blob: 23a842dda3d93e1fcdfa4644e55d4d179813da85 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <algorithm>
#include <string>
#include <vector>
#include "base/basictypes.h"
#include "base/file_util.h"
#include "base/json/json_reader.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/path_service.h"
#include "base/stl_util.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "content/child/webcrypto/algorithm_dispatch.h"
#include "content/child/webcrypto/crypto_data.h"
#include "content/child/webcrypto/status.h"
#include "content/child/webcrypto/webcrypto_util.h"
#include "content/public/common/content_paths.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/WebKit/public/platform/WebCryptoAlgorithm.h"
#include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h"
#include "third_party/WebKit/public/platform/WebCryptoKey.h"
#include "third_party/WebKit/public/platform/WebCryptoKeyAlgorithm.h"
#include "third_party/re2/re2/re2.h"
#if !defined(USE_OPENSSL)
#include <nss.h>
#include <pk11pub.h>
#include "crypto/nss_util.h"
#include "crypto/scoped_nss_types.h"
#endif
#define EXPECT_BYTES_EQ(expected, actual) \
EXPECT_EQ(CryptoData(expected), CryptoData(actual))
#define EXPECT_BYTES_EQ_HEX(expected_hex, actual_bytes) \
EXPECT_BYTES_EQ(HexStringToBytes(expected_hex), actual_bytes)
namespace content {
namespace webcrypto {
// These functions are used by GTEST to support EXPECT_EQ() for
// webcrypto::Status and webcrypto::CryptoData
void PrintTo(const Status& status, ::std::ostream* os) {
if (status.IsSuccess())
*os << "Success";
else
*os << "Error type: " << status.error_type()
<< " Error details: " << status.error_details();
}
bool operator==(const content::webcrypto::Status& a,
const content::webcrypto::Status& b) {
if (a.IsSuccess() != b.IsSuccess())
return false;
if (a.IsSuccess())
return true;
return a.error_type() == b.error_type() &&
a.error_details() == b.error_details();
}
bool operator!=(const content::webcrypto::Status& a,
const content::webcrypto::Status& b) {
return !(a == b);
}
void PrintTo(const CryptoData& data, ::std::ostream* os) {
*os << "[" << base::HexEncode(data.bytes(), data.byte_length()) << "]";
}
bool operator==(const content::webcrypto::CryptoData& a,
const content::webcrypto::CryptoData& b) {
return a.byte_length() == b.byte_length() &&
memcmp(a.bytes(), b.bytes(), a.byte_length()) == 0;
}
bool operator!=(const content::webcrypto::CryptoData& a,
const content::webcrypto::CryptoData& b) {
return !(a == b);
}
namespace {
// -----------------------------------------------------------------------------
// TODO(eroman): For Linux builds using system NSS, AES-GCM support is a
// runtime dependency. Test it by trying to import a key.
// TODO(padolph): Consider caching the result of the import key test.
bool SupportsAesGcm() {
std::vector<uint8_t> key_raw(16, 0);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
Status status = ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_raw),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm),
true,
blink::WebCryptoKeyUsageEncrypt,
&key);
if (status.IsError())
EXPECT_EQ(blink::WebCryptoErrorTypeNotSupported, status.error_type());
return status.IsSuccess();
}
bool SupportsRsaOaep() {
#if defined(USE_OPENSSL)
return true;
#else
crypto::EnsureNSSInit();
// TODO(eroman): Exclude version test for OS_CHROMEOS
#if defined(USE_NSS)
if (!NSS_VersionCheck("3.16.2"))
return false;
#endif
crypto::ScopedPK11Slot slot(PK11_GetInternalKeySlot());
return !!PK11_DoesMechanism(slot.get(), CKM_RSA_PKCS_OAEP);
#endif
}
bool SupportsRsaKeyImport() {
// TODO(eroman): Exclude version test for OS_CHROMEOS
#if defined(USE_NSS)
crypto::EnsureNSSInit();
if (!NSS_VersionCheck("3.16.2")) {
LOG(WARNING) << "RSA key import is not supported by this version of NSS. "
"Skipping some tests";
return false;
}
#endif
return true;
}
blink::WebCryptoAlgorithm CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmId algorithm_id,
const blink::WebCryptoAlgorithmId hash_id,
unsigned int modulus_length,
const std::vector<uint8_t>& public_exponent) {
DCHECK(algorithm_id == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 ||
algorithm_id == blink::WebCryptoAlgorithmIdRsaOaep);
DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id));
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
algorithm_id,
new blink::WebCryptoRsaHashedKeyGenParams(
CreateAlgorithm(hash_id),
modulus_length,
vector_as_array(&public_exponent),
public_exponent.size()));
}
// Creates an RSA-OAEP algorithm
blink::WebCryptoAlgorithm CreateRsaOaepAlgorithm(
const std::vector<uint8_t>& label) {
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
blink::WebCryptoAlgorithmIdRsaOaep,
new blink::WebCryptoRsaOaepParams(
!label.empty(), vector_as_array(&label), label.size()));
}
// Creates an AES-CBC algorithm.
blink::WebCryptoAlgorithm CreateAesCbcAlgorithm(
const std::vector<uint8_t>& iv) {
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
blink::WebCryptoAlgorithmIdAesCbc,
new blink::WebCryptoAesCbcParams(vector_as_array(&iv), iv.size()));
}
// Creates an AES-GCM algorithm.
blink::WebCryptoAlgorithm CreateAesGcmAlgorithm(
const std::vector<uint8_t>& iv,
const std::vector<uint8_t>& additional_data,
unsigned int tag_length_bits) {
EXPECT_TRUE(SupportsAesGcm());
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
blink::WebCryptoAlgorithmIdAesGcm,
new blink::WebCryptoAesGcmParams(vector_as_array(&iv),
iv.size(),
true,
vector_as_array(&additional_data),
additional_data.size(),
true,
tag_length_bits));
}
// Creates an HMAC algorithm whose parameters struct is compatible with key
// generation. It is an error to call this with a hash_id that is not a SHA*.
// The key_length_bits parameter is optional, with zero meaning unspecified.
blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm(
blink::WebCryptoAlgorithmId hash_id,
unsigned int key_length_bits) {
DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id));
// key_length_bytes == 0 means unspecified
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
blink::WebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacKeyGenParams(
CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits));
}
// Returns a slightly modified version of the input vector.
//
// - For non-empty inputs a single bit is inverted.
// - For empty inputs, a byte is added.
std::vector<uint8_t> Corrupted(const std::vector<uint8_t>& input) {
std::vector<uint8_t> corrupted_data(input);
if (corrupted_data.empty())
corrupted_data.push_back(0);
corrupted_data[corrupted_data.size() / 2] ^= 0x01;
return corrupted_data;
}
std::vector<uint8_t> HexStringToBytes(const std::string& hex) {
std::vector<uint8_t> bytes;
base::HexStringToBytes(hex, &bytes);
return bytes;
}
std::vector<uint8_t> MakeJsonVector(const std::string& json_string) {
return std::vector<uint8_t>(json_string.begin(), json_string.end());
}
std::vector<uint8_t> MakeJsonVector(const base::DictionaryValue& dict) {
std::string json;
base::JSONWriter::Write(&dict, &json);
return MakeJsonVector(json);
}
// ----------------------------------------------------------------
// Helpers for working with JSON data files for test expectations.
// ----------------------------------------------------------------
// Reads a file in "src/content/test/data/webcrypto" to a base::Value.
// The file must be JSON, however it can also include C++ style comments.
::testing::AssertionResult ReadJsonTestFile(const char* test_file_name,
scoped_ptr<base::Value>* value) {
base::FilePath test_data_dir;
if (!PathService::Get(DIR_TEST_DATA, &test_data_dir))
return ::testing::AssertionFailure() << "Couldn't retrieve test dir";
base::FilePath file_path =
test_data_dir.AppendASCII("webcrypto").AppendASCII(test_file_name);
std::string file_contents;
if (!base::ReadFileToString(file_path, &file_contents)) {
return ::testing::AssertionFailure()
<< "Couldn't read test file: " << file_path.value();
}
// Strip C++ style comments out of the "json" file, otherwise it cannot be
// parsed.
re2::RE2::GlobalReplace(&file_contents, re2::RE2("\\s*//.*"), "");
// Parse the JSON to a dictionary.
value->reset(base::JSONReader::Read(file_contents));
if (!value->get()) {
return ::testing::AssertionFailure()
<< "Couldn't parse test file JSON: " << file_path.value();
}
return ::testing::AssertionSuccess();
}
// Same as ReadJsonTestFile(), but return the value as a List.
::testing::AssertionResult ReadJsonTestFileToList(
const char* test_file_name,
scoped_ptr<base::ListValue>* list) {
// Read the JSON.
scoped_ptr<base::Value> json;
::testing::AssertionResult result = ReadJsonTestFile(test_file_name, &json);
if (!result)
return result;
// Cast to an ListValue.
base::ListValue* list_value = NULL;
if (!json->GetAsList(&list_value) || !list_value)
return ::testing::AssertionFailure() << "The JSON was not a list";
list->reset(list_value);
ignore_result(json.release());
return ::testing::AssertionSuccess();
}
// Read a string property from the dictionary with path |property_name|
// (which can include periods for nested dictionaries). Interprets the
// string as a hex encoded string and converts it to a bytes list.
//
// Returns empty vector on failure.
std::vector<uint8_t> GetBytesFromHexString(base::DictionaryValue* dict,
const char* property_name) {
std::string hex_string;
if (!dict->GetString(property_name, &hex_string)) {
EXPECT_TRUE(false) << "Couldn't get string property: " << property_name;
return std::vector<uint8_t>();
}
return HexStringToBytes(hex_string);
}
// Reads a string property with path "property_name" and converts it to a
// WebCryptoAlgorith. Returns null algorithm on failure.
blink::WebCryptoAlgorithm GetDigestAlgorithm(base::DictionaryValue* dict,
const char* property_name) {
std::string algorithm_name;
if (!dict->GetString(property_name, &algorithm_name)) {
EXPECT_TRUE(false) << "Couldn't get string property: " << property_name;
return blink::WebCryptoAlgorithm::createNull();
}
struct {
const char* name;
blink::WebCryptoAlgorithmId id;
} kDigestNameToId[] = {
{"sha-1", blink::WebCryptoAlgorithmIdSha1},
{"sha-256", blink::WebCryptoAlgorithmIdSha256},
{"sha-384", blink::WebCryptoAlgorithmIdSha384},
{"sha-512", blink::WebCryptoAlgorithmIdSha512},
};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kDigestNameToId); ++i) {
if (kDigestNameToId[i].name == algorithm_name)
return CreateAlgorithm(kDigestNameToId[i].id);
}
return blink::WebCryptoAlgorithm::createNull();
}
// Helper for ImportJwkFailures and ImportJwkOctFailures. Restores the JWK JSON
// dictionary to a good state
void RestoreJwkOctDictionary(base::DictionaryValue* dict) {
dict->Clear();
dict->SetString("kty", "oct");
dict->SetString("alg", "A128CBC");
dict->SetString("use", "enc");
dict->SetBoolean("ext", false);
dict->SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
}
// Helper for ImportJwkRsaFailures. Restores the JWK JSON
// dictionary to a good state
void RestoreJwkRsaDictionary(base::DictionaryValue* dict) {
dict->Clear();
dict->SetString("kty", "RSA");
dict->SetString("alg", "RS256");
dict->SetString("use", "sig");
dict->SetBoolean("ext", false);
dict->SetString(
"n",
"qLOyhK-OtQs4cDSoYPFGxJGfMYdjzWxVmMiuSBGh4KvEx-CwgtaTpef87Wdc9GaFEncsDLxk"
"p0LGxjD1M8jMcvYq6DPEC_JYQumEu3i9v5fAEH1VvbZi9cTg-rmEXLUUjvc5LdOq_5OuHmtm"
"e7PUJHYW1PW6ENTP0ibeiNOfFvs");
dict->SetString("e", "AQAB");
}
// Returns true if any of the vectors in the input list have identical content.
// Dumb O(n^2) implementation but should be fast enough for the input sizes that
// are used.
bool CopiesExist(const std::vector<std::vector<uint8_t> >& bufs) {
for (size_t i = 0; i < bufs.size(); ++i) {
for (size_t j = i + 1; j < bufs.size(); ++j) {
if (CryptoData(bufs[i]) == CryptoData(bufs[j]))
return true;
}
}
return false;
}
blink::WebCryptoAlgorithm CreateAesKeyGenAlgorithm(
blink::WebCryptoAlgorithmId aes_alg_id,
unsigned short length) {
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
aes_alg_id, new blink::WebCryptoAesKeyGenParams(length));
}
blink::WebCryptoAlgorithm CreateAesCbcKeyGenAlgorithm(
unsigned short key_length_bits) {
return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesCbc,
key_length_bits);
}
blink::WebCryptoAlgorithm CreateAesGcmKeyGenAlgorithm(
unsigned short key_length_bits) {
EXPECT_TRUE(SupportsAesGcm());
return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesGcm,
key_length_bits);
}
blink::WebCryptoAlgorithm CreateAesKwKeyGenAlgorithm(
unsigned short key_length_bits) {
return CreateAesKeyGenAlgorithm(blink::WebCryptoAlgorithmIdAesKw,
key_length_bits);
}
// The following key pair is comprised of the SPKI (public key) and PKCS#8
// (private key) representations of the key pair provided in Example 1 of the
// NIST test vectors at
// ftp://ftp.rsa.com/pub/rsalabs/tmp/pkcs1v15sign-vectors.txt
const unsigned int kModulusLengthBits = 1024;
const char* const kPublicKeySpkiDerHex =
"30819f300d06092a864886f70d010101050003818d0030818902818100a5"
"6e4a0e701017589a5187dc7ea841d156f2ec0e36ad52a44dfeb1e61f7ad9"
"91d8c51056ffedb162b4c0f283a12a88a394dff526ab7291cbb307ceabfc"
"e0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921cb23c270a70e2598e"
"6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef22e1e1f20d0ce8cf"
"fb2249bd9a21370203010001";
const char* const kPrivateKeyPkcs8DerHex =
"30820275020100300d06092a864886f70d01010105000482025f3082025b"
"02010002818100a56e4a0e701017589a5187dc7ea841d156f2ec0e36ad52"
"a44dfeb1e61f7ad991d8c51056ffedb162b4c0f283a12a88a394dff526ab"
"7291cbb307ceabfce0b1dfd5cd9508096d5b2b8b6df5d671ef6377c0921c"
"b23c270a70e2598e6ff89d19f105acc2d3f0cb35f29280e1386b6f64c4ef"
"22e1e1f20d0ce8cffb2249bd9a2137020301000102818033a5042a90b27d"
"4f5451ca9bbbd0b44771a101af884340aef9885f2a4bbe92e894a724ac3c"
"568c8f97853ad07c0266c8c6a3ca0929f1e8f11231884429fc4d9ae55fee"
"896a10ce707c3ed7e734e44727a39574501a532683109c2abacaba283c31"
"b4bd2f53c3ee37e352cee34f9e503bd80c0622ad79c6dcee883547c6a3b3"
"25024100e7e8942720a877517273a356053ea2a1bc0c94aa72d55c6e8629"
"6b2dfc967948c0a72cbccca7eacb35706e09a1df55a1535bd9b3cc34160b"
"3b6dcd3eda8e6443024100b69dca1cf7d4d7ec81e75b90fcca874abcde12"
"3fd2700180aa90479b6e48de8d67ed24f9f19d85ba275874f542cd20dc72"
"3e6963364a1f9425452b269a6799fd024028fa13938655be1f8a159cbaca"
"5a72ea190c30089e19cd274a556f36c4f6e19f554b34c077790427bbdd8d"
"d3ede2448328f385d81b30e8e43b2fffa02786197902401a8b38f398fa71"
"2049898d7fb79ee0a77668791299cdfa09efc0e507acb21ed74301ef5bfd"
"48be455eaeb6e1678255827580a8e4e8e14151d1510a82a3f2e729024027"
"156aba4126d24a81f3a528cbfb27f56886f840a9f6e86e17a44b94fe9319"
"584b8e22fdde1e5a2e3bd8aa5ba8d8584194eb2190acf832b847f13a3d24"
"a79f4d";
// The modulus and exponent (in hex) of kPublicKeySpkiDerHex
const char* const kPublicKeyModulusHex =
"A56E4A0E701017589A5187DC7EA841D156F2EC0E36AD52A44DFEB1E61F7AD991D8C51056"
"FFEDB162B4C0F283A12A88A394DFF526AB7291CBB307CEABFCE0B1DFD5CD9508096D5B2B"
"8B6DF5D671EF6377C0921CB23C270A70E2598E6FF89D19F105ACC2D3F0CB35F29280E138"
"6B6F64C4EF22E1E1F20D0CE8CFFB2249BD9A2137";
const char* const kPublicKeyExponentHex = "010001";
// TODO(eroman): Remove unnecessary test fixture.
