleStreamCluster(0, 100, kVideoTrackNum, 100));
CheckExpectedRanges("{ [0,90) }");
EXPECT_CALL(host_, SetDuration(base::TimeDelta::FromMilliseconds(100)));
MarkEndOfStream(PIPELINE_OK);
CheckExpectedRanges("{ [0,100) }");
}
TEST_F(ChunkDemuxerTest, DifferentStreamTimecodes) {
ASSERT_TRUE(InitDemuxer(true, true));
// Create a cluster where the video timecode begins 25ms after the audio.
AppendCluster(GenerateCluster(0, 25, 8));
Seek(base::TimeDelta::FromSeconds(0));
GenerateExpectedReads(0, 25, 8);
// Seek to 5 seconds.
Seek(base::TimeDelta::FromSeconds(5));
// Generate a cluster to fulfill this seek, where audio timecode begins 25ms
// after the video.
AppendCluster(GenerateCluster(5025, 5000, 8));
GenerateExpectedReads(5025, 5000, 8);
}
TEST_F(ChunkDemuxerTest, DifferentStreamTimecodesSeparateSources) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
// Generate two streams where the video stream starts 5ms after the audio
// stream and append them.
AppendCluster(audio_id, GenerateSingleStreamCluster(
25, 4 * kAudioBlockDuration + 25, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id, GenerateSingleStreamCluster(
30, 4 * kVideoBlockDuration + 30, kVideoTrackNum, kVideoBlockDuration));
// Both streams should be able to fulfill a seek to 25.
Seek(base::TimeDelta::FromMilliseconds(25));
GenerateAudioStreamExpectedReads(25, 4);
GenerateVideoStreamExpectedReads(30, 4);
}
TEST_F(ChunkDemuxerTest, DifferentStreamTimecodesOutOfRange) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
// Generate two streams where the video stream starts 10s after the audio
// stream and append them.
AppendCluster(audio_id, GenerateSingleStreamCluster(0,
4 * kAudioBlockDuration + 0, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id, GenerateSingleStreamCluster(10000,
4 * kVideoBlockDuration + 10000, kVideoTrackNum, kVideoBlockDuration));
// Should not be able to fulfill a seek to 0.
base::TimeDelta seek_time = base::TimeDelta::FromMilliseconds(0);
demuxer_->StartWaitingForSeek(seek_time);
demuxer_->Seek(seek_time,
NewExpectedStatusCB(PIPELINE_ERROR_ABORT));
ExpectRead(DemuxerStream::AUDIO, 0);
ExpectEndOfStream(DemuxerStream::VIDEO);
}
TEST_F(ChunkDemuxerTest, ClusterWithNoBuffers) {
ASSERT_TRUE(InitDemuxer(true, true));
// Generate and append an empty cluster beginning at 0.
AppendEmptyCluster(0);
// Sanity check that data can be appended after this cluster correctly.
AppendCluster(GenerateCluster(0, 2));
ExpectRead(DemuxerStream::AUDIO, 0);
ExpectRead(DemuxerStream::VIDEO, 0);
}
TEST_F(ChunkDemuxerTest, CodecPrefixMatching) {
ChunkDemuxer::Status expected = ChunkDemuxer::kNotSupported;
#if defined(USE_PROPRIETARY_CODECS)
expected = ChunkDemuxer::kOk;
#endif
std::vector<std::string> codecs;
codecs.push_back("avc1.4D4041");
EXPECT_EQ(demuxer_->AddId("source_id", "video/mp4", codecs), expected);
}
// Test codec ID's that are not compliant with RFC6381, but have been
// seen in the wild.
TEST_F(ChunkDemuxerTest, CodecIDsThatAreNotRFC6381Compliant) {
ChunkDemuxer::Status expected = ChunkDemuxer::kNotSupported;
#if defined(USE_PROPRIETARY_CODECS)
expected = ChunkDemuxer::kOk;
#endif
const char* codec_ids[] = {
// GPAC places leading zeros on the audio object type.
