blob: 4fe8dbfb5014ddb89aa5b2a88a050b86b7253fa8 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/congestion_control/tcp_cubic_sender.h"
#include "net/quic/congestion_control/tcp_receiver.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/quic_config_peer.h"
#include "testing/gtest/include/gtest/gtest.h"
using std::make_pair;
using std::min;
namespace net {
namespace test {
const int64 kInitialCongestionWindow = 10;
const uint32 kDefaultWindowTCP = kInitialCongestionWindow * kDefaultTCPMSS;
const float kRenoBeta = 0.7f; // Reno backoff factor.
// TODO(ianswett): Remove 10000 once b/10075719 is fixed.
const QuicPacketCount kDefaultMaxCongestionWindowTCP = 10000;
class TcpCubicSenderPeer : public TcpCubicSender {
public:
TcpCubicSenderPeer(const QuicClock* clock,
bool reno,
QuicPacketCount max_tcp_congestion_window)
: TcpCubicSender(
clock, &rtt_stats_, reno, max_tcp_congestion_window, &stats_) {
}
QuicPacketCount congestion_window() {
return congestion_window_;
}
QuicPacketCount slowstart_threshold() {
return slowstart_threshold_;
}
const HybridSlowStart& hybrid_slow_start() const {
return hybrid_slow_start_;
}
float GetRenoBeta() const {
return RenoBeta();
}
RttStats rtt_stats_;
QuicConnectionStats stats_;
};
class TcpCubicSenderTest : public ::testing::Test {
protected:
TcpCubicSenderTest()
: one_ms_(QuicTime::Delta::FromMilliseconds(1)),
sender_(new TcpCubicSenderPeer(&clock_, true,
kDefaultMaxCongestionWindowTCP)),
receiver_(new TcpReceiver()),
sequence_number_(1),
acked_sequence_number_(0),
bytes_in_flight_(0) {
standard_packet_.bytes_sent = kDefaultTCPMSS;
}
int SendAvailableSendWindow() {
// Send as long as TimeUntilSend returns Zero.
int packets_sent = 0;
bool can_send = sender_->TimeUntilSend(
clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero();
while (can_send) {
sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++,
kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA);
++packets_sent;
bytes_in_flight_ += kDefaultTCPMSS;
can_send = sender_->TimeUntilSend(
clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero();
}
return packets_sent;
}
// Normal is that TCP acks every other segment.
void AckNPackets(int n) {
sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60),
QuicTime::Delta::Zero(),
clock_.Now());
SendAlgorithmInterface::CongestionVector acked_packets;
SendAlgorithmInterface::CongestionVector lost_packets;
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
acked_packets.push_back(
make_pair(acked_sequence_number_, standard_packet_));
}
sender_->OnCongestionEvent(
true, bytes_in_flight_, acked_packets, lost_packets);
bytes_in_flight_ -= n * kDefaultTCPMSS;
clock_.AdvanceTime(one_ms_);
}
void LoseNPackets(int n) {
SendAlgorithmInterface::CongestionVector acked_packets;
SendAlgorithmInterface::CongestionVector lost_packets;
for (int i = 0; i < n; ++i) {
++acked_sequence_number_;
lost_packets.push_back(
make_pair(acked_sequence_number_, standard_packet_));
}
sender_->OnCongestionEvent(
false, bytes_in_flight_, acked_packets, lost_packets);
bytes_in_flight_ -= n * kDefaultTCPMSS;
}
// Does not increment acked_sequence_number_.
void LosePacket(QuicPacketSequenceNumber sequence_number) {
SendAlgorithmInterface::CongestionVector acked_packets;
SendAlgorithmInterface::CongestionVector lost_packets;
lost_packets.push_back(
make_pair(sequence_number, standard_packet_));
sender_->OnCongestionEvent(
false, bytes_in_flight_, acked_packets, lost_packets);
bytes_in_flight_ -= kDefaultTCPMSS;
}
const QuicTime::Delta one_ms_;
MockClock clock_;
scoped_ptr<TcpCubicSenderPeer> sender_;
scoped_ptr<TcpReceiver> receiver_;
QuicPacketSequenceNumber sequence_number_;
QuicPacketSequenceNumber acked_sequence_number_;
QuicByteCount bytes_in_flight_;
TransmissionInfo standard_packet_;
};
TEST_F(TcpCubicSenderTest, SimpleSender) {
// At startup make sure we are at the default.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
// And that window is un-affected.
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// Fill the send window with data, then verify that we can't send.