class SharedCryptoTest : public testing::Test {
};
blink::WebCryptoKey ImportSecretKeyFromRaw(
const std::vector<uint8_t>& key_raw,
const blink::WebCryptoAlgorithm& algorithm,
blink::WebCryptoKeyUsageMask usage) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
bool extractable = true;
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_raw),
algorithm,
extractable,
usage,
&key));
EXPECT_FALSE(key.isNull());
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(algorithm.id(), key.algorithm().id());
EXPECT_EQ(extractable, key.extractable());
EXPECT_EQ(usage, key.usages());
return key;
}
void ImportRsaKeyPair(const std::vector<uint8_t>& spki_der,
const std::vector<uint8_t>& pkcs8_der,
const blink::WebCryptoAlgorithm& algorithm,
bool extractable,
blink::WebCryptoKeyUsageMask public_key_usage_mask,
blink::WebCryptoKeyUsageMask private_key_usage_mask,
blink::WebCryptoKey* public_key,
blink::WebCryptoKey* private_key) {
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(spki_der),
algorithm,
true,
public_key_usage_mask,
public_key));
EXPECT_FALSE(public_key->isNull());
EXPECT_TRUE(public_key->handle());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key->type());
EXPECT_EQ(algorithm.id(), public_key->algorithm().id());
EXPECT_TRUE(public_key->extractable());
EXPECT_EQ(public_key_usage_mask, public_key->usages());
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(pkcs8_der),
algorithm,
extractable,
private_key_usage_mask,
private_key));
EXPECT_FALSE(private_key->isNull());
EXPECT_TRUE(private_key->handle());
EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key->type());
EXPECT_EQ(algorithm.id(), private_key->algorithm().id());
EXPECT_EQ(extractable, private_key->extractable());
EXPECT_EQ(private_key_usage_mask, private_key->usages());
}
Status AesGcmEncrypt(const blink::WebCryptoKey& key,
const std::vector<uint8_t>& iv,
const std::vector<uint8_t>& additional_data,
unsigned int tag_length_bits,
const std::vector<uint8_t>& plain_text,
std::vector<uint8_t>* cipher_text,
std::vector<uint8_t>* authentication_tag) {
EXPECT_TRUE(SupportsAesGcm());
blink::WebCryptoAlgorithm algorithm =
CreateAesGcmAlgorithm(iv, additional_data, tag_length_bits);
std::vector<uint8_t> output;
Status status = Encrypt(algorithm, key, CryptoData(plain_text), &output);
if (status.IsError())
return status;
if ((tag_length_bits % 8) != 0) {
EXPECT_TRUE(false) << "Encrypt should have failed.";
return Status::OperationError();
}
size_t tag_length_bytes = tag_length_bits / 8;
if (tag_length_bytes > output.size()) {
EXPECT_TRUE(false) << "tag length is larger than output";
return Status::OperationError();
}
// The encryption result is cipher text with authentication tag appended.
cipher_text->assign(output.begin(),
output.begin() + (output.size() - tag_length_bytes));
authentication_tag->assign(output.begin() + cipher_text->size(),
output.end());
return Status::Success();
}
Status AesGcmDecrypt(const blink::WebCryptoKey& key,
const std::vector<uint8_t>& iv,
const std::vector<uint8_t>& additional_data,
unsigned int tag_length_bits,
const std::vector<uint8_t>& cipher_text,
const std::vector<uint8_t>& authentication_tag,
std::vector<uint8_t>* plain_text) {
EXPECT_TRUE(SupportsAesGcm());
blink::WebCryptoAlgorithm algorithm =
CreateAesGcmAlgorithm(iv, additional_data, tag_length_bits);
// Join cipher text and authentication tag.
std::vector<uint8_t> cipher_text_with_tag;
cipher_text_with_tag.reserve(cipher_text.size() + authentication_tag.size());
cipher_text_with_tag.insert(
cipher_text_with_tag.end(), cipher_text.begin(), cipher_text.end());
cipher_text_with_tag.insert(cipher_text_with_tag.end(),
authentication_tag.begin(),
authentication_tag.end());
return Decrypt(algorithm, key, CryptoData(cipher_text_with_tag), plain_text);
}
Status ImportKeyJwk(const CryptoData& key_data,
const blink::WebCryptoAlgorithm& algorithm,
bool extractable,
blink::WebCryptoKeyUsageMask usage_mask,
blink::WebCryptoKey* key) {
return ImportKey(blink::WebCryptoKeyFormatJwk,
key_data,
algorithm,
extractable,
usage_mask,
key);
}
Status ImportKeyJwkFromDict(const base::DictionaryValue& dict,
const blink::WebCryptoAlgorithm& algorithm,
bool extractable,
blink::WebCryptoKeyUsageMask usage_mask,
blink::WebCryptoKey* key) {
return ImportKeyJwk(CryptoData(MakeJsonVector(dict)),
algorithm,
extractable,
usage_mask,
key);
}
// Parses a vector of JSON into a dictionary.
scoped_ptr<base::DictionaryValue> GetJwkDictionary(
const std::vector<uint8_t>& json) {
base::StringPiece json_string(
reinterpret_cast<const char*>(vector_as_array(&json)), json.size());
base::Value* value = base::JSONReader::Read(json_string);
EXPECT_TRUE(value);
base::DictionaryValue* dict_value = NULL;
value->GetAsDictionary(&dict_value);
return scoped_ptr<base::DictionaryValue>(dict_value);
}
// Verifies the input dictionary contains the expected values. Exact matches are
// required on the fields examined.
::testing::AssertionResult VerifyJwk(
const scoped_ptr<base::DictionaryValue>& dict,
const std::string& kty_expected,
const std::string& alg_expected,
blink::WebCryptoKeyUsageMask use_mask_expected) {
// ---- kty
std::string value_string;
if (!dict->GetString("kty", &value_string))
return ::testing::AssertionFailure() << "Missing 'kty'";
if (value_string != kty_expected)
return ::testing::AssertionFailure() << "Expected 'kty' to be "
<< kty_expected << "but found "
<< value_string;
// ---- alg
if (!dict->GetString("alg", &value_string))
return ::testing::AssertionFailure() << "Missing 'alg'";
if (value_string != alg_expected)
return ::testing::AssertionFailure() << "Expected 'alg' to be "
<< alg_expected << " but found "
<< value_string;
// ---- ext
// always expect ext == true in this case
bool ext_value;
if (!dict->GetBoolean("ext", &ext_value))
return ::testing::AssertionFailure() << "Missing 'ext'";
if (!ext_value)
return ::testing::AssertionFailure()
<< "Expected 'ext' to be true but found false";
// ---- key_ops
base::ListValue* key_ops;
if (!dict->GetList("key_ops", &key_ops))
return ::testing::AssertionFailure() << "Missing 'key_ops'";
blink::WebCryptoKeyUsageMask key_ops_mask = 0;
Status status = GetWebCryptoUsagesFromJwkKeyOps(key_ops, &key_ops_mask);
if (status.IsError())
return ::testing::AssertionFailure() << "Failure extracting 'key_ops'";
if (key_ops_mask != use_mask_expected)
return ::testing::AssertionFailure()
<< "Expected 'key_ops' mask to be " << use_mask_expected
<< " but found " << key_ops_mask << " (" << value_string << ")";
return ::testing::AssertionSuccess();
}
// Verifies that the JSON in the input vector contains the provided
// expected values. Exact matches are required on the fields examined.
::testing::AssertionResult VerifySecretJwk(
const std::vector<uint8_t>& json,
const std::string& alg_expected,
const std::string& k_expected_hex,
blink::WebCryptoKeyUsageMask use_mask_expected) {
scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json);
if (!dict.get() || dict->empty())
return ::testing::AssertionFailure() << "JSON parsing failed";
// ---- k
std::string value_string;
if (!dict->GetString("k", &value_string))
return ::testing::AssertionFailure() << "Missing 'k'";
std::string k_value;
if (!webcrypto::Base64DecodeUrlSafe(value_string, &k_value))
return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(k) failed";
if (!LowerCaseEqualsASCII(base::HexEncode(k_value.data(), k_value.size()),
k_expected_hex.c_str())) {
return ::testing::AssertionFailure() << "Expected 'k' to be "
<< k_expected_hex
<< " but found something different";
}
return VerifyJwk(dict, "oct", alg_expected, use_mask_expected);
}
// Verifies that the JSON in the input vector contains the provided
// expected values. Exact matches are required on the fields examined.
::testing::AssertionResult VerifyPublicJwk(
const std::vector<uint8_t>& json,
const std::string& alg_expected,
const std::string& n_expected_hex,
const std::string& e_expected_hex,
blink::WebCryptoKeyUsageMask use_mask_expected) {
scoped_ptr<base::DictionaryValue> dict = GetJwkDictionary(json);
if (!dict.get() || dict->empty())
return ::testing::AssertionFailure() << "JSON parsing failed";
// ---- n
std::string value_string;
if (!dict->GetString("n", &value_string))
return ::testing::AssertionFailure() << "Missing 'n'";
std::string n_value;
if (!webcrypto::Base64DecodeUrlSafe(value_string, &n_value))
return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(n) failed";
if (base::HexEncode(n_value.data(), n_value.size()) != n_expected_hex) {
return ::testing::AssertionFailure() << "'n' does not match the expected "
"value";
}
// TODO(padolph): LowerCaseEqualsASCII() does not work for above!
// ---- e
if (!dict->GetString("e", &value_string))
return ::testing::AssertionFailure() << "Missing 'e'";
std::string e_value;
if (!webcrypto::Base64DecodeUrlSafe(value_string, &e_value))
return ::testing::AssertionFailure() << "Base64DecodeUrlSafe(e) failed";
if (!LowerCaseEqualsASCII(base::HexEncode(e_value.data(), e_value.size()),
e_expected_hex.c_str())) {
return ::testing::AssertionFailure() << "Expected 'e' to be "
<< e_expected_hex
<< " but found something different";
}
return VerifyJwk(dict, "RSA", alg_expected, use_mask_expected);
}
} // namespace
TEST_F(SharedCryptoTest, CheckAesGcm) {
if (!SupportsAesGcm()) {
LOG(WARNING) << "AES GCM not supported on this platform, so some tests "
"will be skipped. Consider upgrading local NSS libraries";
return;
}
}
// Tests several Status objects against their expected hard coded values, as
// well as ensuring that comparison of Status objects works.
// Comparison should take into account both the error details, as well as the
// error type.
TEST_F(SharedCryptoTest, Status) {
// Even though the error message is the same, these should not be considered
// the same by the tests because the error type is different.
EXPECT_NE(Status::DataError(), Status::OperationError());
EXPECT_NE(Status::Success(), Status::OperationError());
EXPECT_EQ(Status::Success(), Status::Success());
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("kty", "string"),
Status::ErrorJwkPropertyWrongType("kty", "string"));
Status status = Status::Success();
EXPECT_FALSE(status.IsError());
EXPECT_EQ("", status.error_details());
status = Status::OperationError();
EXPECT_TRUE(status.IsError());
EXPECT_EQ("", status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeOperation, status.error_type());
status = Status::DataError();
EXPECT_TRUE(status.IsError());
EXPECT_EQ("", status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
status = Status::ErrorUnsupported();
EXPECT_TRUE(status.IsError());
EXPECT_EQ("The requested operation is unsupported", status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeNotSupported, status.error_type());
status = Status::ErrorJwkPropertyMissing("kty");
EXPECT_TRUE(status.IsError());
EXPECT_EQ("The required JWK property \"kty\" was missing",
status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
status = Status::ErrorJwkPropertyWrongType("kty", "string");
EXPECT_TRUE(status.IsError());
EXPECT_EQ("The JWK property \"kty\" must be a string",
status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
status = Status::ErrorJwkBase64Decode("n");
EXPECT_TRUE(status.IsError());
EXPECT_EQ("The JWK property \"n\" could not be base64 decoded",
status.error_details());
EXPECT_EQ(blink::WebCryptoErrorTypeData, status.error_type());
}
TEST_F(SharedCryptoTest, DigestSampleSets) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("digest.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm test_algorithm =
GetDigestAlgorithm(test, "algorithm");
std::vector<uint8_t> test_input = GetBytesFromHexString(test, "input");
std::vector<uint8_t> test_output = GetBytesFromHexString(test, "output");
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Digest(test_algorithm, CryptoData(test_input), &output));
EXPECT_BYTES_EQ(test_output, output);
}
}
TEST_F(SharedCryptoTest, DigestSampleSetsInChunks) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("digest.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm test_algorithm =
GetDigestAlgorithm(test, "algorithm");
std::vector<uint8_t> test_input = GetBytesFromHexString(test, "input");
std::vector<uint8_t> test_output = GetBytesFromHexString(test, "output");
// Test the chunk version of the digest functions. Test with 129 byte chunks
// because the SHA-512 chunk size is 128 bytes.
unsigned char* output;
unsigned int output_length;
static const size_t kChunkSizeBytes = 129;
size_t length = test_input.size();
scoped_ptr<blink::WebCryptoDigestor> digestor(
CreateDigestor(test_algorithm.id()));
std::vector<uint8_t>::iterator begin = test_input.begin();
size_t chunk_index = 0;
while (begin != test_input.end()) {
size_t chunk_length = std::min(kChunkSizeBytes, length - chunk_index);
std::vector<uint8_t> chunk(begin, begin + chunk_length);
ASSERT_TRUE(chunk.size() > 0);
EXPECT_TRUE(digestor->consume(&chunk.front(), chunk.size()));
chunk_index = chunk_index + chunk_length;
begin = begin + chunk_length;
}
EXPECT_TRUE(digestor->finish(output, output_length));
EXPECT_BYTES_EQ(test_output, CryptoData(output, output_length));
}
}
TEST_F(SharedCryptoTest, HMACSampleSets) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("hmac.json", &tests));
// TODO(padolph): Missing known answer tests for HMAC SHA384, and SHA512.
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm test_hash = GetDigestAlgorithm(test, "hash");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_message =
GetBytesFromHexString(test, "message");
const std::vector<uint8_t> test_mac = GetBytesFromHexString(test, "mac");
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac);
blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithm(test_hash.id());
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
import_algorithm,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify);
EXPECT_EQ(test_hash.id(), key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(test_key.size() * 8, key.algorithm().hmacParams()->lengthBits());
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(algorithm, key, CryptoData(test_message), &output));
EXPECT_BYTES_EQ(test_mac, output);
bool signature_match = false;
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(output),
CryptoData(test_message),
&signature_match));
EXPECT_TRUE(signature_match);
// Ensure truncated signature does not verify by passing one less byte.
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(vector_as_array(&output), output.size() - 1),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure truncated signature does not verify by passing no bytes.