"mp4a.40.02",
"mp4a.40.05"
};
for (size_t i = 0; i < arraysize(codec_ids); ++i) {
std::vector<std::string> codecs;
codecs.push_back(codec_ids[i]);
ChunkDemuxer::Status result =
demuxer_->AddId("source_id", "audio/mp4", codecs);
EXPECT_EQ(result, expected)
<< "Fail to add codec_id '" << codec_ids[i] << "'";
if (result == ChunkDemuxer::kOk)
demuxer_->RemoveId("source_id");
}
}
TEST_F(ChunkDemuxerTest, EndOfStreamStillSetAfterSeek) {
ASSERT_TRUE(InitDemuxer(true, true));
EXPECT_CALL(host_, SetDuration(_))
.Times(AnyNumber());
base::TimeDelta kLastAudioTimestamp = base::TimeDelta::FromMilliseconds(92);
base::TimeDelta kLastVideoTimestamp = base::TimeDelta::FromMilliseconds(99);
AppendCluster(kDefaultFirstCluster());
AppendCluster(kDefaultSecondCluster());
MarkEndOfStream(PIPELINE_OK);
DemuxerStream::Status status;
base::TimeDelta last_timestamp;
// Verify that we can read audio & video to the end w/o problems.
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
EXPECT_EQ(DemuxerStream::kOk, status);
EXPECT_EQ(kLastAudioTimestamp, last_timestamp);
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
EXPECT_EQ(DemuxerStream::kOk, status);
EXPECT_EQ(kLastVideoTimestamp, last_timestamp);
// Seek back to 0 and verify that we can read to the end again..
Seek(base::TimeDelta::FromMilliseconds(0));
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
EXPECT_EQ(DemuxerStream::kOk, status);
EXPECT_EQ(kLastAudioTimestamp, last_timestamp);
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
EXPECT_EQ(DemuxerStream::kOk, status);
EXPECT_EQ(kLastVideoTimestamp, last_timestamp);
}
TEST_F(ChunkDemuxerTest, GetBufferedRangesBeforeInitSegment) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(&host_, CreateInitDoneCB(PIPELINE_OK), true);
ASSERT_EQ(AddId("audio", true, false), ChunkDemuxer::kOk);
ASSERT_EQ(AddId("video", false, true), ChunkDemuxer::kOk);
CheckExpectedRanges("audio", "{ }");
CheckExpectedRanges("video", "{ }");
}
// Test that Seek() completes successfully when the first cluster
// arrives.
TEST_F(ChunkDemuxerTest, EndOfStreamDuringSeek) {
InSequence s;
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
base::TimeDelta seek_time = base::TimeDelta::FromSeconds(0);
demuxer_->StartWaitingForSeek(seek_time);
AppendCluster(kDefaultSecondCluster());
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(kDefaultSecondClusterEndTimestamp)));
MarkEndOfStream(PIPELINE_OK);
demuxer_->Seek(seek_time, NewExpectedStatusCB(PIPELINE_OK));
GenerateExpectedReads(0, 4);
GenerateExpectedReads(46, 66, 5);
EndOfStreamHelper end_of_stream_helper(demuxer_.get());
end_of_stream_helper.RequestReads();
end_of_stream_helper.CheckIfReadDonesWereCalled(true);
}
TEST_F(ChunkDemuxerTest, ConfigChange_Video) {
InSequence s;
ASSERT_TRUE(InitDemuxerWithConfigChangeData());
DemuxerStream::Status status;
base::TimeDelta last_timestamp;
DemuxerStream* video = demuxer_->GetStream(DemuxerStream::VIDEO);
// Fetch initial video config and verify it matches what we expect.
const VideoDecoderConfig& video_config_1 = video->video_decoder_config();
ASSERT_TRUE(video_config_1.IsValidConfig());
EXPECT_EQ(video_config_1.natural_size().width(), 320);
EXPECT_EQ(video_config_1.natural_size().height(), 240);
ExpectRead(DemuxerStream::VIDEO, 0);
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kConfigChanged);
EXPECT_EQ(last_timestamp.InMilliseconds(), 501);
// Fetch the new decoder config.
const VideoDecoderConfig& video_config_2 = video->video_decoder_config();
ASSERT_TRUE(video_config_2.IsValidConfig());
EXPECT_EQ(video_config_2.natural_size().width(), 640);
EXPECT_EQ(video_config_2.natural_size().height(), 360);
ExpectRead(DemuxerStream::VIDEO, 527);
// Read until the next config change.
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kConfigChanged);
EXPECT_EQ(last_timestamp.InMilliseconds(), 793);
// Get the new config and verify that it matches the first one.
