blob: 5adfbc499f7491f8176e71d4c801104f0fa1cf26 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/gtest_prod_util.h"
#include "base/memory/scoped_vector.h"
#include "base/message_loop/message_loop.h"
#include "base/stl_util.h"
#include "base/strings/stringprintf.h"
#include "media/base/audio_buffer.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/fake_audio_renderer_sink.h"
#include "media/base/gmock_callback_support.h"
#include "media/base/mock_filters.h"
#include "media/base/test_helpers.h"
#include "media/filters/audio_renderer_impl.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::base::Time;
using ::base::TimeTicks;
using ::base::TimeDelta;
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::Invoke;
using ::testing::Return;
namespace media {
// Constants to specify the type of audio data used.
static AudioCodec kCodec = kCodecVorbis;
static SampleFormat kSampleFormat = kSampleFormatPlanarF32;
static ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
static int kChannels = ChannelLayoutToChannelCount(kChannelLayout);
static int kSamplesPerSecond = 44100;
// Constants for distinguishing between muted audio and playing audio when using
// ConsumeBufferedData(). Must match the type needed by kSampleFormat.
static float kMutedAudio = 0.0f;
static float kPlayingAudio = 0.5f;
static const int kDataSize = 1024;
class AudioRendererImplTest : public ::testing::Test {
public:
// Give the decoder some non-garbage media properties.
AudioRendererImplTest()
: demuxer_stream_(DemuxerStream::AUDIO),
decoder_(new MockAudioDecoder()) {
AudioDecoderConfig audio_config(kCodec,
kSampleFormat,
kChannelLayout,
kSamplesPerSecond,
NULL,
0,
false);
demuxer_stream_.set_audio_decoder_config(audio_config);
// Used to save callbacks and run them at a later time.
EXPECT_CALL(*decoder_, Read(_))
.WillRepeatedly(Invoke(this, &AudioRendererImplTest::ReadDecoder));
EXPECT_CALL(*decoder_, Reset(_))
.WillRepeatedly(Invoke(this, &AudioRendererImplTest::ResetDecoder));
// Set up audio properties.
EXPECT_CALL(*decoder_, bits_per_channel())
.WillRepeatedly(Return(audio_config.bits_per_channel()));
EXPECT_CALL(*decoder_, channel_layout())
.WillRepeatedly(Return(audio_config.channel_layout()));
EXPECT_CALL(*decoder_, samples_per_second())
.WillRepeatedly(Return(audio_config.samples_per_second()));
ScopedVector<AudioDecoder> decoders;
decoders.push_back(decoder_);
sink_ = new FakeAudioRendererSink();
renderer_.reset(new AudioRendererImpl(
message_loop_.message_loop_proxy(),
sink_,
decoders.Pass(),
SetDecryptorReadyCB()));
// Stub out time.