SendAvailableSendWindow();
EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(),
sender_->GetCongestionWindow(),
HAS_RETRANSMITTABLE_DATA).IsZero());
}
TEST_F(TcpCubicSenderTest, ApplicationLimitedSlowStart) {
// Send exactly 10 packets and ensure the CWND ends at 14 packets.
const int kNumberOfAcks = 5;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
SendAvailableSendWindow();
for (int i = 0; i < kNumberOfAcks; ++i) {
AckNPackets(2);
}
QuicByteCount bytes_to_send = sender_->GetCongestionWindow();
// It's expected 2 acks will arrive when the bytes_in_flight are greater than
// half the CWND.
EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2,
bytes_to_send);
}
TEST_F(TcpCubicSenderTest, ExponentialSlowStart) {
const int kNumberOfAcks = 20;
// At startup make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
// Make sure we can send.
EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(),
0,
HAS_RETRANSMITTABLE_DATA).IsZero());
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount bytes_to_send = sender_->GetCongestionWindow();
EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks,
bytes_to_send);
}
TEST_F(TcpCubicSenderTest, SlowStartAckTrain) {
sender_->SetNumEmulatedConnections(1);
EXPECT_EQ(kDefaultMaxCongestionWindowTCP * kDefaultTCPMSS,
sender_->GetSlowStartThreshold());
// Make sure that we fall out of slow start when we send ACK train longer
// than half the RTT, in this test case 30ms, which is more than 30 calls to
// Ack2Packets in one round.
// Since we start at 10 packet first round will be 5 second round 10 etc
// Hence we should pass 30 at 65 = 5 + 10 + 20 + 30
const int kNumberOfAcks = 65;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// We should now have fallen out of slow start.
// Testing Reno phase.
// We should need 140(65*2+10) ACK:ed packets before increasing window by
// one.
for (int i = 0; i < 69; ++i) {
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
SendAvailableSendWindow();
AckNPackets(2);
QuicByteCount expected_ss_tresh = expected_send_window;
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(expected_ss_tresh, sender_->GetSlowStartThreshold());
EXPECT_EQ(140u, sender_->slowstart_threshold());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow());
EXPECT_EQ(expected_send_window / 2 / kDefaultTCPMSS,
sender_->slowstart_threshold());
// Now revert the RTO and ensure the CWND and slowstart threshold revert.
sender_->RevertRetransmissionTimeout();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
EXPECT_EQ(140u, sender_->slowstart_threshold());
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLoss) {
sender_->SetNumEmulatedConnections(1);
const int kNumberOfAcks = 10;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Lose a packet to exit slow start.
LoseNPackets(1);
size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS;
// We should now have fallen out of slow start with a reduced window.
expected_send_window *= kRenoBeta;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Recovery phase. We need to ack every packet in the recovery window before
// we exit recovery.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
DVLOG(1) << "number_packets: " << number_of_packets_in_window;
AckNPackets(packets_in_recovery_window);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// We need to ack an entire window before we increase CWND by 1.
AckNPackets(number_of_packets_in_window - 2);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Next ack should increase cwnd by 1.
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Now RTO and ensure slow start gets reset.
EXPECT_TRUE(sender_->hybrid_slow_start().started());
sender_->OnRetransmissionTimeout(true);
EXPECT_FALSE(sender_->hybrid_slow_start().started());
}
TEST_F(TcpCubicSenderTest, NoPRRWhenLessThanOnePacketInFlight) {
SendAvailableSendWindow();
LoseNPackets(kInitialCongestionWindow - 1);
AckNPackets(1);
// PRR will allow 2 packets for every ack during recovery.
EXPECT_EQ(2, SendAvailableSendWindow());
// Simulate abandoning all packets by supplying a bytes_in_flight of 0.
// PRR should now allow a packet to be sent, even though prr's state
// variables believe it has sent enough packets.
EXPECT_EQ(QuicTime::Delta::Zero(),
sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA));
}
TEST_F(TcpCubicSenderTest, SlowStartPacketLossPRR) {
sender_->SetNumEmulatedConnections(1);
// Test based on the first example in RFC6937.
// Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start with a reduced window.
size_t send_window_before_loss = expected_send_window;
expected_send_window *= kRenoBeta;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Testing TCP proportional rate reduction.