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure extra long signature does not cause issues and fails.
const unsigned char kLongSignature[1024] = {0};
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(kLongSignature, sizeof(kLongSignature)),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
}
}
TEST_F(SharedCryptoTest, AesCbcFailures) {
const std::string key_hex = "2b7e151628aed2a6abf7158809cf4f3c";
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
HexStringToBytes(key_hex),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
std::vector<uint8_t> output;
// Use an invalid |iv| (fewer than 16 bytes)
{
std::vector<uint8_t> input(32);
std::vector<uint8_t> iv;
EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
Encrypt(webcrypto::CreateAesCbcAlgorithm(iv),
key,
CryptoData(input),
&output));
EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
Decrypt(webcrypto::CreateAesCbcAlgorithm(iv),
key,
CryptoData(input),
&output));
}
// Use an invalid |iv| (more than 16 bytes)
{
std::vector<uint8_t> input(32);
std::vector<uint8_t> iv(17);
EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
Encrypt(webcrypto::CreateAesCbcAlgorithm(iv),
key,
CryptoData(input),
&output));
EXPECT_EQ(Status::ErrorIncorrectSizeAesCbcIv(),
Decrypt(webcrypto::CreateAesCbcAlgorithm(iv),
key,
CryptoData(input),
&output));
}
// Give an input that is too large (would cause integer overflow when
// narrowing to an int).
{
std::vector<uint8_t> iv(16);
// Pretend the input is large. Don't pass data pointer as NULL in case that
// is special cased; the implementation shouldn't actually dereference the
// data.
CryptoData input(&iv[0], INT_MAX - 3);
EXPECT_EQ(Status::ErrorDataTooLarge(),
Encrypt(CreateAesCbcAlgorithm(iv), key, input, &output));
EXPECT_EQ(Status::ErrorDataTooLarge(),
Decrypt(CreateAesCbcAlgorithm(iv), key, input, &output));
}
// Fail importing the key (too few bytes specified)
{
std::vector<uint8_t> key_raw(1);
std::vector<uint8_t> iv(16);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::ErrorImportAesKeyLength(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_raw),
CreateAesCbcAlgorithm(iv),
true,
blink::WebCryptoKeyUsageEncrypt,
&key));
}
// Fail exporting the key in SPKI and PKCS#8 formats (not allowed for secret
// keys).
EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &output));
}
TEST_F(SharedCryptoTest, ImportAesCbcSpkiFailure) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&key));
}
TEST_F(SharedCryptoTest, AesCbcSampleSets) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_cbc.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
std::vector<uint8_t> test_iv = GetBytesFromHexString(test, "iv");
std::vector<uint8_t> test_plain_text =
GetBytesFromHexString(test, "plain_text");
std::vector<uint8_t> test_cipher_text =
GetBytesFromHexString(test, "cipher_text");
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
EXPECT_EQ(test_key.size() * 8, key.algorithm().aesParams()->lengthBits());
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
std::vector<uint8_t> output;
// Test encryption.
EXPECT_EQ(Status::Success(),
Encrypt(webcrypto::CreateAesCbcAlgorithm(test_iv),
key,
CryptoData(test_plain_text),
&output));
EXPECT_BYTES_EQ(test_cipher_text, output);
// Test decryption.
EXPECT_EQ(Status::Success(),
Decrypt(webcrypto::CreateAesCbcAlgorithm(test_iv),
key,
CryptoData(test_cipher_text),
&output));
EXPECT_BYTES_EQ(test_plain_text, output);
const unsigned int kAesCbcBlockSize = 16;
// Decrypt with a padding error by stripping the last block. This also ends
// up testing decryption over empty cipher text.
if (test_cipher_text.size() >= kAesCbcBlockSize) {
EXPECT_EQ(Status::OperationError(),
Decrypt(CreateAesCbcAlgorithm(test_iv),
key,
CryptoData(&test_cipher_text[0],
test_cipher_text.size() - kAesCbcBlockSize),
&output));
}
// Decrypt cipher text which is not a multiple of block size by stripping
// a few bytes off the cipher text.
if (test_cipher_text.size() > 3) {
EXPECT_EQ(
Status::OperationError(),
Decrypt(CreateAesCbcAlgorithm(test_iv),
key,
CryptoData(&test_cipher_text[0], test_cipher_text.size() - 3),
&output));
}
}
}
TEST_F(SharedCryptoTest, GenerateKeyAes) {
// Check key generation for each of AES-CBC, AES-GCM, and AES-KW, and for each
// allowed key length.
std::vector<blink::WebCryptoAlgorithm> algorithm;
const unsigned short kKeyLength[] = {128, 256};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kKeyLength); ++i) {
algorithm.push_back(CreateAesCbcKeyGenAlgorithm(kKeyLength[i]));
algorithm.push_back(CreateAesKwKeyGenAlgorithm(kKeyLength[i]));
if (SupportsAesGcm())
algorithm.push_back(CreateAesGcmKeyGenAlgorithm(kKeyLength[i]));
}
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
std::vector<std::vector<uint8_t> > keys;
std::vector<uint8_t> key_bytes;
for (size_t i = 0; i < algorithm.size(); ++i) {
SCOPED_TRACE(i);
// Generate a small sample of keys.
keys.clear();
for (int j = 0; j < 16; ++j) {
ASSERT_EQ(Status::Success(),
GenerateSecretKey(algorithm[i], true, 0, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_bytes));
EXPECT_EQ(key_bytes.size() * 8,
key.algorithm().aesParams()->lengthBits());
keys.push_back(key_bytes);
}
// Ensure all entries in the key sample set are unique. This is a simplistic
// estimate of whether the generated keys appear random.
EXPECT_FALSE(CopiesExist(keys));
}
}
TEST_F(SharedCryptoTest, GenerateKeyAesBadLength) {
const unsigned short kKeyLen[] = {0, 127, 257};
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kKeyLen); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(Status::ErrorGenerateKeyLength(),
GenerateSecretKey(
CreateAesCbcKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
EXPECT_EQ(Status::ErrorGenerateKeyLength(),
GenerateSecretKey(
CreateAesKwKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
if (SupportsAesGcm()) {
EXPECT_EQ(Status::ErrorGenerateKeyLength(),
GenerateSecretKey(
CreateAesGcmKeyGenAlgorithm(kKeyLen[i]), true, 0, &key));
}
}
}
TEST_F(SharedCryptoTest, GenerateKeyHmac) {
// Generate a small sample of HMAC keys.
std::vector<std::vector<uint8_t> > keys;
for (int i = 0; i < 16; ++i) {
std::vector<uint8_t> key_bytes;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 512);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_FALSE(key.isNull());
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
keys.push_back(raw_key);
}
// Ensure all entries in the key sample set are unique. This is a simplistic
// estimate of whether the generated keys appear random.
EXPECT_FALSE(CopiesExist(keys));
}
// If the key length is not provided, then the block size is used.
TEST_F(SharedCryptoTest, GenerateKeyHmacNoLength) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 0);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
// The block size for HMAC SHA-512 is larger.
algorithm = CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha512, 0);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha512,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(1024u, key.algorithm().hmacParams()->lengthBits());
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(128U, raw_key.size());
}
TEST_F(SharedCryptoTest, ImportJwkKeyUsage) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetBoolean("ext", false);
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
const blink::WebCryptoAlgorithm aes_cbc_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
const blink::WebCryptoAlgorithm hmac_algorithm =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
const blink::WebCryptoAlgorithm aes_kw_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Test null usage.
base::ListValue* key_ops = new base::ListValue;
// Note: the following call makes dict assume ownership of key_ops.
dict.Set("key_ops", key_ops);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, aes_cbc_algorithm, false, 0, &key));
EXPECT_EQ(0, key.usages());
// Test each key_ops value translates to the correct Web Crypto value.
struct TestCase {
const char* jwk_key_op;
const char* jwk_alg;
const blink::WebCryptoAlgorithm algorithm;
const blink::WebCryptoKeyUsage usage;
};
// TODO(padolph): Add 'deriveBits' key_ops value once it is supported.
const TestCase test_case[] = {
{"encrypt", "A128CBC", aes_cbc_algorithm,
blink::WebCryptoKeyUsageEncrypt},
{"decrypt", "A128CBC", aes_cbc_algorithm,
blink::WebCryptoKeyUsageDecrypt},
{"sign", "HS256", hmac_algorithm, blink::WebCryptoKeyUsageSign},
{"verify", "HS256", hmac_algorithm, blink::WebCryptoKeyUsageVerify},
{"wrapKey", "A128KW", aes_kw_algorithm, blink::WebCryptoKeyUsageWrapKey},
{"unwrapKey", "A128KW", aes_kw_algorithm,
blink::WebCryptoKeyUsageUnwrapKey}};
for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(test_case);
++test_index) {
SCOPED_TRACE(test_index);
dict.SetString("alg", test_case[test_index].jwk_alg);
key_ops->Clear();
key_ops->AppendString(test_case[test_index].jwk_key_op);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
test_case[test_index].algorithm,
false,
test_case[test_index].usage,
&key));
EXPECT_EQ(test_case[test_index].usage, key.usages());
}
// Test discrete multiple usages.
dict.SetString("alg", "A128CBC");
key_ops->Clear();
key_ops->AppendString("encrypt");
key_ops->AppendString("decrypt");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
aes_cbc_algorithm,
false,
blink::WebCryptoKeyUsageDecrypt |
blink::WebCryptoKeyUsageEncrypt,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageEncrypt,
key.usages());
// Test constrained key usage (input usage is a subset of JWK usage).
key_ops->Clear();
key_ops->AppendString("encrypt");
key_ops->AppendString("decrypt");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
aes_cbc_algorithm,
false,
blink::WebCryptoKeyUsageDecrypt,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt, key.usages());
// Test failure if input usage is NOT a strict subset of the JWK usage.
key_ops->Clear();
key_ops->AppendString("encrypt");
EXPECT_EQ(Status::ErrorJwkKeyopsInconsistent(),
ImportKeyJwkFromDict(dict,
aes_cbc_algorithm,
false,
blink::WebCryptoKeyUsageEncrypt |
blink::WebCryptoKeyUsageDecrypt,
&key));
// Test 'use' inconsistent with 'key_ops'.
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
key_ops->AppendString("sign");
key_ops->AppendString("verify");
key_ops->AppendString("encrypt");
EXPECT_EQ(Status::ErrorJwkUseAndKeyopsInconsistent(),
ImportKeyJwkFromDict(
dict,
hmac_algorithm,
false,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&key));
// Test JWK composite 'sig' use
dict.Remove("key_ops", NULL);
dict.SetString("use", "sig");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
hmac_algorithm,
false,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
key.usages());
// Test JWK composite use 'enc' usage
dict.SetString("alg", "A128CBC");
dict.SetString("use", "enc");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict,
aes_cbc_algorithm,
false,
blink::WebCryptoKeyUsageDecrypt |
blink::WebCryptoKeyUsageEncrypt |
blink::WebCryptoKeyUsageWrapKey |
blink::WebCryptoKeyUsageUnwrapKey,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageEncrypt |
blink::WebCryptoKeyUsageWrapKey |
blink::WebCryptoKeyUsageUnwrapKey,
key.usages());
}
TEST_F(SharedCryptoTest, ImportJwkFailures) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
// Baseline pass: each test below breaks a single item, so we start with a
// passing case to make sure each failure is caused by the isolated break.
// Each breaking subtest below resets the dictionary to this passing case when
// complete.
base::DictionaryValue dict;
RestoreJwkOctDictionary(&dict);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
// Fail on empty JSON.
EXPECT_EQ(
Status::ErrorImportEmptyKeyData(),
ImportKeyJwk(
CryptoData(MakeJsonVector("")), algorithm, false, usage_mask, &key));
// Fail on invalid JSON.
const std::vector<uint8_t> bad_json_vec = MakeJsonVector(
"{"
"\"kty\" : \"oct\","
"\"alg\" : \"HS256\","
"\"use\" : ");
EXPECT_EQ(Status::ErrorJwkNotDictionary(),
ImportKeyJwk(
CryptoData(bad_json_vec), algorithm, false, usage_mask, &key));
// Fail on JWK alg present but incorrect (expecting A128CBC).
dict.SetString("alg", "A127CBC");
EXPECT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on invalid kty.
dict.SetString("kty", "foo");
EXPECT_EQ(Status::ErrorJwkUnexpectedKty("oct"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on missing kty.
dict.Remove("kty", NULL);
EXPECT_EQ(Status::ErrorJwkPropertyMissing("kty"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on kty wrong type.
dict.SetDouble("kty", 0.1);
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("kty", "string"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on invalid use.
dict.SetString("use", "foo");
EXPECT_EQ(Status::ErrorJwkUnrecognizedUse(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on invalid use (wrong type).
dict.SetBoolean("use", true);
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("use", "string"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on invalid extractable (wrong type).
dict.SetInteger("ext", 0);
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("ext", "boolean"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on invalid key_ops (wrong type).
dict.SetBoolean("key_ops", true);
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("key_ops", "list"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on inconsistent key_ops - asking for "encrypt" however JWK contains
// only "foo".
base::ListValue* key_ops = new base::ListValue;
// Note: the following call makes dict assume ownership of key_ops.
dict.Set("key_ops", key_ops);
key_ops->AppendString("foo");
EXPECT_EQ(Status::ErrorJwkKeyopsInconsistent(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
}
// Import a JWK with unrecognized values for "key_ops".
TEST_F(SharedCryptoTest, ImportJwkUnrecognizedKeyOps) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
base::DictionaryValue dict;
RestoreJwkOctDictionary(&dict);
base::ListValue* key_ops = new base::ListValue;
dict.Set("key_ops", key_ops);
key_ops->AppendString("foo");
key_ops->AppendString("bar");
key_ops->AppendString("baz");
key_ops->AppendString("encrypt");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
}
// Import a JWK with a value in key_ops array that is not a string.
TEST_F(SharedCryptoTest, ImportJwkNonStringKeyOp) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
base::DictionaryValue dict;
RestoreJwkOctDictionary(&dict);
base::ListValue* key_ops = new base::ListValue;
dict.Set("key_ops", key_ops);
key_ops->AppendString("encrypt");
key_ops->AppendInteger(3);
EXPECT_EQ(Status::ErrorJwkPropertyWrongType("key_ops[1]", "string"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
}
TEST_F(SharedCryptoTest, ImportJwkOctFailures) {
base::DictionaryValue dict;
RestoreJwkOctDictionary(&dict);
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageEncrypt;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
// Baseline pass.
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
EXPECT_EQ(algorithm.id(), key.algorithm().id());
EXPECT_FALSE(key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageEncrypt, key.usages());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
// The following are specific failure cases for when kty = "oct".