renderer_->set_now_cb_for_testing(base::Bind(
&AudioRendererImplTest::GetTime, base::Unretained(this)));
}
virtual ~AudioRendererImplTest() {
SCOPED_TRACE("~AudioRendererImplTest()");
WaitableMessageLoopEvent event;
renderer_->Stop(event.GetClosure());
event.RunAndWait();
}
void ExpectUnsupportedAudioDecoder() {
EXPECT_CALL(*decoder_, Initialize(_, _, _))
.WillOnce(RunCallback<1>(DECODER_ERROR_NOT_SUPPORTED));
}
void ExpectUnsupportedAudioDecoderConfig() {
EXPECT_CALL(*decoder_, bits_per_channel())
.WillRepeatedly(Return(3));
EXPECT_CALL(*decoder_, channel_layout())
.WillRepeatedly(Return(CHANNEL_LAYOUT_UNSUPPORTED));
EXPECT_CALL(*decoder_, samples_per_second())
.WillRepeatedly(Return(0));
EXPECT_CALL(*decoder_, Initialize(_, _, _))
.WillOnce(RunCallback<1>(PIPELINE_OK));
}
MOCK_METHOD1(OnStatistics, void(const PipelineStatistics&));
MOCK_METHOD0(OnUnderflow, void());
MOCK_METHOD0(OnDisabled, void());
MOCK_METHOD1(OnError, void(PipelineStatus));
void OnAudioTimeCallback(TimeDelta current_time, TimeDelta max_time) {
CHECK(current_time <= max_time);
}
void Initialize() {
EXPECT_CALL(*decoder_, Initialize(_, _, _))
.WillOnce(RunCallback<1>(PIPELINE_OK));
InitializeWithStatus(PIPELINE_OK);
next_timestamp_.reset(
new AudioTimestampHelper(decoder_->samples_per_second()));
}
void InitializeWithStatus(PipelineStatus expected) {
SCOPED_TRACE(base::StringPrintf("InitializeWithStatus(%d)", expected));
WaitableMessageLoopEvent event;
renderer_->Initialize(
&demuxer_stream_,
event.GetPipelineStatusCB(),
base::Bind(&AudioRendererImplTest::OnStatistics,
base::Unretained(this)),
base::Bind(&AudioRendererImplTest::OnUnderflow,
base::Unretained(this)),
base::Bind(&AudioRendererImplTest::OnAudioTimeCallback,
base::Unretained(this)),
ended_event_.GetClosure(),
base::Bind(&AudioRendererImplTest::OnDisabled,
base::Unretained(this)),
base::Bind(&AudioRendererImplTest::OnError,
base::Unretained(this)));
event.RunAndWaitForStatus(expected);
// We should have no reads.
EXPECT_TRUE(read_cb_.is_null());
}
void Flush() {
WaitableMessageLoopEvent flush_event;
renderer_->Flush(flush_event.GetClosure());
flush_event.RunAndWait();
EXPECT_FALSE(IsReadPending());
}
void Preroll() {
Preroll(0, PIPELINE_OK);
}
void Preroll(int timestamp_ms, PipelineStatus expected) {
SCOPED_TRACE(base::StringPrintf("Preroll(%d, %d)", timestamp_ms, expected));
TimeDelta timestamp = TimeDelta::FromMilliseconds(timestamp_ms);
next_timestamp_->SetBaseTimestamp(timestamp);
// Fill entire buffer to complete prerolling.
WaitableMessageLoopEvent event;
renderer_->Preroll(timestamp, event.GetPipelineStatusCB());
WaitForPendingRead();
DeliverRemainingAudio();
event.RunAndWaitForStatus(PIPELINE_OK);
// We should have no reads.
EXPECT_TRUE(read_cb_.is_null());
}
void Play() {
SCOPED_TRACE("Play()");
WaitableMessageLoopEvent event;
renderer_->Play(event.GetClosure());
renderer_->SetPlaybackRate(1.0f);
event.RunAndWait();
}
void Pause() {
WaitableMessageLoopEvent pause_event;
renderer_->Pause(pause_event.GetClosure());
pause_event.RunAndWait();
}
void Seek() {
Pause();
Flush();
Preroll();
}
void WaitForEnded() {
SCOPED_TRACE("WaitForEnded()");
ended_event_.RunAndWait();
}
bool IsReadPending() const {
return !read_cb_.is_null();
}
void WaitForPendingRead() {
SCOPED_TRACE("WaitForPendingRead()");
if (!read_cb_.is_null())
return;
DCHECK(wait_for_pending_read_cb_.is_null());
WaitableMessageLoopEvent event;
wait_for_pending_read_cb_ = event.GetClosure();
event.RunAndWait();
DCHECK(!read_cb_.is_null());
DCHECK(wait_for_pending_read_cb_.is_null());
}
// Delivers |size| frames with value kPlayingAudio to |renderer_|.