ASSERT_TRUE(video_config_1.Matches(video->video_decoder_config()));
ExpectRead(DemuxerStream::VIDEO, 801);
// Read until the end of the stream just to make sure there aren't any other
// config changes.
ReadUntilNotOkOrEndOfStream(DemuxerStream::VIDEO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kOk);
}
TEST_F(ChunkDemuxerTest, ConfigChange_Audio) {
InSequence s;
ASSERT_TRUE(InitDemuxerWithConfigChangeData());
DemuxerStream::Status status;
base::TimeDelta last_timestamp;
DemuxerStream* audio = demuxer_->GetStream(DemuxerStream::AUDIO);
// Fetch initial audio config and verify it matches what we expect.
const AudioDecoderConfig& audio_config_1 = audio->audio_decoder_config();
ASSERT_TRUE(audio_config_1.IsValidConfig());
EXPECT_EQ(audio_config_1.samples_per_second(), 44100);
EXPECT_EQ(audio_config_1.extra_data_size(), 3863u);
ExpectRead(DemuxerStream::AUDIO, 0);
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kConfigChanged);
EXPECT_EQ(last_timestamp.InMilliseconds(), 524);
// Fetch the new decoder config.
const AudioDecoderConfig& audio_config_2 = audio->audio_decoder_config();
ASSERT_TRUE(audio_config_2.IsValidConfig());
EXPECT_EQ(audio_config_2.samples_per_second(), 44100);
EXPECT_EQ(audio_config_2.extra_data_size(), 3935u);
ExpectRead(DemuxerStream::AUDIO, 527);
// Read until the next config change.
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kConfigChanged);
EXPECT_EQ(last_timestamp.InMilliseconds(), 759);
// Get the new config and verify that it matches the first one.
ASSERT_TRUE(audio_config_1.Matches(audio->audio_decoder_config()));
ExpectRead(DemuxerStream::AUDIO, 779);
// Read until the end of the stream just to make sure there aren't any other
// config changes.
ReadUntilNotOkOrEndOfStream(DemuxerStream::AUDIO, &status, &last_timestamp);
ASSERT_EQ(status, DemuxerStream::kOk);
}
TEST_F(ChunkDemuxerTest, ConfigChange_Seek) {
InSequence s;
ASSERT_TRUE(InitDemuxerWithConfigChangeData());
DemuxerStream* video = demuxer_->GetStream(DemuxerStream::VIDEO);
// Fetch initial video config and verify it matches what we expect.
const VideoDecoderConfig& video_config_1 = video->video_decoder_config();
ASSERT_TRUE(video_config_1.IsValidConfig());
EXPECT_EQ(video_config_1.natural_size().width(), 320);
EXPECT_EQ(video_config_1.natural_size().height(), 240);
ExpectRead(DemuxerStream::VIDEO, 0);
// Seek to a location with a different config.
Seek(base::TimeDelta::FromMilliseconds(527));
// Verify that the config change is signalled.
ExpectConfigChanged(DemuxerStream::VIDEO);
// Fetch the new decoder config and verify it is what we expect.
const VideoDecoderConfig& video_config_2 = video->video_decoder_config();
ASSERT_TRUE(video_config_2.IsValidConfig());
EXPECT_EQ(video_config_2.natural_size().width(), 640);
EXPECT_EQ(video_config_2.natural_size().height(), 360);
// Verify that Read() will return a buffer now.
ExpectRead(DemuxerStream::VIDEO, 527);
// Seek back to the beginning and verify we get another config change.
Seek(base::TimeDelta::FromMilliseconds(0));
ExpectConfigChanged(DemuxerStream::VIDEO);
ASSERT_TRUE(video_config_1.Matches(video->video_decoder_config()));
ExpectRead(DemuxerStream::VIDEO, 0);
// Seek to a location that requires a config change and then
// seek to a new location that has the same configuration as
// the start of the file without a Read() in the middle.
Seek(base::TimeDelta::FromMilliseconds(527));
Seek(base::TimeDelta::FromMilliseconds(801));
// Verify that no config change is signalled.