// Fail on missing k.
dict.Remove("k", NULL);
EXPECT_EQ(Status::ErrorJwkPropertyMissing("k"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on bad b64 encoding for k.
dict.SetString("k", "Qk3f0DsytU8lfza2au #$% Htaw2xpop9GYyTuH0p5GghxTI=");
EXPECT_EQ(Status::ErrorJwkBase64Decode("k"),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on empty k.
dict.SetString("k", "");
EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on k actual length (120 bits) inconsistent with the embedded JWK alg
// value (128) for an AES key.
dict.SetString("k", "AVj42h0Y5aqGtE3yluKL");
EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
// Fail on k actual length (192 bits) inconsistent with the embedded JWK alg
// value (128) for an AES key.
dict.SetString("k", "dGhpcyAgaXMgIDI0ICBieXRlcyBsb25n");
EXPECT_EQ(Status::ErrorJwkIncorrectKeyLength(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkOctDictionary(&dict);
}
TEST_F(SharedCryptoTest, ImportExportJwkRsaPublicKey) {
if (!SupportsRsaKeyImport())
return;
const bool supports_rsa_oaep = SupportsRsaOaep();
if (!supports_rsa_oaep) {
LOG(WARNING) << "RSA-OAEP not supported on this platform. Skipping some"
<< "tests.";
}
struct TestCase {
const blink::WebCryptoAlgorithm algorithm;
const blink::WebCryptoKeyUsageMask usage;
const char* const jwk_alg;
};
const TestCase kTests[] = {
// RSASSA-PKCS1-v1_5 SHA-1
{CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
blink::WebCryptoKeyUsageVerify, "RS1"},
// RSASSA-PKCS1-v1_5 SHA-256
{CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
blink::WebCryptoKeyUsageVerify, "RS256"},
// RSASSA-PKCS1-v1_5 SHA-384
{CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha384),
blink::WebCryptoKeyUsageVerify, "RS384"},
// RSASSA-PKCS1-v1_5 SHA-512
{CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha512),
blink::WebCryptoKeyUsageVerify, "RS512"},
// RSA-OAEP with SHA-1 and MGF-1 / SHA-1
{CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP"},
// RSA-OAEP with SHA-256 and MGF-1 / SHA-256
{CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha256),
blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-256"},
// RSA-OAEP with SHA-384 and MGF-1 / SHA-384
{CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha384),
blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-384"},
// RSA-OAEP with SHA-512 and MGF-1 / SHA-512
{CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha512),
blink::WebCryptoKeyUsageEncrypt, "RSA-OAEP-512"}};
for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
++test_index) {
SCOPED_TRACE(test_index);
const TestCase& test = kTests[test_index];
if (!supports_rsa_oaep &&
test.algorithm.id() == blink::WebCryptoAlgorithmIdRsaOaep) {
continue;
}
// Import the spki to create a public key
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
test.algorithm,
true,
test.usage,
&public_key));
// Export the public key as JWK and verify its contents
std::vector<uint8_t> jwk;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, public_key, &jwk));
EXPECT_TRUE(VerifyPublicJwk(jwk,
test.jwk_alg,
kPublicKeyModulusHex,
kPublicKeyExponentHex,
test.usage));
// Import the JWK back in to create a new key
blink::WebCryptoKey public_key2 = blink::WebCryptoKey::createNull();
ASSERT_EQ(
Status::Success(),
ImportKeyJwk(
CryptoData(jwk), test.algorithm, true, test.usage, &public_key2));
ASSERT_TRUE(public_key2.handle());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key2.type());
EXPECT_TRUE(public_key2.extractable());
EXPECT_EQ(test.algorithm.id(), public_key2.algorithm().id());
// Only perform SPKI consistency test for RSA-SSA as its
// export format is the same as kPublicKeySpkiDerHex
if (test.algorithm.id() == blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5) {
// Export the new key as spki and compare to the original.
std::vector<uint8_t> spki;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatSpki, public_key2, &spki));
EXPECT_BYTES_EQ_HEX(kPublicKeySpkiDerHex, CryptoData(spki));
}
}
}
TEST_F(SharedCryptoTest, ImportJwkRsaFailures) {
base::DictionaryValue dict;
RestoreJwkRsaDictionary(&dict);
blink::WebCryptoAlgorithm algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
// An RSA public key JWK _must_ have an "n" (modulus) and an "e" (exponent)
// entry, while an RSA private key must have those plus at least a "d"
// (private exponent) entry.
// See http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms-18,
// section 6.3.
// Baseline pass.
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
EXPECT_EQ(algorithm.id(), key.algorithm().id());
EXPECT_FALSE(key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type());
// The following are specific failure cases for when kty = "RSA".
// Fail if either "n" or "e" is not present or malformed.
const std::string kKtyParmName[] = {"n", "e"};
for (size_t idx = 0; idx < ARRAYSIZE_UNSAFE(kKtyParmName); ++idx) {
// Fail on missing parameter.
dict.Remove(kKtyParmName[idx], NULL);
EXPECT_NE(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkRsaDictionary(&dict);
// Fail on bad b64 parameter encoding.
dict.SetString(kKtyParmName[idx], "Qk3f0DsytU8lfza2au #$% Htaw2xpop9yTuH0");
EXPECT_NE(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkRsaDictionary(&dict);
// Fail on empty parameter.
dict.SetString(kKtyParmName[idx], "");
EXPECT_EQ(Status::ErrorJwkEmptyBigInteger(kKtyParmName[idx]),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
RestoreJwkRsaDictionary(&dict);
}
}
TEST_F(SharedCryptoTest, ImportJwkInputConsistency) {
// The Web Crypto spec says that if a JWK value is present, but is
// inconsistent with the input value, the operation must fail.
// Consistency rules when JWK value is not present: Inputs should be used.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageVerify;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
std::vector<uint8_t> json_vec = MakeJsonVector(dict);
EXPECT_EQ(
Status::Success(),
ImportKeyJwk(
CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(extractable, key.extractable());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(320u, key.algorithm().hmacParams()->lengthBits());
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
key = blink::WebCryptoKey::createNull();
// Consistency rules when JWK value exists: Fail if inconsistency is found.
// Pass: All input values are consistent with the JWK values.
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
json_vec = MakeJsonVector(dict);
EXPECT_EQ(
Status::Success(),
ImportKeyJwk(
CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
// Extractable cases:
// 1. input=T, JWK=F ==> fail (inconsistent)
// 4. input=F, JWK=F ==> pass, result extractable is F
// 2. input=T, JWK=T ==> pass, result extractable is T
// 3. input=F, JWK=T ==> pass, result extractable is F
EXPECT_EQ(
Status::ErrorJwkExtInconsistent(),
ImportKeyJwk(CryptoData(json_vec), algorithm, true, usage_mask, &key));
EXPECT_EQ(
Status::Success(),
ImportKeyJwk(CryptoData(json_vec), algorithm, false, usage_mask, &key));
EXPECT_FALSE(key.extractable());
dict.SetBoolean("ext", true);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, true, usage_mask, &key));
EXPECT_TRUE(key.extractable());
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usage_mask, &key));
EXPECT_FALSE(key.extractable());
dict.SetBoolean("ext", true); // restore previous value
// Fail: Input algorithm (AES-CBC) is inconsistent with JWK value
// (HMAC SHA256).
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
EXPECT_EQ(
Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(dict,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig).
EXPECT_EQ(Status::ErrorJwkUseInconsistent(),
ImportKeyJwk(CryptoData(json_vec),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value
// (HMAC SHA256).
EXPECT_EQ(
Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwk(CryptoData(json_vec),
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
extractable,
usage_mask,
&key));
// Pass: JWK alg missing but input algorithm specified: use input value
dict.Remove("alg", NULL);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
extractable,
usage_mask,
&key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id());
dict.SetString("alg", "HS256");
// Fail: Input usage_mask (encrypt) is not a subset of the JWK value
// (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKeyJwk(CryptoData(json_vec),
algorithm,
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input usage_mask (encrypt|sign|verify) is not a subset of the JWK
// value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
usage_mask = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageSign |
blink::WebCryptoKeyUsageVerify;
EXPECT_EQ(
Status::ErrorCreateKeyBadUsages(),
ImportKeyJwk(
CryptoData(json_vec), algorithm, extractable, usage_mask, &key));
// TODO(padolph): kty vs alg consistency tests: Depending on the kty value,
// only certain alg values are permitted. For example, when kty = "RSA" alg
// must be of the RSA family, or when kty = "oct" alg must be symmetric
// algorithm.
// TODO(padolph): key_ops consistency tests
}
TEST_F(SharedCryptoTest, ImportJwkHappy) {
// This test verifies the happy path of JWK import, including the application
// of the imported key material.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usage_mask = blink::WebCryptoKeyUsageSign;
// Import a symmetric key JWK and HMAC-SHA256 sign()
// Uses the first SHA256 test vector from the HMAC sample set above.
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
ASSERT_EQ(
Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, extractable, usage_mask, &key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
key.algorithm().hmacParams()->hash().id());
const std::vector<uint8_t> message_raw = HexStringToBytes(
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
"92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
"d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
"22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e");
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
key,
CryptoData(message_raw),
&output));
const std::string mac_raw =
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b";
EXPECT_BYTES_EQ_HEX(mac_raw, output);
// TODO(padolph): Import an RSA public key JWK and use it
}
TEST_F(SharedCryptoTest, ImportExportJwkSymmetricKey) {
// Raw keys are generated by openssl:
// % openssl rand -hex <key length bytes>
const char* const key_hex_128 = "3f1e7cd4f6f8543f6b1e16002e688623";
const char* const key_hex_256 =
"bd08286b81a74783fd1ccf46b7e05af84ee25ae021210074159e0c4d9d907692";
const char* const key_hex_384 =
"a22c5441c8b185602283d64c7221de1d0951e706bfc09539435ec0e0ed614e1d406623f2"
"b31d31819fec30993380dd82";
const char* const key_hex_512 =
"5834f639000d4cf82de124fbfd26fb88d463e99f839a76ba41ac88967c80a3f61e1239a4"
"52e573dba0750e988152988576efd75b8d0229b7aca2ada2afd392ee";
const blink::WebCryptoAlgorithm aes_cbc_alg =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
const blink::WebCryptoAlgorithm aes_gcm_alg =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm);
const blink::WebCryptoAlgorithm aes_kw_alg =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
const blink::WebCryptoAlgorithm hmac_sha_1_alg =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1);
const blink::WebCryptoAlgorithm hmac_sha_256_alg =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
const blink::WebCryptoAlgorithm hmac_sha_384_alg =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha384);
const blink::WebCryptoAlgorithm hmac_sha_512_alg =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512);
struct TestCase {
const char* const key_hex;
const blink::WebCryptoAlgorithm algorithm;
const blink::WebCryptoKeyUsageMask usage;
const char* const jwk_alg;
};
// TODO(padolph): Test AES-CTR JWK export, once AES-CTR import works.
const TestCase kTests[] = {
// AES-CBC 128
{key_hex_128, aes_cbc_alg,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
"A128CBC"},
// AES-CBC 256
{key_hex_256, aes_cbc_alg, blink::WebCryptoKeyUsageDecrypt, "A256CBC"},
// AES-GCM 128
{key_hex_128, aes_gcm_alg,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
"A128GCM"},
// AES-GCM 256
{key_hex_256, aes_gcm_alg, blink::WebCryptoKeyUsageDecrypt, "A256GCM"},
// AES-KW 128
{key_hex_128, aes_kw_alg,
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
"A128KW"},
// AES-KW 256
{key_hex_256, aes_kw_alg,
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
"A256KW"},
// HMAC SHA-1
{key_hex_256, hmac_sha_1_alg,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify, "HS1"},
// HMAC SHA-384
{key_hex_384, hmac_sha_384_alg, blink::WebCryptoKeyUsageSign, "HS384"},
// HMAC SHA-512
{key_hex_512, hmac_sha_512_alg, blink::WebCryptoKeyUsageVerify, "HS512"},
// Large usage value
{key_hex_256, aes_cbc_alg,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt |
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey,
"A256CBC"},
// Zero usage value
{key_hex_512, hmac_sha_512_alg, 0, "HS512"},
};
// Round-trip import/export each key.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
std::vector<uint8_t> json;
for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
++test_index) {
SCOPED_TRACE(test_index);
const TestCase& test = kTests[test_index];
// Skip AES-GCM tests where not supported.
if (test.algorithm.id() == blink::WebCryptoAlgorithmIdAesGcm &&
!SupportsAesGcm()) {
continue;
}
// Import a raw key.
key = ImportSecretKeyFromRaw(
HexStringToBytes(test.key_hex), test.algorithm, test.usage);
// Export the key in JWK format and validate.
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, key, &json));
EXPECT_TRUE(VerifySecretJwk(json, test.jwk_alg, test.key_hex, test.usage));
// Import the JWK-formatted key.
ASSERT_EQ(
Status::Success(),
ImportKeyJwk(CryptoData(json), test.algorithm, true, test.usage, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(test.algorithm.id(), key.algorithm().id());
EXPECT_EQ(true, key.extractable());
EXPECT_EQ(test.usage, key.usages());
// Export the key in raw format and compare to the original.
std::vector<uint8_t> key_raw_out;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
EXPECT_BYTES_EQ_HEX(test.key_hex, key_raw_out);
}
}
TEST_F(SharedCryptoTest, ExportJwkEmptySymmetricKey) {
const blink::WebCryptoAlgorithm import_algorithm =
webcrypto::CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageSign;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
// Import a zero-byte HMAC key.
const char key_data_hex[] = "";
key = ImportSecretKeyFromRaw(
HexStringToBytes(key_data_hex), import_algorithm, usages);
EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
// Export the key in JWK format and validate.
std::vector<uint8_t> json;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, key, &json));
EXPECT_TRUE(VerifySecretJwk(json, "HS1", key_data_hex, usages));
// Now try re-importing the JWK key.
key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json),
import_algorithm,
true,
usages,
&key));
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> exported_key_data;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &exported_key_data));
EXPECT_EQ(0u, exported_key_data.size());
}
TEST_F(SharedCryptoTest, ImportExportSpki) {
if (!SupportsRsaKeyImport())
return;
// Passing case: Import a valid RSA key in SPKI format.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, key.type());
EXPECT_TRUE(key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
EXPECT_EQ(kModulusLengthBits,
key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_BYTES_EQ_HEX(
"010001",
CryptoData(key.algorithm().rsaHashedParams()->publicExponent()));
// Failing case: Empty SPKI data
EXPECT_EQ(
Status::ErrorImportEmptyKeyData(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(std::vector<uint8_t>()),
CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
true,
blink::WebCryptoKeyUsageVerify,
&key));
// Failing case: Bad DER encoding.
EXPECT_EQ(
Status::DataError(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes("618333c4cb")),
CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
true,
blink::WebCryptoKeyUsageVerify,
&key));
// Failing case: Import RSA key but provide an inconsistent input algorithm.
EXPECT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Passing case: Export a previously imported RSA public key in SPKI format
// and compare to original data.
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
EXPECT_BYTES_EQ_HEX(kPublicKeySpkiDerHex, output);
// Failing case: Try to export a previously imported RSA public key in raw
// format (not allowed for a public key).
EXPECT_EQ(Status::ErrorUnsupportedExportKeyFormat(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &output));
// Failing case: Try to export a non-extractable key
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_TRUE(key.handle());
EXPECT_FALSE(key.extractable());
EXPECT_EQ(Status::ErrorKeyNotExtractable(),
ExportKey(blink::WebCryptoKeyFormatSpki, key, &output));
// TODO(eroman): Failing test: Import a SPKI with an unrecognized hash OID
// TODO(eroman): Failing test: Import a SPKI with invalid algorithm params
// TODO(eroman): Failing test: Import a SPKI with inconsistent parameters
// (e.g. SHA-1 in OID, SHA-256 in params)
// TODO(eroman): Failing test: Import a SPKI for RSA-SSA, but with params
// as OAEP/PSS
}
TEST_F(SharedCryptoTest, ImportExportPkcs8) {
if (!SupportsRsaKeyImport())
return;
// Passing case: Import a valid RSA key in PKCS#8 format.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypePrivate, key.type());
EXPECT_TRUE(key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
key.algorithm().rsaHashedParams()->hash().id());
EXPECT_EQ(kModulusLengthBits,
key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_BYTES_EQ_HEX(
"010001",
CryptoData(key.algorithm().rsaHashedParams()->publicExponent()));
std::vector<uint8_t> exported_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &exported_key));
EXPECT_BYTES_EQ_HEX(kPrivateKeyPkcs8DerHex, exported_key);
// Failing case: Empty PKCS#8 data
EXPECT_EQ(Status::ErrorImportEmptyKeyData(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(std::vector<uint8_t>()),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
// Failing case: Bad DER encoding.
EXPECT_EQ(
Status::DataError(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes("618333c4cb")),
CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
true,
blink::WebCryptoKeyUsageSign,
&key));
// Failing case: Import RSA key but provide an inconsistent input algorithm
// and usage. Several issues here:
// * AES-CBC doesn't support PKCS8 key format
// * AES-CBC doesn't support "sign" usage
EXPECT_EQ(Status::ErrorUnsupportedImportKeyFormat(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageSign,
&key));
}
// Tests importing of PKCS8 data that does not define a valid RSA key.