void SatisfyPendingRead(int size) {
CHECK_GT(size, 0);
CHECK(!read_cb_.is_null());
scoped_refptr<AudioBuffer> buffer =
MakePlanarAudioBuffer<float>(kSampleFormat,
kChannels,
kPlayingAudio,
0.0f,
size,
next_timestamp_->GetTimestamp(),
next_timestamp_->GetFrameDuration(size));
next_timestamp_->AddFrames(size);
DeliverBuffer(AudioDecoder::kOk, buffer);
}
void AbortPendingRead() {
DeliverBuffer(AudioDecoder::kAborted, NULL);
}
void DeliverEndOfStream() {
DeliverBuffer(AudioDecoder::kOk, AudioBuffer::CreateEOSBuffer());
}
// Delivers frames until |renderer_|'s internal buffer is full and no longer
// has pending reads.
void DeliverRemainingAudio() {
SatisfyPendingRead(frames_remaining_in_buffer());
}
// Attempts to consume |requested_frames| frames from |renderer_|'s internal
// buffer, returning true if all |requested_frames| frames were consumed,
// false if less than |requested_frames| frames were consumed.
//
// |muted| is optional and if passed will get set if the value of
// the consumed data is muted audio.
bool ConsumeBufferedData(int requested_frames, bool* muted) {
scoped_ptr<AudioBus> bus =
AudioBus::Create(kChannels, std::max(requested_frames, 1));
int frames_read;
if (!sink_->Render(bus.get(), 0, &frames_read)) {
if (muted)
*muted = true;
return false;
}
if (muted)
*muted = frames_read < 1 || bus->channel(0)[0] == kMutedAudio;
return frames_read == requested_frames;
}
// Attempts to consume all data available from the renderer. Returns the
// number of frames read. Since time is frozen, the audio delay will increase
// as frames come in.
int ConsumeAllBufferedData() {
renderer_->DisableUnderflowForTesting();
int frames_read = 0;
int total_frames_read = 0;
scoped_ptr<AudioBus> bus = AudioBus::Create(kChannels, 1024);
do {
TimeDelta audio_delay = TimeDelta::FromMicroseconds(
total_frames_read * Time::kMicrosecondsPerSecond /
static_cast<float>(decoder_->samples_per_second()));
frames_read = renderer_->Render(
bus.get(), audio_delay.InMilliseconds());
total_frames_read += frames_read;
} while (frames_read > 0);
return total_frames_read;
}
int frames_buffered() {
return renderer_->algorithm_->frames_buffered();
}
int buffer_capacity() {
return renderer_->algorithm_->QueueCapacity();
}
int frames_remaining_in_buffer() {
// This can happen if too much data was delivered, in which case the buffer
// will accept the data but not increase capacity.
if (frames_buffered() > buffer_capacity()) {
return 0;
}
return buffer_capacity() - frames_buffered();
}
void CallResumeAfterUnderflow() {
renderer_->ResumeAfterUnderflow();
}
TimeDelta CalculatePlayTime(int frames_filled) {
return TimeDelta::FromMicroseconds(
frames_filled * Time::kMicrosecondsPerSecond /
renderer_->audio_parameters_.sample_rate());
}
void EndOfStreamTest(float playback_rate) {
Initialize();
Preroll();
Play();
renderer_->SetPlaybackRate(playback_rate);
// Drain internal buffer, we should have a pending read.
int total_frames = frames_buffered();
int frames_filled = ConsumeAllBufferedData();
WaitForPendingRead();
// Due to how the cross-fade algorithm works we won't get an exact match
// between the ideal and expected number of frames consumed. In the faster
// than normal playback case, more frames are created than should exist and
// vice versa in the slower than normal playback case.
const float kEpsilon = 0.20 * (total_frames / playback_rate);
EXPECT_NEAR(frames_filled, total_frames / playback_rate, kEpsilon);
// Figure out how long until the ended event should fire.
TimeDelta audio_play_time = CalculatePlayTime(frames_filled);
DVLOG(1) << "audio_play_time = " << audio_play_time.InSecondsF();
// Fulfill the read with an end-of-stream packet. We shouldn't report ended
// nor have a read until we drain the internal buffer.