ExpectRead(DemuxerStream::VIDEO, 801);
ASSERT_TRUE(video_config_1.Matches(video->video_decoder_config()));
}
TEST_F(ChunkDemuxerTest, TimestampPositiveOffset) {
ASSERT_TRUE(InitDemuxer(true, true));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
kSourceId, base::TimeDelta::FromSeconds(30)));
AppendCluster(GenerateCluster(0, 2));
Seek(base::TimeDelta::FromMilliseconds(30000));
GenerateExpectedReads(30000, 2);
}
TEST_F(ChunkDemuxerTest, TimestampNegativeOffset) {
ASSERT_TRUE(InitDemuxer(true, true));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
kSourceId, base::TimeDelta::FromSeconds(-1)));
AppendCluster(GenerateCluster(1000, 2));
GenerateExpectedReads(0, 2);
}
TEST_F(ChunkDemuxerTest, TimestampOffsetSeparateStreams) {
std::string audio_id = "audio1";
std::string video_id = "video1";
ASSERT_TRUE(InitDemuxerAudioAndVideoSources(audio_id, video_id));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
audio_id, base::TimeDelta::FromMilliseconds(-2500)));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
video_id, base::TimeDelta::FromMilliseconds(-2500)));
AppendCluster(audio_id, GenerateSingleStreamCluster(2500,
2500 + kAudioBlockDuration * 4, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id, GenerateSingleStreamCluster(2500,
2500 + kVideoBlockDuration * 4, kVideoTrackNum, kVideoBlockDuration));
GenerateAudioStreamExpectedReads(0, 4);
GenerateVideoStreamExpectedReads(0, 4);
Seek(base::TimeDelta::FromMilliseconds(27300));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
audio_id, base::TimeDelta::FromMilliseconds(27300)));
ASSERT_TRUE(demuxer_->SetTimestampOffset(
video_id, base::TimeDelta::FromMilliseconds(27300)));
AppendCluster(audio_id, GenerateSingleStreamCluster(
0, kAudioBlockDuration * 4, kAudioTrackNum, kAudioBlockDuration));
AppendCluster(video_id, GenerateSingleStreamCluster(
0, kVideoBlockDuration * 4, kVideoTrackNum, kVideoBlockDuration));
GenerateVideoStreamExpectedReads(27300, 4);
GenerateAudioStreamExpectedReads(27300, 4);
}
TEST_F(ChunkDemuxerTest, TimestampOffsetMidParse) {
ASSERT_TRUE(InitDemuxer(true, true));
scoped_ptr<Cluster> cluster = GenerateCluster(0, 2);
// Append only part of the cluster data.
AppendData(cluster->data(), cluster->size() - 13);
// Setting a timestamp should fail because we're in the middle of a cluster.
ASSERT_FALSE(demuxer_->SetTimestampOffset(
kSourceId, base::TimeDelta::FromSeconds(25)));
demuxer_->Abort(kSourceId);
// After Abort(), setting a timestamp should succeed since we're no longer
// in the middle of a cluster
ASSERT_TRUE(demuxer_->SetTimestampOffset(
kSourceId, base::TimeDelta::FromSeconds(25)));
}
TEST_F(ChunkDemuxerTest, DurationChange) {
ASSERT_TRUE(InitDemuxer(true, true));
static const int kStreamDuration = kDefaultDuration().InMilliseconds();
// Add data leading up to the currently set duration.
AppendCluster(GenerateCluster(kStreamDuration - kAudioBlockDuration,
kStreamDuration - kVideoBlockDuration,
2));
CheckExpectedRanges(kSourceId, "{ [201191,201224) }");
// Add data at the currently set duration. The duration should not increase.
AppendCluster(GenerateCluster(kDefaultDuration().InMilliseconds(), 2));
// Range should not be affected.
CheckExpectedRanges(kSourceId, "{ [201191,201224) }");
// Now add data past the duration and expect a new duration to be signalled.
static const int kNewStreamDuration =
kStreamDuration + kAudioBlockDuration * 2;
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(kNewStreamDuration)));
AppendCluster(GenerateCluster(kStreamDuration + kAudioBlockDuration,
kStreamDuration + kVideoBlockDuration,
2));
// See that the range has increased appropriately.