// We should send packets paced over the received acks for the remaining
// outstanding packets. The number of packets before we exit recovery is the
// original CWND minus the packet that has been lost and the one which
// triggered the loss.
size_t remaining_packets_in_recovery =
send_window_before_loss / kDefaultTCPMSS - 2;
for (size_t i = 0; i < remaining_packets_in_recovery; ++i) {
AckNPackets(1);
SendAvailableSendWindow();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// We need to ack another window before we increase CWND by 1.
size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
for (size_t i = 0; i < number_of_packets_in_window; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
AckNPackets(1);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, SlowStartBurstPacketLossPRR) {
sender_->SetNumEmulatedConnections(1);
// Test based on the second example in RFC6937, though we also implement
// forward acknowledgements, so the first two incoming acks will trigger
// PRR immediately.
// Ack 20 packets in 10 acks to raise the CWND to 30.
const int kNumberOfAcks = 10;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Lose one more than the congestion window reduction, so that after loss,
// bytes_in_flight is lesser than the congestion window.
size_t send_window_after_loss = kRenoBeta * expected_send_window;
size_t num_packets_to_lose =
(expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1;
LoseNPackets(num_packets_to_lose);
// Immediately after the loss, ensure at least one packet can be sent.
// Losses without subsequent acks can occur with timer based loss detection.
EXPECT_TRUE(sender_->TimeUntilSend(
clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero());
AckNPackets(1);
// We should now have fallen out of slow start with a reduced window.
expected_send_window *= kRenoBeta;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Only 2 packets should be allowed to be sent, per PRR-SSRB
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
LoseNPackets(1);
AckNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
// Ack the next packet, which triggers another loss.
LoseNPackets(1);
AckNPackets(1);
// Send 2 packets to simulate PRR-SSRB.
EXPECT_EQ(2, SendAvailableSendWindow());
// Exit recovery and return to sending at the new rate.
for (int i = 0; i < kNumberOfAcks; ++i) {
AckNPackets(1);
EXPECT_EQ(1, SendAvailableSendWindow());
}
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindowAndRevert) {
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
EXPECT_EQ(10000u, sender_->slowstart_threshold());
// Expect the window to decrease to the minimum once the RTO fires
// and slow start threshold to be set to 1/2 of the CWND.
sender_->OnRetransmissionTimeout(true);
EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow());
EXPECT_EQ(5u, sender_->slowstart_threshold());
// Now repair the RTO and ensure the slowstart threshold reverts.
sender_->RevertRetransmissionTimeout();
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
EXPECT_EQ(10000u, sender_->slowstart_threshold());
}
TEST_F(TcpCubicSenderTest, RTOCongestionWindowNoRetransmission) {
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
// Expect the window to remain unchanged if the RTO fires but no
// packets are retransmitted.
sender_->OnRetransmissionTimeout(false);
EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, RetransmissionDelay) {
const int64 kRttMs = 10;
const int64 kDeviationMs = 3;
EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay());
sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs),
QuicTime::Delta::Zero(), clock_.Now());
// Initial value is to set the median deviation to half of the initial
// rtt, the median in then multiplied by a factor of 4 and finally the
// smoothed rtt is added which is the initial rtt.
QuicTime::Delta expected_delay =
QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
EXPECT_EQ(expected_delay, sender_->RetransmissionDelay());
for (int i = 0; i < 100; ++i) {
// Run to make sure that we converge.
sender_->rtt_stats_.UpdateRtt(
QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs),
QuicTime::Delta::Zero(), clock_.Now());
sender_->rtt_stats_.UpdateRtt(
QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs),
QuicTime::Delta::Zero(), clock_.Now());
}
expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);
EXPECT_NEAR(kRttMs, sender_->rtt_stats_.SmoothedRtt().ToMilliseconds(), 1);
EXPECT_NEAR(expected_delay.ToMilliseconds(),
sender_->RetransmissionDelay().ToMilliseconds(),
1);
EXPECT_EQ(static_cast<int64>(
sender_->GetCongestionWindow() * kNumMicrosPerSecond /
sender_->rtt_stats_.SmoothedRtt().ToMicroseconds()),
sender_->BandwidthEstimate().ToBytesPerSecond());
}
TEST_F(TcpCubicSenderTest, SlowStartMaxSendWindow) {
const QuicPacketCount kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 100;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpRenoMaxCongestionWindow) {
const QuicPacketCount kMaxCongestionWindowTCP = 50;
const int kNumberOfAcks = 1000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, true, kMaxCongestionWindowTCP));
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
LoseNPackets(1);
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, TcpCubicMaxCongestionWindow) {
const QuicPacketCount kMaxCongestionWindowTCP = 50;
// Set to 10000 to compensate for small cubic alpha.
const int kNumberOfAcks = 10000;
sender_.reset(
new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP));
SendAvailableSendWindow();
AckNPackets(2);
// Make sure we fall out of slow start.