TEST_F(SharedCryptoTest, ImportInvalidPkcs8) {
if (!SupportsRsaKeyImport())
return;
// kPrivateKeyPkcs8DerHex defines an RSA private key in PKCS8 format, whose
// parameters appear at the following offsets:
//
// n: (offset=36, len=129)
// e: (offset=167, len=3)
// d: (offset=173, len=128)
// p: (offset=303, len=65)
// q: (offset=370, len=65)
// dp: (offset=437, len=64)
// dq; (offset=503, len=64)
// qi: (offset=569, len=64)
// Do several tests, each of which invert a single byte within the input.
const unsigned int kOffsetsToCorrupt[] = {
50, // inside n
168, // inside e
175, // inside d
333, // inside p
373, // inside q
450, // inside dp
550, // inside dq
600, // inside qi
};
for (size_t test_index = 0; test_index < arraysize(kOffsetsToCorrupt);
++test_index) {
SCOPED_TRACE(test_index);
unsigned int i = kOffsetsToCorrupt[test_index];
std::vector<uint8_t> corrupted_data =
HexStringToBytes(kPrivateKeyPkcs8DerHex);
corrupted_data[i] = ~corrupted_data[i];
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::DataError(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(corrupted_data),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
}
}
// Tests JWK import and export by doing a roundtrip key conversion and ensuring
// it was lossless:
//
// PKCS8 --> JWK --> PKCS8
TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkToPkcs8RoundTrip) {
if (!SupportsRsaKeyImport())
return;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
std::vector<uint8_t> exported_key_jwk;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, key, &exported_key_jwk));
// All of the optional parameters (p, q, dp, dq, qi) should be present in the
// output.
const char* expected_jwk =
"{\"alg\":\"RS1\",\"d\":\"M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
"kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
"GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU\",\"dp\":"
"\"KPoTk4ZVvh-"
"KFZy6ylpy6hkMMAieGc0nSlVvNsT24Z9VSzTAd3kEJ7vdjdPt4kSDKPOF2Bsw6OQ7L_-"
"gJ4YZeQ\",\"dq\":\"Gos485j6cSBJiY1_t57gp3ZoeRKZzfoJ78DlB6yyHtdDAe9b_Ui-"
"RV6utuFnglWCdYCo5OjhQVHRUQqCo_LnKQ\",\"e\":\"AQAB\",\"ext\":true,\"key_"
"ops\":[\"sign\"],\"kty\":\"RSA\",\"n\":"
"\"pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
"1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
"DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc\",\"p\":\"5-"
"iUJyCod1Fyc6NWBT6iobwMlKpy1VxuhilrLfyWeUjApyy8zKfqyzVwbgmh31WhU1vZs8w0Fg"
"s7bc0-2o5kQw\",\"q\":\"tp3KHPfU1-yB51uQ_MqHSrzeEj_"
"ScAGAqpBHm25I3o1n7ST58Z2FuidYdPVCzSDccj5pYzZKH5QlRSsmmmeZ_Q\",\"qi\":"
"\"JxVqukEm0kqB86Uoy_sn9WiG-"
"ECp9uhuF6RLlP6TGVhLjiL93h5aLjvYqluo2FhBlOshkKz4MrhH8To9JKefTQ\"}";
ASSERT_EQ(CryptoData(std::string(expected_jwk)),
CryptoData(exported_key_jwk));
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(exported_key_jwk),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
std::vector<uint8_t> exported_key_pkcs8;
ASSERT_EQ(
Status::Success(),
ExportKey(blink::WebCryptoKeyFormatPkcs8, key, &exported_key_pkcs8));
ASSERT_EQ(CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CryptoData(exported_key_pkcs8));
}
// Tests importing multiple RSA private keys from JWK, and then exporting to
// PKCS8.
//
// This is a regression test for http://crbug.com/378315, for which importing
// a sequence of keys from JWK could yield the wrong key. The first key would
// be imported correctly, however every key after that would actually import
// the first key.
TEST_F(SharedCryptoTest, ImportMultipleRSAPrivateKeysJwk) {
if (!SupportsRsaKeyImport())
return;
scoped_ptr<base::ListValue> key_list;
ASSERT_TRUE(ReadJsonTestFileToList("rsa_private_keys.json", &key_list));
// For this test to be meaningful the keys MUST be kept alive before importing
// new keys.
std::vector<blink::WebCryptoKey> live_keys;
for (size_t key_index = 0; key_index < key_list->GetSize(); ++key_index) {
SCOPED_TRACE(key_index);
base::DictionaryValue* key_values;
ASSERT_TRUE(key_list->GetDictionary(key_index, &key_values));
// Get the JWK representation of the key.
base::DictionaryValue* key_jwk;
ASSERT_TRUE(key_values->GetDictionary("jwk", &key_jwk));
// Get the PKCS8 representation of the key.
std::string pkcs8_hex_string;
ASSERT_TRUE(key_values->GetString("pkcs8", &pkcs8_hex_string));
std::vector<uint8_t> pkcs8_bytes = HexStringToBytes(pkcs8_hex_string);
// Get the modulus length for the key.
int modulus_length_bits = 0;
ASSERT_TRUE(key_values->GetInteger("modulusLength", &modulus_length_bits));
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
// Import the key from JWK.
ASSERT_EQ(
Status::Success(),
ImportKeyJwkFromDict(*key_jwk,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageSign,
&private_key));
live_keys.push_back(private_key);
EXPECT_EQ(
modulus_length_bits,
static_cast<int>(
private_key.algorithm().rsaHashedParams()->modulusLengthBits()));
// Export to PKCS8 and verify that it matches expectation.
std::vector<uint8_t> exported_key_pkcs8;
ASSERT_EQ(
Status::Success(),
ExportKey(
blink::WebCryptoKeyFormatPkcs8, private_key, &exported_key_pkcs8));
EXPECT_BYTES_EQ(pkcs8_bytes, exported_key_pkcs8);
}
}
// Import an RSA private key using JWK. Next import a JWK containing the same
// modulus, but mismatched parameters for the rest. It should NOT be possible
// that the second import retrieves the first key. See http://crbug.com/378315
// for how that could happen.
TEST_F(SharedCryptoTest, ImportJwkExistingModulusAndInvalid) {
#if defined(USE_NSS)
if (!NSS_VersionCheck("3.16.2")) {
LOG(WARNING) << "Skipping test because lacks NSS support";
return;
}
#endif
scoped_ptr<base::ListValue> key_list;
ASSERT_TRUE(ReadJsonTestFileToList("rsa_private_keys.json", &key_list));
// Import a 1024-bit private key.
base::DictionaryValue* key1_props;
ASSERT_TRUE(key_list->GetDictionary(1, &key1_props));
base::DictionaryValue* key1_jwk;
ASSERT_TRUE(key1_props->GetDictionary("jwk", &key1_jwk));
blink::WebCryptoKey key1 = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(*key1_jwk,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageSign,
&key1));
ASSERT_EQ(1024u, key1.algorithm().rsaHashedParams()->modulusLengthBits());
// Construct a JWK using the modulus of key1, but all the other fields from
// another key (also a 1024-bit private key).
base::DictionaryValue* key2_props;
ASSERT_TRUE(key_list->GetDictionary(5, &key2_props));
base::DictionaryValue* key2_jwk;
ASSERT_TRUE(key2_props->GetDictionary("jwk", &key2_jwk));
std::string modulus;
key1_jwk->GetString("n", &modulus);
key2_jwk->SetString("n", modulus);
// This should fail, as the n,e,d parameters are not consistent. It MUST NOT
// somehow return the key created earlier.
blink::WebCryptoKey key2 = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::OperationError(),
ImportKeyJwkFromDict(*key2_jwk,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageSign,
&key2));
}
// Import a JWK RSA private key with some optional parameters missing (q, dp,
// dq, qi).
//
// The only optional parameter included is "p".
//
// This fails because JWA says that producers must include either ALL optional
// parameters or NONE.
TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkMissingOptionalParams) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
base::DictionaryValue dict;
dict.SetString("kty", "RSA");
dict.SetString("alg", "RS1");
dict.SetString(
"n",
"pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
"1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
"DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc");
dict.SetString("e", "AQAB");
dict.SetString(
"d",
"M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
"kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
"GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU");
dict.SetString("p",
"5-"
"iUJyCod1Fyc6NWBT6iobwMlKpy1VxuhilrLfyWeUjApyy8zKfqyzVwbgmh31W"
"hU1vZs8w0Fgs7bc0-2o5kQw");
ASSERT_EQ(Status::ErrorJwkPropertyMissing("q"),
ImportKeyJwkFromDict(dict,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
}
// Import a JWK RSA private key, without any of the optional parameters.
//
// According to JWA, such keys are valid, but applications SHOULD
// include all the parameters when sending, and recipients MAY
// accept them, but are not required to. Chromium's WebCrypto does
// not allow such degenerate keys.
TEST_F(SharedCryptoTest, ImportRsaPrivateKeyJwkIncorrectOptionalEmpty) {
if (!SupportsRsaKeyImport())
return;
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
base::DictionaryValue dict;
dict.SetString("kty", "RSA");
dict.SetString("alg", "RS1");
dict.SetString(
"n",
"pW5KDnAQF1iaUYfcfqhB0Vby7A42rVKkTf6x5h962ZHYxRBW_-2xYrTA8oOhKoijlN_"
"1JqtykcuzB86r_OCx39XNlQgJbVsri2311nHvY3fAkhyyPCcKcOJZjm_4nRnxBazC0_"
"DLNfKSgOE4a29kxO8i4eHyDQzoz_siSb2aITc");
dict.SetString("e", "AQAB");
dict.SetString(
"d",
"M6UEKpCyfU9UUcqbu9C0R3GhAa-IQ0Cu-YhfKku-"
"kuiUpySsPFaMj5eFOtB8AmbIxqPKCSnx6PESMYhEKfxNmuVf7olqEM5wfD7X5zTkRyejlXRQ"
"GlMmgxCcKrrKuig8MbS9L1PD7jfjUs7jT55QO9gMBiKtecbc7og1R8ajsyU");
ASSERT_EQ(Status::ErrorJwkPropertyMissing("p"),
ImportKeyJwkFromDict(dict,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
}
// Tries importing a public RSA key whose exponent contains leading zeros.
TEST_F(SharedCryptoTest, ImportJwkRsaNonMinimalExponent) {
base::DictionaryValue dict;
dict.SetString("kty", "RSA");
dict.SetString("e", "AAEAAQ"); // 00 01 00 01
dict.SetString(
"n",
"qLOyhK-OtQs4cDSoYPFGxJGfMYdjzWxVmMiuSBGh4KvEx-CwgtaTpef87Wdc9GaFEncsDLxk"
"p0LGxjD1M8jMcvYq6DPEC_JYQumEu3i9v5fAEH1VvbZi9cTg-rmEXLUUjvc5LdOq_5OuHmtm"
"e7PUJHYW1PW6ENTP0ibeiNOfFvs");
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::ErrorJwkBigIntegerHasLeadingZero("e"),
ImportKeyJwkFromDict(dict,
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageVerify,
&key));
}
TEST_F(SharedCryptoTest, GenerateKeyPairRsa) {
// Note: using unrealistic short key lengths here to avoid bogging down tests.
// Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation (sha256)
const unsigned int modulus_length = 256;
const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
blink::WebCryptoAlgorithm algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
public_exponent);
bool extractable = true;
const blink::WebCryptoKeyUsageMask usage_mask = 0;
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(modulus_length,
public_key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_EQ(modulus_length,
private_key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
public_key.algorithm().rsaHashedParams()->hash().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
private_key.algorithm().rsaHashedParams()->hash().id());
EXPECT_TRUE(public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Try exporting the generated key pair, and then re-importing to verify that
// the exported data was valid.
std::vector<uint8_t> public_key_spki;
EXPECT_EQ(
Status::Success(),
ExportKey(blink::WebCryptoKeyFormatSpki, public_key, &public_key_spki));
if (SupportsRsaKeyImport()) {
public_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(public_key_spki),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
usage_mask,
&public_key));
EXPECT_EQ(modulus_length,
public_key.algorithm().rsaHashedParams()->modulusLengthBits());
std::vector<uint8_t> private_key_pkcs8;
EXPECT_EQ(
Status::Success(),
ExportKey(
blink::WebCryptoKeyFormatPkcs8, private_key, &private_key_pkcs8));
private_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(private_key_pkcs8),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
usage_mask,
&private_key));
EXPECT_EQ(modulus_length,
private_key.algorithm().rsaHashedParams()->modulusLengthBits());
}
// Fail with bad modulus.
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
0,
public_exponent);
EXPECT_EQ(Status::ErrorGenerateRsaUnsupportedModulus(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: larger than unsigned long.
unsigned int exponent_length = sizeof(unsigned long) + 1; // NOLINT
const std::vector<uint8_t> long_exponent(exponent_length, 0x01);
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
long_exponent);
EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: empty.
const std::vector<uint8_t> empty_exponent;
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
empty_exponent);
EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: all zeros.
std::vector<uint8_t> exponent_with_leading_zeros(15, 0x00);
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
exponent_with_leading_zeros);
EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Key generation success using exponent with leading zeros.
exponent_with_leading_zeros.insert(exponent_with_leading_zeros.end(),
public_exponent.begin(),
public_exponent.end());
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
exponent_with_leading_zeros);
EXPECT_EQ(Status::Success(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_TRUE(public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation (sha1)
algorithm =
CreateRsaHashedKeyGenAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1,
modulus_length,
public_exponent);
EXPECT_EQ(
Status::Success(),
GenerateKeyPair(algorithm, false, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(blink::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(blink::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(modulus_length,
public_key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_EQ(modulus_length,
private_key.algorithm().rsaHashedParams()->modulusLengthBits());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
public_key.algorithm().rsaHashedParams()->hash().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
private_key.algorithm().rsaHashedParams()->hash().id());
// Even though "extractable" was set to false, the public key remains
// extractable.
EXPECT_TRUE(public_key.extractable());
EXPECT_FALSE(private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Exporting a private key as SPKI format doesn't make sense. However this
// will first fail because the key is not extractable.
std::vector<uint8_t> output;
EXPECT_EQ(Status::ErrorKeyNotExtractable(),
ExportKey(blink::WebCryptoKeyFormatSpki, private_key, &output));
// Re-generate an extractable private_key and try to export it as SPKI format.
// This should fail since spki is for public keys.
EXPECT_EQ(
Status::Success(),
GenerateKeyPair(algorithm, true, usage_mask, &public_key, &private_key));
EXPECT_EQ(Status::ErrorUnexpectedKeyType(),
ExportKey(blink::WebCryptoKeyFormatSpki, private_key, &output));
}
TEST_F(SharedCryptoTest, GenerateKeyPairRsaBadModulusLength) {
const unsigned int kBadModulusBits[] = {
0,
248, // Too small.
257, // Not a multiple of 8.
1023, // Not a multiple of 8.
0xFFFFFFFF, // Too big.
16384 + 8, // 16384 is the maxmimum length that NSS succeeds for.
};
const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
for (size_t i = 0; i < arraysize(kBadModulusBits); ++i) {
const unsigned int modulus_length_bits = kBadModulusBits[i];
blink::WebCryptoAlgorithm algorithm = CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length_bits,
public_exponent);
bool extractable = true;
const blink::WebCryptoKeyUsageMask usage_mask = 0;
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(
Status::ErrorGenerateRsaUnsupportedModulus(),
GenerateKeyPair(
algorithm, extractable, usage_mask, &public_key, &private_key));
}
}
// Try generating RSA key pairs using unsupported public exponents. Only
// exponents of 3 and 65537 are supported. While both OpenSSL and NSS can
// support other values, OpenSSL hangs when given invalid exponents, so use a
// whitelist to validate the parameters.