CheckExpectedRanges(kSourceId, "{ [201191,201270) }");
}
TEST_F(ChunkDemuxerTest, DurationChangeTimestampOffset) {
ASSERT_TRUE(InitDemuxer(true, true));
ASSERT_TRUE(demuxer_->SetTimestampOffset(kSourceId, kDefaultDuration()));
EXPECT_CALL(host_, SetDuration(
kDefaultDuration() + base::TimeDelta::FromMilliseconds(
kAudioBlockDuration * 2)));
AppendCluster(GenerateCluster(0, 4));
}
TEST_F(ChunkDemuxerTest, EndOfStreamTruncateDuration) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
EXPECT_CALL(host_, SetDuration(
base::TimeDelta::FromMilliseconds(kDefaultFirstClusterEndTimestamp)));
MarkEndOfStream(PIPELINE_OK);
}
TEST_F(ChunkDemuxerTest, ZeroLengthAppend) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendData(NULL, 0);
}
TEST_F(ChunkDemuxerTest, AppendAfterEndOfStream) {
ASSERT_TRUE(InitDemuxer(true, true));
EXPECT_CALL(host_, SetDuration(_))
.Times(AnyNumber());
AppendCluster(kDefaultFirstCluster());
MarkEndOfStream(PIPELINE_OK);
demuxer_->UnmarkEndOfStream();
AppendCluster(kDefaultSecondCluster());
MarkEndOfStream(PIPELINE_OK);
}
// Test receiving a Shutdown() call before we get an Initialize()
// call. This can happen if video element gets destroyed before
// the pipeline has a chance to initialize the demuxer.
TEST_F(ChunkDemuxerTest, ShutdownBeforeInitialize) {
demuxer_->Shutdown();
demuxer_->Initialize(
&host_, CreateInitDoneCB(DEMUXER_ERROR_COULD_NOT_OPEN), true);
message_loop_.RunUntilIdle();
}
TEST_F(ChunkDemuxerTest, ReadAfterAudioDisabled) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(kDefaultFirstCluster());
DemuxerStream* stream = demuxer_->GetStream(DemuxerStream::AUDIO);
ASSERT_TRUE(stream);
// The stream should no longer be present.
demuxer_->OnAudioRendererDisabled();
ASSERT_FALSE(demuxer_->GetStream(DemuxerStream::AUDIO));
// Normally this would return an audio buffer at timestamp zero, but
// all reads should return EOS buffers when disabled.
bool audio_read_done = false;
stream->Read(base::Bind(&OnReadDone_EOSExpected, &audio_read_done));
message_loop_.RunUntilIdle();
EXPECT_TRUE(audio_read_done);
}
// Verifies that signalling end of stream while stalled at a gap
// boundary does not trigger end of stream buffers to be returned.
TEST_F(ChunkDemuxerTest, EndOfStreamWhileWaitingForGapToBeFilled) {
ASSERT_TRUE(InitDemuxer(true, true));
AppendCluster(0, 10);
AppendCluster(300, 10);
CheckExpectedRanges(kSourceId, "{ [0,132) [300,432) }");
GenerateExpectedReads(0, 10);
bool audio_read_done = false;
bool video_read_done = false;
ReadAudio(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(138),
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone,
base::TimeDelta::FromMilliseconds(138),
&video_read_done));
// Verify that the reads didn't complete
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
EXPECT_CALL(host_, SetDuration(base::TimeDelta::FromMilliseconds(438)));
MarkEndOfStream(PIPELINE_OK);
// Verify that the reads still haven't completed.
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
demuxer_->UnmarkEndOfStream();
AppendCluster(138, 24);
message_loop_.RunUntilIdle();
CheckExpectedRanges(kSourceId, "{ [0,438) }");
// Verify that the reads have completed.
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
// Read the rest of the buffers.
GenerateExpectedReads(161, 171, 22);
// Verify that reads block because the append cleared the end of stream state.
audio_read_done = false;
video_read_done = false;
ReadAudio(base::Bind(&OnReadDone_EOSExpected,
&audio_read_done));
ReadVideo(base::Bind(&OnReadDone_EOSExpected,
&video_read_done));
// Verify that the reads don't complete.
EXPECT_FALSE(audio_read_done);
EXPECT_FALSE(video_read_done);
MarkEndOfStream(PIPELINE_OK);
EXPECT_TRUE(audio_read_done);
EXPECT_TRUE(video_read_done);
}
TEST_F(ChunkDemuxerTest, CanceledSeekDuringInitialPreroll) {
ASSERT_TRUE(InitDemuxer(true, true));
// Cancel preroll.
base::TimeDelta seek_time = base::TimeDelta::FromMilliseconds(200);
demuxer_->CancelPendingSeek(seek_time);
// Initiate the seek to the new location.