LoseNPackets(1);
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
QuicByteCount expected_send_window =
kMaxCongestionWindowTCP * kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, MultipleLossesInOneWindow) {
SendAvailableSendWindow();
const QuicByteCount initial_window = sender_->GetCongestionWindow();
LosePacket(acked_sequence_number_ + 1);
const QuicByteCount post_loss_window = sender_->GetCongestionWindow();
EXPECT_GT(initial_window, post_loss_window);
LosePacket(acked_sequence_number_ + 3);
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
LosePacket(sequence_number_ - 1);
EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
// Lose a later packet and ensure the window decreases.
LosePacket(sequence_number_);
EXPECT_GT(post_loss_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, DontTrackAckPackets) {
// Send a packet with no retransmittable data, and ensure it's not tracked.
EXPECT_FALSE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
sequence_number_++, kDefaultTCPMSS,
NO_RETRANSMITTABLE_DATA));
// Send a data packet with retransmittable data, and ensure it is tracked.
EXPECT_TRUE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
sequence_number_++, kDefaultTCPMSS,
HAS_RETRANSMITTABLE_DATA));
}
TEST_F(TcpCubicSenderTest, ConfigureMaxInitialWindow) {
QuicPacketCount congestion_window = sender_->congestion_window();
QuicConfig config;
QuicConfigPeer::SetReceivedInitialWindow(&config, 2 * congestion_window);
sender_->SetFromConfig(config, true);
EXPECT_EQ(2 * congestion_window, sender_->congestion_window());
// Verify that kCOPT: kIW10 forces the congestion window to the
// default of 10 regardless of ReceivedInitialWindow.
QuicTagVector options;
options.push_back(kIW10);
QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
sender_->SetFromConfig(config, true);
EXPECT_EQ(congestion_window, sender_->congestion_window());
}
TEST_F(TcpCubicSenderTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) {
sender_->SetNumEmulatedConnections(2);
// Ack 10 packets in 5 acks to raise the CWND to 20.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start with a reduced window.
expected_send_window = expected_send_window * sender_->GetRenoBeta();
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// No congestion window growth should occur in recovery phase, i.e., until the
// currently outstanding 20 packets are acked.
for (int i = 0; i < 10; ++i) {
// Send our full send window.
SendAvailableSendWindow();
EXPECT_TRUE(sender_->InRecovery());
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
EXPECT_FALSE(sender_->InRecovery());
// Out of recovery now. Congestion window should not grow for half an RTT.
size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS;
SendAvailableSendWindow();
AckNPackets(packets_in_send_window / 2 - 2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Next ack should increase congestion window by 1MSS.
SendAvailableSendWindow();
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
packets_in_send_window += 1;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Congestion window should remain steady again for half an RTT.
SendAvailableSendWindow();
AckNPackets(packets_in_send_window / 2 - 1);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// Next ack should cause congestion window to grow by 1MSS.
SendAvailableSendWindow();
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
TEST_F(TcpCubicSenderTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) {
sender_->SetNumEmulatedConnections(1);
// Ack 10 packets in 5 acks to raise the CWND to 20.
const int kNumberOfAcks = 5;
for (int i = 0; i < kNumberOfAcks; ++i) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
}
SendAvailableSendWindow();
QuicByteCount expected_send_window = kDefaultWindowTCP +
(kDefaultTCPMSS * 2 * kNumberOfAcks);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
LoseNPackets(1);
// We should now have fallen out of slow start with a reduced window.
expected_send_window *= kRenoBeta;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
// No congestion window growth should occur in recovery phase, i.e., until the
// currently outstanding 20 packets are acked.
for (int i = 0; i < 10; ++i) {
// Send our full send window.
SendAvailableSendWindow();
EXPECT_TRUE(sender_->InRecovery());
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
EXPECT_FALSE(sender_->InRecovery());
// Out of recovery now. Congestion window should not grow during RTT.
for (uint64 i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) {
// Send our full send window.
SendAvailableSendWindow();
AckNPackets(2);
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
// Next ack should cause congestion window to grow by 1MSS.
SendAvailableSendWindow();
AckNPackets(2);
expected_send_window += kDefaultTCPMSS;
EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
}
} // namespace test
} // namespace net