DeliverEndOfStream();
// Advance time half way without an ended expectation.
AdvanceTime(audio_play_time / 2);
ConsumeBufferedData(frames_buffered(), NULL);
// Advance time by other half and expect the ended event.
AdvanceTime(audio_play_time / 2);
ConsumeBufferedData(frames_buffered(), NULL);
WaitForEnded();
}
void AdvanceTime(TimeDelta time) {
base::AutoLock auto_lock(lock_);
time_ += time;
}
// Fixture members.
base::MessageLoop message_loop_;
scoped_ptr<AudioRendererImpl> renderer_;
scoped_refptr<FakeAudioRendererSink> sink_;
private:
TimeTicks GetTime() {
base::AutoLock auto_lock(lock_);
return time_;
}
void ReadDecoder(const AudioDecoder::ReadCB& read_cb) {
// TODO(scherkus): Make this a DCHECK after threading semantics are fixed.
if (base::MessageLoop::current() != &message_loop_) {
message_loop_.PostTask(FROM_HERE, base::Bind(
&AudioRendererImplTest::ReadDecoder,
base::Unretained(this), read_cb));
return;
}
CHECK(read_cb_.is_null()) << "Overlapping reads are not permitted";
read_cb_ = read_cb;
// Wake up WaitForPendingRead() if needed.
if (!wait_for_pending_read_cb_.is_null())
base::ResetAndReturn(&wait_for_pending_read_cb_).Run();
}
void ResetDecoder(const base::Closure& reset_cb) {
CHECK(read_cb_.is_null())
<< "Reset overlapping with reads is not permitted";
message_loop_.PostTask(FROM_HERE, reset_cb);
}
void DeliverBuffer(AudioDecoder::Status status,
const scoped_refptr<AudioBuffer>& buffer) {
CHECK(!read_cb_.is_null());
base::ResetAndReturn(&read_cb_).Run(status, buffer);
}
MockDemuxerStream demuxer_stream_;
MockAudioDecoder* decoder_;
// Used for stubbing out time in the audio callback thread.
base::Lock lock_;
TimeTicks time_;
// Used for satisfying reads.
AudioDecoder::ReadCB read_cb_;
scoped_ptr<AudioTimestampHelper> next_timestamp_;
WaitableMessageLoopEvent ended_event_;
// Run during ReadDecoder() to unblock WaitForPendingRead().
base::Closure wait_for_pending_read_cb_;
DISALLOW_COPY_AND_ASSIGN(AudioRendererImplTest);
};
TEST_F(AudioRendererImplTest, Initialize_Failed) {
ExpectUnsupportedAudioDecoderConfig();
InitializeWithStatus(PIPELINE_ERROR_INITIALIZATION_FAILED);
}
TEST_F(AudioRendererImplTest, Initialize_Successful) {
Initialize();
}
TEST_F(AudioRendererImplTest, Initialize_DecoderInitFailure) {
ExpectUnsupportedAudioDecoder();
InitializeWithStatus(DECODER_ERROR_NOT_SUPPORTED);
}
TEST_F(AudioRendererImplTest, Preroll) {
Initialize();
Preroll();
}
TEST_F(AudioRendererImplTest, Play) {
Initialize();
Preroll();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
}
TEST_F(AudioRendererImplTest, EndOfStream) {
EndOfStreamTest(1.0);
}
TEST_F(AudioRendererImplTest, EndOfStream_FasterPlaybackSpeed) {
EndOfStreamTest(2.0);
}
TEST_F(AudioRendererImplTest, EndOfStream_SlowerPlaybackSpeed) {
EndOfStreamTest(0.5);
}
TEST_F(AudioRendererImplTest, Underflow) {
Initialize();
Preroll();
int initial_capacity = buffer_capacity();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
renderer_->ResumeAfterUnderflow();
// Verify after resuming that we're still not getting data.
bool muted = false;
EXPECT_EQ(0, frames_buffered());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_TRUE(muted);
// Verify that the buffer capacity increased as a result of the underflow.