Seek(seek_time);
// Append data to satisfy the seek.
AppendCluster(seek_time.InMilliseconds(), 10);
}
TEST_F(ChunkDemuxerTest, GCDuringSeek) {
ASSERT_TRUE(InitDemuxer(true, false));
demuxer_->SetMemoryLimitsForTesting(5 * kBlockSize);
base::TimeDelta seek_time1 = base::TimeDelta::FromMilliseconds(1000);
base::TimeDelta seek_time2 = base::TimeDelta::FromMilliseconds(500);
// Initiate a seek to |seek_time1|.
Seek(seek_time1);
// Append data to satisfy the first seek request.
AppendSingleStreamCluster(kSourceId, kAudioTrackNum,
seek_time1.InMilliseconds(), 5);
CheckExpectedRanges(kSourceId, "{ [1000,1115) }");
// Signal that the second seek is starting.
demuxer_->StartWaitingForSeek(seek_time2);
// Append data to satisfy the second seek. This append triggers
// the garbage collection logic since we set the memory limit to
// 5 blocks.
AppendSingleStreamCluster(kSourceId, kAudioTrackNum,
seek_time2.InMilliseconds(), 5);
// Verify that the buffers that cover |seek_time2| do not get
// garbage collected.
CheckExpectedRanges(kSourceId, "{ [500,615) }");
// Complete the seek.
demuxer_->Seek(seek_time2, NewExpectedStatusCB(PIPELINE_OK));
// Append more data and make sure that the blocks for |seek_time2|
// don't get removed.
//
// NOTE: The current GC algorithm tries to preserve the GOP at the
// current position as well as the last appended GOP. This is
// why there are 2 ranges in the expectations.
AppendSingleStreamCluster(kSourceId, kAudioTrackNum, 700, 5);
CheckExpectedRanges(kSourceId, "{ [500,592) [792,815) }");
}
TEST_F(ChunkDemuxerTest, RemoveBeforeInitSegment) {
EXPECT_CALL(*this, DemuxerOpened());
demuxer_->Initialize(
&host_, CreateInitDoneCB(kNoTimestamp(), PIPELINE_OK), true);
EXPECT_EQ(ChunkDemuxer::kOk, AddId(kSourceId, true, true));
demuxer_->Remove(kSourceId, base::TimeDelta::FromMilliseconds(0),
base::TimeDelta::FromMilliseconds(1));
}
TEST_F(ChunkDemuxerTest, AppendWindow) {
ASSERT_TRUE(InitDemuxer(false, true));
DemuxerStream* stream = demuxer_->GetStream(DemuxerStream::VIDEO);
// Set the append window to [20,280).
demuxer_->SetAppendWindowStart(kSourceId,
base::TimeDelta::FromMilliseconds(20));
demuxer_->SetAppendWindowEnd(kSourceId,
base::TimeDelta::FromMilliseconds(280));
// Append a cluster that starts before and ends after the append window.
AppendSingleStreamCluster(kSourceId, kVideoTrackNum,
"0K 30 60 90 120K 150 180 210 240K 270 300 330K");
// Verify that GOPs that start outside the window are not included
// in the buffer. Also verify that buffers that extend beyond the
// window are not included.
CheckExpectedRanges(kSourceId, "{ [120,300) }");
CheckExpectedBuffers(stream, "120 150 180 210 240 270");
// Extend the append window to [20,650).
demuxer_->SetAppendWindowEnd(kSourceId,
base::TimeDelta::FromMilliseconds(650));
// Append more data and verify that adding buffers start at the next
// keyframe.
AppendSingleStreamCluster(kSourceId, kVideoTrackNum,
"360 390 420K 450 480 510 540K 570 600 630K");
CheckExpectedRanges(kSourceId, "{ [120,300) [420,660) }");
}
TEST_F(ChunkDemuxerTest, StartWaitingForSeekAfterParseError) {
ASSERT_TRUE(InitDemuxer(true, true));
EXPECT_CALL(host_, OnDemuxerError(PIPELINE_ERROR_DECODE));
AppendGarbage();
base::TimeDelta seek_time = base::TimeDelta::FromSeconds(50);
demuxer_->StartWaitingForSeek(seek_time);
}
} // namespace media