TEST_F(SharedCryptoTest, GenerateKeyPairRsaBadExponent) {
const unsigned int modulus_length = 1024;
const char* const kPublicExponents[] = {
"11", // 17 - This is a valid public exponent, but currently disallowed.
"00",
"01",
"02",
"010000", // 65536
};
for (size_t i = 0; i < arraysize(kPublicExponents); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoAlgorithm algorithm = CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
HexStringToBytes(kPublicExponents[i]));
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::ErrorGenerateKeyPublicExponent(),
GenerateKeyPair(algorithm, true, 0, &public_key, &private_key));
}
}
TEST_F(SharedCryptoTest, RsaSsaSignVerifyFailures) {
if (!SupportsRsaKeyImport())
return;
// Import a key pair.
blink::WebCryptoAlgorithm import_algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_NO_FATAL_FAILURE(
ImportRsaKeyPair(HexStringToBytes(kPublicKeySpkiDerHex),
HexStringToBytes(kPrivateKeyPkcs8DerHex),
import_algorithm,
false,
blink::WebCryptoKeyUsageVerify,
blink::WebCryptoKeyUsageSign,
&public_key,
&private_key));
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5);
std::vector<uint8_t> signature;
bool signature_match;
// Compute a signature.
const std::vector<uint8_t> data = HexStringToBytes("010203040506070809");
ASSERT_EQ(Status::Success(),
Sign(algorithm, private_key, CryptoData(data), &signature));
// Ensure truncated signature does not verify by passing one less byte.
EXPECT_EQ(
Status::Success(),
Verify(algorithm,
public_key,
CryptoData(vector_as_array(&signature), signature.size() - 1),
CryptoData(data),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure truncated signature does not verify by passing no bytes.
EXPECT_EQ(Status::Success(),
Verify(algorithm,
public_key,
CryptoData(),
CryptoData(data),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure corrupted signature does not verify.
std::vector<uint8_t> corrupt_sig = signature;
corrupt_sig[corrupt_sig.size() / 2] ^= 0x1;
EXPECT_EQ(Status::Success(),
Verify(algorithm,
public_key,
CryptoData(corrupt_sig),
CryptoData(data),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure signatures that are greater than the modulus size fail.
const unsigned int long_message_size_bytes = 1024;
DCHECK_GT(long_message_size_bytes, kModulusLengthBits / 8);
const unsigned char kLongSignature[long_message_size_bytes] = {0};
EXPECT_EQ(Status::Success(),
Verify(algorithm,
public_key,
CryptoData(kLongSignature, sizeof(kLongSignature)),
CryptoData(data),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure that signing and verifying with an incompatible algorithm fails.
algorithm = CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaOaep);
EXPECT_EQ(Status::ErrorUnexpected(),
Sign(algorithm, private_key, CryptoData(data), &signature));
EXPECT_EQ(Status::ErrorUnexpected(),
Verify(algorithm,
public_key,
CryptoData(signature),
CryptoData(data),
&signature_match));
// Some crypto libraries (NSS) can automatically select the RSA SSA inner hash
// based solely on the contents of the input signature data. In the Web Crypto
// implementation, the inner hash should be specified uniquely by the key
// algorithm parameter. To validate this behavior, call Verify with a computed
// signature that used one hash type (SHA-1), but pass in a key with a
// different inner hash type (SHA-256). If the hash type is determined by the
// signature itself (undesired), the verify will pass, while if the hash type
// is specified by the key algorithm (desired), the verify will fail.
// Compute a signature using SHA-1 as the inner hash.
EXPECT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
private_key,
CryptoData(data),
&signature));
blink::WebCryptoKey public_key_256 = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageVerify,
&public_key_256));
// Now verify using an algorithm whose inner hash is SHA-256, not SHA-1. The
// signature should not verify.
// NOTE: public_key was produced by generateKey, and so its associated
// algorithm has WebCryptoRsaKeyGenParams and not WebCryptoRsaSsaParams. Thus
// it has no inner hash to conflict with the input algorithm.
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
private_key.algorithm().rsaHashedParams()->hash().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
public_key_256.algorithm().rsaHashedParams()->hash().id());
bool is_match;
EXPECT_EQ(Status::Success(),
Verify(CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5),
public_key_256,
CryptoData(signature),
CryptoData(data),
&is_match));
EXPECT_FALSE(is_match);
}
TEST_F(SharedCryptoTest, RsaSignVerifyKnownAnswer) {
if (!SupportsRsaKeyImport())
return;
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("pkcs1v15_sign.json", &tests));
// Import the key pair.
blink::WebCryptoAlgorithm import_algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_NO_FATAL_FAILURE(
ImportRsaKeyPair(HexStringToBytes(kPublicKeySpkiDerHex),
HexStringToBytes(kPrivateKeyPkcs8DerHex),
import_algorithm,
false,
blink::WebCryptoKeyUsageVerify,
blink::WebCryptoKeyUsageSign,
&public_key,
&private_key));
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5);
// Validate the signatures are computed and verified as expected.
std::vector<uint8_t> signature;
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
std::vector<uint8_t> test_message =
GetBytesFromHexString(test, "message_hex");
std::vector<uint8_t> test_signature =
GetBytesFromHexString(test, "signature_hex");
signature.clear();
ASSERT_EQ(
Status::Success(),
Sign(algorithm, private_key, CryptoData(test_message), &signature));
EXPECT_BYTES_EQ(test_signature, signature);
bool is_match = false;
ASSERT_EQ(Status::Success(),
Verify(algorithm,
public_key,
CryptoData(test_signature),
CryptoData(test_message),
&is_match));
EXPECT_TRUE(is_match);
}
}
TEST_F(SharedCryptoTest, AesKwKeyImport) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Import a 128-bit Key Encryption Key (KEK)
std::string key_raw_hex_in = "025a8cf3f08b4f6c5f33bbc76a471939";
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
std::vector<uint8_t> key_raw_out;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
EXPECT_BYTES_EQ_HEX(key_raw_hex_in, key_raw_out);
// Import a 192-bit KEK
key_raw_hex_in = "c0192c6466b2370decbb62b2cfef4384544ffeb4d2fbc103";
ASSERT_EQ(Status::ErrorAes192BitUnsupported(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
// Import a 256-bit Key Encryption Key (KEK)
key_raw_hex_in =
"e11fe66380d90fa9ebefb74e0478e78f95664d0c67ca20ce4a0b5842863ac46f";
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &key_raw_out));
EXPECT_BYTES_EQ_HEX(key_raw_hex_in, key_raw_out);
// Fail import of 0 length key
EXPECT_EQ(Status::ErrorImportAesKeyLength(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes("")),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
// Fail import of 124-bit KEK
key_raw_hex_in = "3e4566a2bdaa10cb68134fa66c15ddb";
EXPECT_EQ(Status::ErrorImportAesKeyLength(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
// Fail import of 200-bit KEK
key_raw_hex_in = "0a1d88608a5ad9fec64f1ada269ebab4baa2feeb8d95638c0e";
EXPECT_EQ(Status::ErrorImportAesKeyLength(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
// Fail import of 260-bit KEK
key_raw_hex_in =
"72d4e475ff34215416c9ad9c8281247a4d730c5f275ac23f376e73e3bce8d7d5a";
EXPECT_EQ(Status::ErrorImportAesKeyLength(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(HexStringToBytes(key_raw_hex_in)),
algorithm,
true,
blink::WebCryptoKeyUsageWrapKey,
&key));
}
TEST_F(SharedCryptoTest, UnwrapFailures) {
// This test exercises the code path common to all unwrap operations.
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(0, &test));
const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
const std::vector<uint8_t> test_ciphertext =
GetBytesFromHexString(test, "ciphertext");
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
// Using a wrapping algorithm that does not match the wrapping key algorithm
// should fail.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
test_kek,
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
blink::WebCryptoKeyUsageUnwrapKey);
EXPECT_EQ(
Status::ErrorUnexpected(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(test_ciphertext),
wrapping_key,
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
}
TEST_F(SharedCryptoTest, AesKwRawSymkeyWrapUnwrapKnownAnswer) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_ciphertext =
GetBytesFromHexString(test, "ciphertext");
const blink::WebCryptoAlgorithm wrapping_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
test_kek,
wrapping_algorithm,
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
// Import the key to be wrapped.
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
blink::WebCryptoKeyUsageSign);
// Wrap the key and verify the ciphertext result against the known answer.
std::vector<uint8_t> wrapped_key;
ASSERT_EQ(Status::Success(),
WrapKey(blink::WebCryptoKeyFormatRaw,
key,
wrapping_key,
wrapping_algorithm,
&wrapped_key));
EXPECT_BYTES_EQ(test_ciphertext, wrapped_key);
// Unwrap the known ciphertext to get a new test_key.
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(
Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(test_ciphertext),
wrapping_key,
wrapping_algorithm,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&unwrapped_key));
EXPECT_FALSE(key.isNull());
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(true, key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages());
// Export the new key and compare its raw bytes with the original known key.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
}
}
// Unwrap a HMAC key using AES-KW, and then try doing a sign/verify with the
// unwrapped key
TEST_F(SharedCryptoTest, AesKwRawSymkeyUnwrapSignVerifyHmac) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(0, &test));
const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
const std::vector<uint8_t> test_ciphertext =
GetBytesFromHexString(test, "ciphertext");
const blink::WebCryptoAlgorithm wrapping_algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
test_kek, wrapping_algorithm, blink::WebCryptoKeyUsageUnwrapKey);
// Unwrap the known ciphertext.
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(
Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(test_ciphertext),
wrapping_key,
wrapping_algorithm,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
false,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_FALSE(key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
key.usages());
// Sign an empty message and ensure it is verified.
std::vector<uint8_t> test_message;
std::vector<uint8_t> signature;
ASSERT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
key,
CryptoData(test_message),
&signature));
EXPECT_GT(signature.size(), 0u);
bool verify_result;
ASSERT_EQ(Status::Success(),
Verify(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
key,
CryptoData(signature),
CryptoData(test_message),
&verify_result));
}
TEST_F(SharedCryptoTest, AesKwRawSymkeyWrapUnwrapErrors) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
base::DictionaryValue* test;
// Use 256 bits of data with a 256-bit KEK
ASSERT_TRUE(tests->GetDictionary(3, &test));
const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_ciphertext =
GetBytesFromHexString(test, "ciphertext");
const blink::WebCryptoAlgorithm wrapping_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
const blink::WebCryptoAlgorithm key_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
test_kek,
wrapping_algorithm,
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
// Import the key to be wrapped.
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
blink::WebCryptoKeyUsageEncrypt);
// Unwrap with wrapped data too small must fail.
const std::vector<uint8_t> small_data(test_ciphertext.begin(),
test_ciphertext.begin() + 23);
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::ErrorDataTooSmall(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(small_data),
wrapping_key,
wrapping_algorithm,
key_algorithm,
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
// Unwrap with wrapped data size not a multiple of 8 bytes must fail.
const std::vector<uint8_t> unaligned_data(test_ciphertext.begin(),
test_ciphertext.end() - 2);
EXPECT_EQ(Status::ErrorInvalidAesKwDataLength(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(unaligned_data),
wrapping_key,
wrapping_algorithm,
key_algorithm,
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
}
TEST_F(SharedCryptoTest, AesKwRawSymkeyUnwrapCorruptData) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_kw.json", &tests));
base::DictionaryValue* test;
// Use 256 bits of data with a 256-bit KEK
ASSERT_TRUE(tests->GetDictionary(3, &test));
const std::vector<uint8_t> test_kek = GetBytesFromHexString(test, "kek");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_ciphertext =
GetBytesFromHexString(test, "ciphertext");
const blink::WebCryptoAlgorithm wrapping_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
test_kek,
wrapping_algorithm,
blink::WebCryptoKeyUsageWrapKey | blink::WebCryptoKeyUsageUnwrapKey);
// Unwrap of a corrupted version of the known ciphertext should fail, due to
// AES-KW's built-in integrity check.
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
EXPECT_EQ(
Status::OperationError(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(Corrupted(test_ciphertext)),
wrapping_key,
wrapping_algorithm,
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
}
TEST_F(SharedCryptoTest, AesKwJwkSymkeyUnwrapKnownData) {
// The following data lists a known HMAC SHA-256 key, then a JWK
// representation of this key which was encrypted ("wrapped") using AES-KW and
// the following wrapping key.
// For reference, the intermediate clear JWK is
// {"alg":"HS256","ext":true,"k":<b64urlKey>,"key_ops":["verify"],"kty":"oct"}
// (Not shown is space padding to ensure the cleartext meets the size
// requirements of the AES-KW algorithm.)
const std::vector<uint8_t> key_data = HexStringToBytes(
"000102030405060708090A0B0C0D0E0F000102030405060708090A0B0C0D0E0F");
const std::vector<uint8_t> wrapped_key_data = HexStringToBytes(
"14E6380B35FDC5B72E1994764B6CB7BFDD64E7832894356AAEE6C3768FC3D0F115E6B0"
"6729756225F999AA99FDF81FD6A359F1576D3D23DE6CB69C3937054EB497AC1E8C38D5"
"5E01B9783A20C8D930020932CF25926103002213D0FC37279888154FEBCEDF31832158"
"97938C5CFE5B10B4254D0C399F39D0");
const std::vector<uint8_t> wrapping_key_data =
HexStringToBytes("000102030405060708090A0B0C0D0E0F");
const blink::WebCryptoAlgorithm wrapping_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = ImportSecretKeyFromRaw(
wrapping_key_data, wrapping_algorithm, blink::WebCryptoKeyUsageUnwrapKey);
// Unwrap the known wrapped key data to produce a new key
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(
Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatJwk,
CryptoData(wrapped_key_data),
wrapping_key,
wrapping_algorithm,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
true,
blink::WebCryptoKeyUsageVerify,
&unwrapped_key));
// Validate the new key's attributes.
EXPECT_FALSE(unwrapped_key.isNull());
EXPECT_TRUE(unwrapped_key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, unwrapped_key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, unwrapped_key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
unwrapped_key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(256u, unwrapped_key.algorithm().hmacParams()->lengthBits());
EXPECT_EQ(true, unwrapped_key.extractable());
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, unwrapped_key.usages());
// Export the new key's raw data and compare to the known original.
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
EXPECT_BYTES_EQ(key_data, raw_key);
}
// TODO(eroman):
// * Test decryption when the tag length exceeds input size
// * Test decryption with empty input
// * Test decryption with tag length of 0.
TEST_F(SharedCryptoTest, AesGcmSampleSets) {
// Some Linux test runners may not have a new enough version of NSS.
if (!SupportsAesGcm()) {
LOG(WARNING) << "AES GCM not supported, skipping tests";
return;
}
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("aes_gcm.json", &tests));
// Note that WebCrypto appends the authentication tag to the ciphertext.
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_iv = GetBytesFromHexString(test, "iv");
const std::vector<uint8_t> test_additional_data =
GetBytesFromHexString(test, "additional_data");
const std::vector<uint8_t> test_plain_text =
GetBytesFromHexString(test, "plain_text");
const std::vector<uint8_t> test_authentication_tag =
GetBytesFromHexString(test, "authentication_tag");
const unsigned int test_tag_size_bits = test_authentication_tag.size() * 8;
const std::vector<uint8_t> test_cipher_text =
GetBytesFromHexString(test, "cipher_text");
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesGcm),
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt);
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
// Test encryption.
std::vector<uint8_t> cipher_text;
std::vector<uint8_t> authentication_tag;
EXPECT_EQ(Status::Success(),
AesGcmEncrypt(key,
test_iv,
test_additional_data,
test_tag_size_bits,
test_plain_text,
&cipher_text,
&authentication_tag));
EXPECT_BYTES_EQ(test_cipher_text, cipher_text);
EXPECT_BYTES_EQ(test_authentication_tag, authentication_tag);
// Test decryption.
std::vector<uint8_t> plain_text;
EXPECT_EQ(Status::Success(),
AesGcmDecrypt(key,
test_iv,
test_additional_data,
test_tag_size_bits,
test_cipher_text,
test_authentication_tag,
&plain_text));
EXPECT_BYTES_EQ(test_plain_text, plain_text);
// Decryption should fail if any of the inputs are tampered with.