EXPECT_GT(buffer_capacity(), initial_capacity);
// Deliver data, we should get non-muted audio.
DeliverRemainingAudio();
EXPECT_TRUE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_FALSE(muted);
}
TEST_F(AudioRendererImplTest, Underflow_FollowedByFlush) {
Initialize();
Preroll();
int initial_capacity = buffer_capacity();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
renderer_->ResumeAfterUnderflow();
// Verify that the buffer capacity increased as a result of the underflow.
EXPECT_GT(buffer_capacity(), initial_capacity);
// Deliver data to get the renderer out of the underflow/rebuffer state.
DeliverRemainingAudio();
Seek();
// Verify that the buffer capacity is restored to the |initial_capacity|.
EXPECT_EQ(buffer_capacity(), initial_capacity);
}
TEST_F(AudioRendererImplTest, Underflow_EndOfStream) {
Initialize();
Preroll();
Play();
// Figure out how long until the ended event should fire. Since
// ConsumeBufferedData() doesn't provide audio delay information, the time
// until the ended event fires is equivalent to the longest buffered section,
// which is the initial frames_buffered() read.
TimeDelta time_until_ended = CalculatePlayTime(frames_buffered());
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
// Deliver a little bit of data.
SatisfyPendingRead(kDataSize);
WaitForPendingRead();
// Verify we're getting muted audio during underflow.
bool muted = false;
EXPECT_EQ(kDataSize, frames_buffered());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_TRUE(muted);
// Now deliver end of stream, we should get our little bit of data back.
DeliverEndOfStream();
EXPECT_EQ(kDataSize, frames_buffered());
EXPECT_TRUE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_FALSE(muted);
// Attempt to read to make sure we're truly at the end of stream.
AdvanceTime(time_until_ended);
EXPECT_FALSE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_TRUE(muted);
WaitForEnded();
}
TEST_F(AudioRendererImplTest, Underflow_ResumeFromCallback) {
Initialize();
Preroll();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow())
.WillOnce(Invoke(this, &AudioRendererImplTest::CallResumeAfterUnderflow));
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
// Verify after resuming that we're still not getting data.
bool muted = false;
EXPECT_EQ(0, frames_buffered());
EXPECT_FALSE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_TRUE(muted);
// Deliver data, we should get non-muted audio.
DeliverRemainingAudio();
EXPECT_TRUE(ConsumeBufferedData(kDataSize, &muted));
EXPECT_FALSE(muted);
}
TEST_F(AudioRendererImplTest, Underflow_SetPlaybackRate) {
Initialize();
Preroll();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow())
.WillOnce(Invoke(this, &AudioRendererImplTest::CallResumeAfterUnderflow));
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
EXPECT_EQ(0, frames_buffered());
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
// Simulate playback being paused.
renderer_->SetPlaybackRate(0);
EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
// Deliver data to resolve the underflow.
DeliverRemainingAudio();
EXPECT_EQ(FakeAudioRendererSink::kPaused, sink_->state());
// Simulate playback being resumed.
renderer_->SetPlaybackRate(1);
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
}
TEST_F(AudioRendererImplTest, Underflow_PausePlay) {
Initialize();
Preroll();
Play();
// Drain internal buffer, we should have a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered(), NULL));
WaitForPendingRead();
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
// Verify the next FillBuffer() call triggers the underflow callback
// since the decoder hasn't delivered any data after it was drained.
EXPECT_CALL(*this, OnUnderflow())
.WillOnce(Invoke(this, &AudioRendererImplTest::CallResumeAfterUnderflow));
EXPECT_FALSE(ConsumeBufferedData(kDataSize, NULL));
EXPECT_EQ(0, frames_buffered());
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
// Simulate playback being paused, and then played again.
renderer_->SetPlaybackRate(0.0);
renderer_->SetPlaybackRate(1.0);
// Deliver data to resolve the underflow.