EXPECT_EQ(Status::OperationError(),
AesGcmDecrypt(key,
Corrupted(test_iv),
test_additional_data,
test_tag_size_bits,
test_cipher_text,
test_authentication_tag,
&plain_text));
EXPECT_EQ(Status::OperationError(),
AesGcmDecrypt(key,
test_iv,
Corrupted(test_additional_data),
test_tag_size_bits,
test_cipher_text,
test_authentication_tag,
&plain_text));
EXPECT_EQ(Status::OperationError(),
AesGcmDecrypt(key,
test_iv,
test_additional_data,
test_tag_size_bits,
Corrupted(test_cipher_text),
test_authentication_tag,
&plain_text));
EXPECT_EQ(Status::OperationError(),
AesGcmDecrypt(key,
test_iv,
test_additional_data,
test_tag_size_bits,
test_cipher_text,
Corrupted(test_authentication_tag),
&plain_text));
// Try different incorrect tag lengths
uint8_t kAlternateTagLengths[] = {0, 8, 96, 120, 128, 160, 255};
for (size_t tag_i = 0; tag_i < arraysize(kAlternateTagLengths); ++tag_i) {
unsigned int wrong_tag_size_bits = kAlternateTagLengths[tag_i];
if (test_tag_size_bits == wrong_tag_size_bits)
continue;
EXPECT_NE(Status::Success(),
AesGcmDecrypt(key,
test_iv,
test_additional_data,
wrong_tag_size_bits,
test_cipher_text,
test_authentication_tag,
&plain_text));
}
}
}
// AES 192-bit is not allowed: http://crbug.com/381829
TEST_F(SharedCryptoTest, ImportAesCbc192Raw) {
std::vector<uint8_t> key_raw(24, 0);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
Status status = ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_raw),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&key);
ASSERT_EQ(Status::ErrorAes192BitUnsupported(), status);
}
// AES 192-bit is not allowed: http://crbug.com/381829
TEST_F(SharedCryptoTest, ImportAesCbc192Jwk) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("alg", "A192CBC");
dict.SetString("k", "YWFhYWFhYWFhYWFhYWFhYWFhYWFhYWFh");
EXPECT_EQ(
Status::ErrorAes192BitUnsupported(),
ImportKeyJwkFromDict(dict,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
false,
blink::WebCryptoKeyUsageEncrypt,
&key));
}
// AES 192-bit is not allowed: http://crbug.com/381829
TEST_F(SharedCryptoTest, GenerateAesCbc192) {
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
Status status = GenerateSecretKey(CreateAesCbcKeyGenAlgorithm(192),
true,
blink::WebCryptoKeyUsageEncrypt,
&key);
ASSERT_EQ(Status::ErrorAes192BitUnsupported(), status);
}
// AES 192-bit is not allowed: http://crbug.com/381829
TEST_F(SharedCryptoTest, UnwrapAesCbc192) {
std::vector<uint8_t> wrapping_key_data(16, 0);
std::vector<uint8_t> wrapped_key = HexStringToBytes(
"1A07ACAB6C906E50883173C29441DB1DE91D34F45C435B5F99C822867FB3956F");
blink::WebCryptoKey wrapping_key =
ImportSecretKeyFromRaw(wrapping_key_data,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
blink::WebCryptoKeyUsageUnwrapKey);
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorAes192BitUnsupported(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(wrapped_key),
wrapping_key,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
}
class SharedCryptoRsaOaepTest : public ::testing::Test {
public:
scoped_ptr<base::DictionaryValue> CreatePublicKeyJwkDict() {
scoped_ptr<base::DictionaryValue> jwk(new base::DictionaryValue());
jwk->SetString("kty", "RSA");
jwk->SetString("n",
Base64EncodeUrlSafe(HexStringToBytes(kPublicKeyModulusHex)));
jwk->SetString(
"e", Base64EncodeUrlSafe(HexStringToBytes(kPublicKeyExponentHex)));
return jwk.Pass();
}
};
// Import a PKCS#8 private key that uses RSAPrivateKey with the
// id-rsaEncryption OID.
TEST_F(SharedCryptoRsaOaepTest, ImportPkcs8WithRsaEncryption) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageDecrypt,
&private_key));
}
TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithNoAlg) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
}
TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMatchingAlg) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
jwk->SetString("alg", "RSA-OAEP");
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
}
TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMismatchedAlgFails) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
jwk->SetString("alg", "RSA-OAEP-512");
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
}
TEST_F(SharedCryptoRsaOaepTest, ImportPublicJwkWithMismatchedTypeFails) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
jwk->SetString("kty", "oct");
jwk->SetString("alg", "RSA-OAEP");
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorJwkUnexpectedKty("RSA"),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
}
TEST_F(SharedCryptoRsaOaepTest, ExportPublicJwk) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
struct TestData {
blink::WebCryptoAlgorithmId hash_alg;
const char* expected_jwk_alg;
} kTestData[] = {{blink::WebCryptoAlgorithmIdSha1, "RSA-OAEP"},
{blink::WebCryptoAlgorithmIdSha256, "RSA-OAEP-256"},
{blink::WebCryptoAlgorithmIdSha384, "RSA-OAEP-384"},
{blink::WebCryptoAlgorithmIdSha512, "RSA-OAEP-512"}};
for (size_t i = 0; i < ARRAYSIZE_UNSAFE(kTestData); ++i) {
const TestData& test_data = kTestData[i];
SCOPED_TRACE(test_data.expected_jwk_alg);
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
jwk->SetString("alg", test_data.expected_jwk_alg);
// Import the key in a known-good format
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(
*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, test_data.hash_alg),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
// Now export the key as JWK and verify its contents
std::vector<uint8_t> jwk_data;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, public_key, &jwk_data));
EXPECT_TRUE(VerifyPublicJwk(jwk_data,
test_data.expected_jwk_alg,
kPublicKeyModulusHex,
kPublicKeyExponentHex,
blink::WebCryptoKeyUsageEncrypt));
}
}
TEST_F(SharedCryptoRsaOaepTest, EncryptDecryptKnownAnswerTest) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("rsa_oaep.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test = NULL;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm digest_algorithm =
GetDigestAlgorithm(test, "hash");
ASSERT_FALSE(digest_algorithm.isNull());
std::vector<uint8_t> public_key_der =
GetBytesFromHexString(test, "public_key");
std::vector<uint8_t> private_key_der =
GetBytesFromHexString(test, "private_key");
std::vector<uint8_t> ciphertext = GetBytesFromHexString(test, "ciphertext");
std::vector<uint8_t> plaintext = GetBytesFromHexString(test, "plaintext");
std::vector<uint8_t> label = GetBytesFromHexString(test, "label");
blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, digest_algorithm.id());
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(public_key_der,
private_key_der,
import_algorithm,
false,
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageDecrypt,
&public_key,
&private_key));
blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
std::vector<uint8_t> decrypted_data;
ASSERT_EQ(Status::Success(),
Decrypt(op_algorithm,
private_key,
CryptoData(ciphertext),
&decrypted_data));
EXPECT_BYTES_EQ(plaintext, decrypted_data);
std::vector<uint8_t> encrypted_data;
ASSERT_EQ(
Status::Success(),
Encrypt(
op_algorithm, public_key, CryptoData(plaintext), &encrypted_data));
std::vector<uint8_t> redecrypted_data;
ASSERT_EQ(Status::Success(),
Decrypt(op_algorithm,
private_key,
CryptoData(encrypted_data),
&redecrypted_data));
EXPECT_BYTES_EQ(plaintext, redecrypted_data);
}
}
TEST_F(SharedCryptoRsaOaepTest, EncryptWithLargeMessageFails) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
const blink::WebCryptoAlgorithmId kHash = blink::WebCryptoAlgorithmIdSha1;
const size_t kHashSize = 20;
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, kHash),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
// The maximum size of an encrypted message is:
// modulus length
// - 1 (leading octet)
// - hash size (maskedSeed)
// - hash size (lHash portion of maskedDB)
// - 1 (at least one octet for the padding string)
size_t kMaxMessageSize = (kModulusLengthBits / 8) - 2 - (2 * kHashSize);
// The label has no influence on the maximum message size. For simplicity,
// use the empty string.
std::vector<uint8_t> label;
blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
// Test that a message just before the boundary succeeds.
std::string large_message;
large_message.resize(kMaxMessageSize - 1, 'A');
std::vector<uint8_t> ciphertext;
ASSERT_EQ(
Status::Success(),
Encrypt(
op_algorithm, public_key, CryptoData(large_message), &ciphertext));
// Test that a message at the boundary succeeds.
large_message.resize(kMaxMessageSize, 'A');
ciphertext.clear();
ASSERT_EQ(
Status::Success(),
Encrypt(
op_algorithm, public_key, CryptoData(large_message), &ciphertext));
// Test that a message greater than the largest size fails.
large_message.resize(kMaxMessageSize + 1, 'A');
ciphertext.clear();
ASSERT_EQ(
Status::OperationError(),
Encrypt(
op_algorithm, public_key, CryptoData(large_message), &ciphertext));
}
// Ensures that if the selected hash algorithm for the RSA-OAEP message is too
// large, then it is rejected, independent of the actual message to be
// encrypted.
// For example, a 1024-bit RSA key is too small to accomodate a message that
// uses OAEP with SHA-512, since it requires 1040 bits to encode
// (2 * hash size + 2 padding bytes).
TEST_F(SharedCryptoRsaOaepTest, EncryptWithLargeDigestFails) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
const blink::WebCryptoAlgorithmId kHash = blink::WebCryptoAlgorithmIdSha512;
scoped_ptr<base::DictionaryValue> jwk(CreatePublicKeyJwkDict());
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(*jwk.get(),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, kHash),
true,
blink::WebCryptoKeyUsageEncrypt,
&public_key));
// The label has no influence on the maximum message size. For simplicity,
// use the empty string.
std::vector<uint8_t> label;
blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
std::string small_message("A");
std::vector<uint8_t> ciphertext;
// This is an operation error, as the internal consistency checking of the
// algorithm parameters is up to the implementation.
ASSERT_EQ(
Status::OperationError(),
Encrypt(
op_algorithm, public_key, CryptoData(small_message), &ciphertext));
}
TEST_F(SharedCryptoRsaOaepTest, DecryptWithLargeMessageFails) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(HexStringToBytes(kPrivateKeyPkcs8DerHex)),
CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep,
blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageDecrypt,
&private_key));
// The label has no influence on the maximum message size. For simplicity,
// use the empty string.
std::vector<uint8_t> label;
blink::WebCryptoAlgorithm op_algorithm = CreateRsaOaepAlgorithm(label);
std::string large_dummy_message(kModulusLengthBits / 8, 'A');
std::vector<uint8_t> plaintext;
ASSERT_EQ(Status::OperationError(),
Decrypt(op_algorithm,
private_key,
CryptoData(large_dummy_message),
&plaintext));
}
TEST_F(SharedCryptoRsaOaepTest, WrapUnwrapRawKey) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(
HexStringToBytes(kPublicKeySpkiDerHex),
HexStringToBytes(kPrivateKeyPkcs8DerHex),
import_algorithm,
false,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageWrapKey,
blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageUnwrapKey,
&public_key,
&private_key));
std::vector<uint8_t> label;
blink::WebCryptoAlgorithm wrapping_algorithm = CreateRsaOaepAlgorithm(label);
const std::string key_hex = "000102030405060708090A0B0C0D0E0F";
const blink::WebCryptoAlgorithm key_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKey key =
ImportSecretKeyFromRaw(HexStringToBytes(key_hex),
key_algorithm,
blink::WebCryptoKeyUsageEncrypt);
ASSERT_FALSE(key.isNull());
std::vector<uint8_t> wrapped_key;
ASSERT_EQ(Status::Success(),
WrapKey(blink::WebCryptoKeyFormatRaw,
key,
public_key,
wrapping_algorithm,
&wrapped_key));
// Verify that |wrapped_key| can be decrypted and yields the key data.
// Because |private_key| supports both decrypt and unwrap, this is valid.
std::vector<uint8_t> decrypted_key;
ASSERT_EQ(Status::Success(),
Decrypt(wrapping_algorithm,
private_key,
CryptoData(wrapped_key),
&decrypted_key));
EXPECT_BYTES_EQ_HEX(key_hex, decrypted_key);
// Now attempt to unwrap the key, which should also decrypt the data.