DeliverRemainingAudio();
// We should have resumed playing now.
EXPECT_EQ(FakeAudioRendererSink::kPlaying, sink_->state());
}
TEST_F(AudioRendererImplTest, AbortPendingRead_Preroll) {
Initialize();
// Start prerolling and wait for a read.
WaitableMessageLoopEvent event;
renderer_->Preroll(TimeDelta(), event.GetPipelineStatusCB());
WaitForPendingRead();
// Simulate the decoder aborting the pending read.
AbortPendingRead();
event.RunAndWaitForStatus(PIPELINE_OK);
Flush();
// Preroll again to a different timestamp and verify it completed normally.
Preroll(1000, PIPELINE_OK);
}
TEST_F(AudioRendererImplTest, AbortPendingRead_Pause) {
Initialize();
Preroll();
Play();
// Partially drain internal buffer so we get a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered() / 2, NULL));
WaitForPendingRead();
// Start pausing.
WaitableMessageLoopEvent event;
renderer_->Pause(event.GetClosure());
// Simulate the decoder aborting the pending read.
AbortPendingRead();
event.RunAndWait();
Flush();
// Preroll again to a different timestamp and verify it completed normally.
Preroll(1000, PIPELINE_OK);
}
TEST_F(AudioRendererImplTest, AbortPendingRead_Flush) {
Initialize();
Preroll();
Play();
// Partially drain internal buffer so we get a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered() / 2, NULL));
WaitForPendingRead();
Pause();
EXPECT_TRUE(IsReadPending());
// Start flushing.
WaitableMessageLoopEvent flush_event;
renderer_->Flush(flush_event.GetClosure());
// Simulate the decoder aborting the pending read.
AbortPendingRead();
flush_event.RunAndWait();
EXPECT_FALSE(IsReadPending());
// Preroll again to a different timestamp and verify it completed normally.
Preroll(1000, PIPELINE_OK);
}
TEST_F(AudioRendererImplTest, PendingRead_Pause) {
Initialize();
Preroll();
Play();
// Partially drain internal buffer so we get a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered() / 2, NULL));
WaitForPendingRead();
// Start pausing.
WaitableMessageLoopEvent event;
renderer_->Pause(event.GetClosure());
SatisfyPendingRead(kDataSize);
event.RunAndWait();
Flush();
// Preroll again to a different timestamp and verify it completed normally.
Preroll(1000, PIPELINE_OK);
}
TEST_F(AudioRendererImplTest, PendingRead_Flush) {
Initialize();
Preroll();
Play();
// Partially drain internal buffer so we get a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered() / 2, NULL));
WaitForPendingRead();
Pause();
EXPECT_TRUE(IsReadPending());
// Start flushing.
WaitableMessageLoopEvent flush_event;
renderer_->Flush(flush_event.GetClosure());
SatisfyPendingRead(kDataSize);
flush_event.RunAndWait();
EXPECT_FALSE(IsReadPending());
// Preroll again to a different timestamp and verify it completed normally.
Preroll(1000, PIPELINE_OK);
}
TEST_F(AudioRendererImplTest, StopDuringFlush) {
Initialize();
Preroll();
Play();
// Partially drain internal buffer so we get a pending read.
EXPECT_TRUE(ConsumeBufferedData(frames_buffered() / 2, NULL));
WaitForPendingRead();
Pause();
EXPECT_TRUE(IsReadPending());
// Start flushing.
WaitableMessageLoopEvent flush_event;
renderer_->Flush(flush_event.GetClosure());
SatisfyPendingRead(kDataSize);
// Request a Stop() before the flush completes.
WaitableMessageLoopEvent stop_event;
renderer_->Stop(stop_event.GetClosure());
stop_event.RunAndWait();
}
} // namespace media