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatRaw,
CryptoData(wrapped_key),
private_key,
wrapping_algorithm,
key_algorithm,
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
ASSERT_FALSE(unwrapped_key.isNull());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
}
TEST_F(SharedCryptoRsaOaepTest, WrapUnwrapJwkSymKey) {
if (!SupportsRsaOaep()) {
LOG(WARNING) << "RSA-OAEP support not present; skipping.";
return;
}
// The public and private portions of a 2048-bit RSA key with the
// id-rsaEncryption OID
const char kPublicKey2048SpkiDerHex[] =
"30820122300d06092a864886f70d01010105000382010f003082010a0282010100c5d8ce"
"137a38168c8ab70229cfa5accc640567159750a312ce2e7d54b6e2fdd59b300c6a6c9764"
"f8de6f00519cdb90111453d273a967462786480621f9e7cee5b73d63358448e7183a3a68"
"e991186359f26aa88fbca5f53e673e502e4c5a2ba5068aeba60c9d0c44d872458d1b1e2f"
"7f339f986076d516e93dc750f0b7680b6f5f02bc0d5590495be04c4ae59d34ba17bc5d08"
"a93c75cfda2828f4a55b153af912038438276cb4a14f8116ca94db0ea9893652d02fc606"
"36f19975e3d79a4d8ea8bfed6f8e0a24b63d243b08ea70a086ad56dd6341d733711c89ca"
"749d4a80b3e6ecd2f8e53731eadeac2ea77788ee55d7b4b47c0f2523fbd61b557c16615d"
"5d0203010001";
const char kPrivateKey2048Pkcs8DerHex[] =
"308204bd020100300d06092a864886f70d0101010500048204a7308204a3020100028201"
"0100c5d8ce137a38168c8ab70229cfa5accc640567159750a312ce2e7d54b6e2fdd59b30"
"0c6a6c9764f8de6f00519cdb90111453d273a967462786480621f9e7cee5b73d63358448"
"e7183a3a68e991186359f26aa88fbca5f53e673e502e4c5a2ba5068aeba60c9d0c44d872"
"458d1b1e2f7f339f986076d516e93dc750f0b7680b6f5f02bc0d5590495be04c4ae59d34"
"ba17bc5d08a93c75cfda2828f4a55b153af912038438276cb4a14f8116ca94db0ea98936"
"52d02fc60636f19975e3d79a4d8ea8bfed6f8e0a24b63d243b08ea70a086ad56dd6341d7"
"33711c89ca749d4a80b3e6ecd2f8e53731eadeac2ea77788ee55d7b4b47c0f2523fbd61b"
"557c16615d5d02030100010282010074b70feb41a0b0fcbc207670400556c9450042ede3"
"d4383fb1ce8f3558a6d4641d26dd4c333fa4db842d2b9cf9d2354d3e16ad027a9f682d8c"
"f4145a1ad97b9edcd8a41c402bd9d8db10f62f43df854cdccbbb2100834f083f53ed6d42"
"b1b729a59072b004a4e945fc027db15e9c121d1251464d320d4774d5732df6b3dbf751f4"
"9b19c9db201e19989c883bbaad5333db47f64f6f7a95b8d4936b10d945aa3f794cfaab62"
"e7d47686129358914f3b8085f03698a650ab5b8c7e45813f2b0515ec05b6e5195b6a7c2a"
"0d36969745f431ded4fd059f6aa361a4649541016d356297362b778e90f077d48815b339"
"ec6f43aba345df93e67fcb6c2cb5b4544e9be902818100e9c90abe5f9f32468c5b6d630c"
"54a4d7d75e29a72cf792f21e242aac78fd7995c42dfd4ae871d2619ff7096cb05baa78e3"
"23ecab338401a8059adf7a0d8be3b21edc9a9c82c5605634a2ec81ec053271721351868a"
"4c2e50c689d7cef94e31ff23658af5843366e2b289c5bf81d72756a7b93487dd8770d69c"
"1f4e089d6d89f302818100d8a58a727c4e209132afd9933b98c89aca862a01cc0be74133"
"bee517909e5c379e526895ac4af11780c1fe91194c777c9670b6423f0f5a32fd7691a622"
"113eef4bed2ef863363a335fd55b0e75088c582437237d7f3ed3f0a643950237bc6e6277"
"ccd0d0a1b4170aa1047aa7ffa7c8c54be10e8c7327ae2e0885663963817f6f02818100e5"
"aed9ba4d71b7502e6748a1ce247ecb7bd10c352d6d9256031cdf3c11a65e44b0b7ca2945"
"134671195af84c6b3bb3d10ebf65ae916f38bd5dbc59a0ad1c69b8beaf57cb3a8335f19b"
"c7117b576987b48331cd9fd3d1a293436b7bb5e1a35c6560de4b5688ea834367cb0997eb"
"b578f59ed4cb724c47dba94d3b484c1876dcd70281807f15bc7d2406007cac2b138a96af"
"2d1e00276b84da593132c253fcb73212732dfd25824c2a615bc3d9b7f2c8d2fa542d3562"
"b0c7738e61eeff580a6056239fb367ea9e5efe73d4f846033602e90c36a78db6fa8ea792"
"0769675ec58e237bd994d189c8045a96f5dd3a4f12547257ce224e3c9af830a4da3c0eab"
"9227a0035ae9028180067caea877e0b23090fc689322b71fbcce63d6596e66ab5fcdbaa0"
"0d49e93aba8effb4518c2da637f209028401a68f344865b4956b032c69acde51d29177ca"
"3db99fdbf5e74848ed4fa7bdfc2ebb60e2aaa5354770a763e1399ab7a2099762d525fea0"
"37f3e1972c45a477e66db95c9609bb27f862700ef93379930786cf751b";
blink::WebCryptoAlgorithm import_algorithm = CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaOaep, blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_NO_FATAL_FAILURE(ImportRsaKeyPair(
HexStringToBytes(kPublicKey2048SpkiDerHex),
HexStringToBytes(kPrivateKey2048Pkcs8DerHex),
import_algorithm,
false,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageWrapKey,
blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageUnwrapKey,
&public_key,
&private_key));
std::vector<uint8_t> label;
blink::WebCryptoAlgorithm wrapping_algorithm = CreateRsaOaepAlgorithm(label);
const std::string key_hex = "000102030405060708090a0b0c0d0e0f";
const blink::WebCryptoAlgorithm key_algorithm =
webcrypto::CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKey key =
ImportSecretKeyFromRaw(HexStringToBytes(key_hex),
key_algorithm,
blink::WebCryptoKeyUsageEncrypt);
ASSERT_FALSE(key.isNull());
std::vector<uint8_t> wrapped_key;
ASSERT_EQ(Status::Success(),
WrapKey(blink::WebCryptoKeyFormatJwk,
key,
public_key,
wrapping_algorithm,
&wrapped_key));
// Verify that |wrapped_key| can be decrypted and yields a valid JWK object.
// Because |private_key| supports both decrypt and unwrap, this is valid.
std::vector<uint8_t> decrypted_jwk;
ASSERT_EQ(Status::Success(),
Decrypt(wrapping_algorithm,
private_key,
CryptoData(wrapped_key),
&decrypted_jwk));
EXPECT_TRUE(VerifySecretJwk(
decrypted_jwk, "A128CBC", key_hex, blink::WebCryptoKeyUsageEncrypt));
// Now attempt to unwrap the key, which should also decrypt the data.
blink::WebCryptoKey unwrapped_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatJwk,
CryptoData(wrapped_key),
private_key,
wrapping_algorithm,
key_algorithm,
true,
blink::WebCryptoKeyUsageEncrypt,
&unwrapped_key));
ASSERT_FALSE(unwrapped_key.isNull());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, unwrapped_key, &raw_key));
EXPECT_BYTES_EQ_HEX(key_hex, raw_key);
}
// Try importing an RSA-SSA public key with unsupported key usages using SPKI
// format. RSA-SSA public keys only support the 'verify' usage.
TEST_F(SharedCryptoTest, ImportRsaSsaPublicKeyBadUsage_SPKI) {
const blink::WebCryptoAlgorithm algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageSign,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
};
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::WebCryptoKeyFormatSpki,
CryptoData(HexStringToBytes(kPublicKeySpkiDerHex)),
algorithm,
false,
bad_usages[i],
&public_key));
}
}
// Try importing an RSA-SSA public key with unsupported key usages using JWK
// format. RSA-SSA public keys only support the 'verify' usage.
TEST_F(SharedCryptoTest, ImportRsaSsaPublicKeyBadUsage_JWK) {
const blink::WebCryptoAlgorithm algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageSign,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageDecrypt,
};
base::DictionaryValue dict;
RestoreJwkRsaDictionary(&dict);
dict.Remove("use", NULL);
dict.SetString("alg", "RS256");
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKeyJwkFromDict(
dict, algorithm, false, bad_usages[i], &public_key));
}
}
// Try importing an AES-CBC key with unsupported key usages using raw
// format. AES-CBC keys support the following usages:
// 'encrypt', 'decrypt', 'wrapKey', 'unwrapKey'
TEST_F(SharedCryptoTest, ImportAesCbcKeyBadUsage_Raw) {
const blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageSign,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageDeriveBits,
blink::WebCryptoKeyUsageUnwrapKey | blink::WebCryptoKeyUsageVerify,
};
std::vector<uint8_t> key_bytes(16);
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_bytes),
algorithm,
true,
bad_usages[i],
&key));
}
}
// Try importing an AES-KW key with unsupported key usages using raw
// format. AES-KW keys support the following usages:
// 'wrapKey', 'unwrapKey'
TEST_F(SharedCryptoTest, ImportAesKwKeyBadUsage_Raw) {
const blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageSign,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageUnwrapKey,
blink::WebCryptoKeyUsageDeriveBits,
blink::WebCryptoKeyUsageUnwrapKey | blink::WebCryptoKeyUsageVerify,
};
std::vector<uint8_t> key_bytes(16);
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(key_bytes),
algorithm,
true,
bad_usages[i],
&key));
}
}
// Try unwrapping an HMAC key with unsupported usages using JWK format and
// AES-KW. HMAC keys support the following usages:
// 'sign', 'verify'
TEST_F(SharedCryptoTest, UnwrapHmacKeyBadUsage_JWK) {
const blink::WebCryptoAlgorithm unwrap_algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageWrapKey,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageWrapKey,
blink::WebCryptoKeyUsageVerify | blink::WebCryptoKeyUsageDeriveKey,
};
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(std::vector<uint8_t>(16)),
unwrap_algorithm,
true,
blink::WebCryptoKeyUsageUnwrapKey,
&wrapping_key));
// The JWK plain text is:
// { "kty": "oct","alg": "HS256","k": "GADWrMRHwQfoNaXU5fZvTg=="}
const char* kWrappedJwk =
"0AA245F17064FFB2A7A094436A39BEBFC962C627303D1327EA750CE9F917688C2782A943"
"7AE7586547AC490E8AE7D5B02D63868D5C3BB57D36C4C8C5BF3962ACEC6F42E767E5706"
"4";
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
UnwrapKey(blink::WebCryptoKeyFormatJwk,
CryptoData(HexStringToBytes(kWrappedJwk)),
wrapping_key,
unwrap_algorithm,
webcrypto::CreateHmacImportAlgorithm(
blink::WebCryptoAlgorithmIdSha256),
true,
bad_usages[i],
&key));
}
}
// Try unwrapping an RSA-SSA public key with unsupported usages using JWK format
// and AES-KW. RSA-SSA public keys support the following usages:
// 'verify'
TEST_F(SharedCryptoTest, UnwrapRsaSsaPublicKeyBadUsage_JWK) {
const blink::WebCryptoAlgorithm unwrap_algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesKw);
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageEncrypt,
blink::WebCryptoKeyUsageSign,
blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageWrapKey,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageWrapKey,
};
// Import the wrapping key.
blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(std::vector<uint8_t>(16)),
unwrap_algorithm,
true,
blink::WebCryptoKeyUsageUnwrapKey,
&wrapping_key));
// The JWK plaintext is:
// { "kty": "RSA","alg": "RS256","n": "...","e": "AQAB"}
const char* kWrappedJwk =
"CE8DAEF99E977EE58958B8C4494755C846E883B2ECA575C5366622839AF71AB30875F152"
"E8E33E15A7817A3A2874EB53EFE05C774D98BC936BA9BA29BEB8BB3F3C3CE2323CB3359D"
"E3F426605CF95CCF0E01E870ABD7E35F62E030B5FB6E520A5885514D1D850FB64B57806D"
"1ADA57C6E27DF345D8292D80F6B074F1BE51C4CF3D76ECC8886218551308681B44FAC60B"
"8CF6EA439BC63239103D0AE81ADB96F908680586C6169284E32EB7DD09D31103EBDAC0C2"
"40C72DCF0AEA454113CC47457B13305B25507CBEAB9BDC8D8E0F867F9167F9DCEF0D9F9B"
"30F2EE83CEDFD51136852C8A5939B768";
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
UnwrapKey(blink::WebCryptoKeyFormatJwk,
CryptoData(HexStringToBytes(kWrappedJwk)),
wrapping_key,
unwrap_algorithm,
webcrypto::CreateRsaHashedImportAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256),
true,
bad_usages[i],
&key));
}
}
// Generate an AES-CBC key with invalid usages. AES-CBC supports:
// 'encrypt', 'decrypt', 'wrapKey', 'unwrapKey'
TEST_F(SharedCryptoTest, GenerateAesKeyBadUsages) {
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageSign, blink::WebCryptoKeyUsageVerify,
blink::WebCryptoKeyUsageDecrypt | blink::WebCryptoKeyUsageVerify,
};
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
GenerateSecretKey(
CreateAesCbcKeyGenAlgorithm(128), true, bad_usages[i], &key));
}
}
// Generate an RSA-SSA key pair with invalid usages. RSA-SSA supports:
// 'sign', 'verify'
TEST_F(SharedCryptoTest, GenerateRsaSsaBadUsages) {
blink::WebCryptoKeyUsageMask bad_usages[] = {
blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageVerify | blink::WebCryptoKeyUsageDecrypt,
blink::WebCryptoKeyUsageWrapKey,
};
const unsigned int modulus_length = 256;
const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
for (size_t i = 0; i < arraysize(bad_usages); ++i) {
SCOPED_TRACE(i);
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::ErrorCreateKeyBadUsages(),
GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
public_exponent),
true,
bad_usages[i],
&public_key,
&private_key));
}
}
// Generate an RSA-SSA key pair. The public and private keys should select the
// key usages which are applicable, and not have the exact same usages as was
// specified to GenerateKey
TEST_F(SharedCryptoTest, GenerateRsaSsaKeyPairIntersectUsages) {
const unsigned int modulus_length = 256;
const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
GenerateKeyPair(
CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
public_exponent),
true,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&public_key,
&private_key));
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, public_key.usages());
EXPECT_EQ(blink::WebCryptoKeyUsageSign, private_key.usages());
// Try again but this time without the Verify usages.
ASSERT_EQ(Status::Success(),
GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
public_exponent),
true,
blink::WebCryptoKeyUsageSign,
&public_key,
&private_key));
EXPECT_EQ(0, public_key.usages());
EXPECT_EQ(blink::WebCryptoKeyUsageSign, private_key.usages());
}
// Generate an AES-CBC key and an RSA key pair. Use the AES-CBC key to wrap the
// key pair (using SPKI format for public key, PKCS8 format for private key).
// Then unwrap the wrapped key pair and verify that the key data is the same.
TEST_F(SharedCryptoTest, WrapUnwrapRoundtripSpkiPkcs8UsingAesCbc) {
if (!SupportsRsaKeyImport())
return;
// Generate the wrapping key.
blink::WebCryptoKey wrapping_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
GenerateSecretKey(CreateAesCbcKeyGenAlgorithm(128),
true,
blink::WebCryptoKeyUsageWrapKey |
blink::WebCryptoKeyUsageUnwrapKey,
&wrapping_key));
// Generate an RSA key pair to be wrapped.
const unsigned int modulus_length = 256;
const std::vector<uint8_t> public_exponent = HexStringToBytes("010001");
blink::WebCryptoKey public_key = blink::WebCryptoKey::createNull();
blink::WebCryptoKey private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
GenerateKeyPair(CreateRsaHashedKeyGenAlgorithm(
blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256,
modulus_length,
public_exponent),
true,
0,
&public_key,
&private_key));
// Export key pair as SPKI + PKCS8
std::vector<uint8_t> public_key_spki;
ASSERT_EQ(
Status::Success(),
ExportKey(blink::WebCryptoKeyFormatSpki, public_key, &public_key_spki));
std::vector<uint8_t> private_key_pkcs8;
ASSERT_EQ(
Status::Success(),
ExportKey(
blink::WebCryptoKeyFormatPkcs8, private_key, &private_key_pkcs8));
// Wrap the key pair.
blink::WebCryptoAlgorithm wrap_algorithm =
CreateAesCbcAlgorithm(std::vector<uint8_t>(16, 0));
std::vector<uint8_t> wrapped_public_key;
ASSERT_EQ(Status::Success(),
WrapKey(blink::WebCryptoKeyFormatSpki,
public_key,
wrapping_key,
wrap_algorithm,
&wrapped_public_key));
std::vector<uint8_t> wrapped_private_key;
ASSERT_EQ(Status::Success(),
WrapKey(blink::WebCryptoKeyFormatPkcs8,
private_key,
wrapping_key,
wrap_algorithm,
&wrapped_private_key));
// Unwrap the key pair.
blink::WebCryptoAlgorithm rsa_import_algorithm =
CreateRsaHashedImportAlgorithm(blink::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKey unwrapped_public_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatSpki,
CryptoData(wrapped_public_key),
wrapping_key,
wrap_algorithm,
rsa_import_algorithm,
true,
0,
&unwrapped_public_key));
blink::WebCryptoKey unwrapped_private_key = blink::WebCryptoKey::createNull();
ASSERT_EQ(Status::Success(),
UnwrapKey(blink::WebCryptoKeyFormatPkcs8,
CryptoData(wrapped_private_key),
wrapping_key,
wrap_algorithm,
rsa_import_algorithm,
true,
0,
&unwrapped_private_key));
// Export unwrapped key pair as SPKI + PKCS8
std::vector<uint8_t> unwrapped_public_key_spki;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatSpki,
unwrapped_public_key,
&unwrapped_public_key_spki));
std::vector<uint8_t> unwrapped_private_key_pkcs8;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatPkcs8,
unwrapped_private_key,
&unwrapped_private_key_pkcs8));
EXPECT_EQ(public_key_spki, unwrapped_public_key_spki);
EXPECT_EQ(private_key_pkcs8, unwrapped_private_key_pkcs8);
EXPECT_NE(public_key_spki, wrapped_public_key);
EXPECT_NE(private_key_pkcs8, wrapped_private_key);
}
} // namespace webcrypto
} // namespace content