blob: 999d5ac6cbd8cfc456e3d90cd5e09b1c0dbbbdcf [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/blockfile/index_table_v3.h"
#include <algorithm>
#include <set>
#include <utility>
#include "base/bits.h"
#include "net/base/io_buffer.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/disk_cache.h"
using base::Time;
using base::TimeDelta;
using disk_cache::CellInfo;
using disk_cache::CellList;
using disk_cache::IndexCell;
using disk_cache::IndexIterator;
namespace {
// The following constants describe the bitfields of an IndexCell so they are
// implicitly synchronized with the descrption of IndexCell on file_format_v3.h.
const uint64 kCellLocationMask = (1 << 22) - 1;
const uint64 kCellIdMask = (1 << 18) - 1;
const uint64 kCellTimestampMask = (1 << 20) - 1;
const uint64 kCellReuseMask = (1 << 4) - 1;
const uint8 kCellStateMask = (1 << 3) - 1;
const uint8 kCellGroupMask = (1 << 3) - 1;
const uint8 kCellSumMask = (1 << 2) - 1;
const uint64 kCellSmallTableLocationMask = (1 << 16) - 1;
const uint64 kCellSmallTableIdMask = (1 << 24) - 1;
const int kCellIdOffset = 22;
const int kCellTimestampOffset = 40;
const int kCellReuseOffset = 60;
const int kCellGroupOffset = 3;
const int kCellSumOffset = 6;
const int kCellSmallTableIdOffset = 16;
// The number of bits that a hash has to be shifted to grab the part that
// defines the cell id.
const int kHashShift = 14;
const int kSmallTableHashShift = 8;
// Unfortunately we have to break the abstaction a little here: the file number
// where entries are stored is outside of the control of this code, and it is
// usually part of the stored address. However, for small tables we only store
// 16 bits of the address so the file number is never stored on a cell. We have
// to infere the file number from the type of entry (normal vs evicted), and
// the knowledge that given that the table will not keep more than 64k entries,
// a single file of each type is enough.
const int kEntriesFile = disk_cache::BLOCK_ENTRIES - 1;
const int kEvictedEntriesFile = disk_cache::BLOCK_EVICTED - 1;
const int kMaxLocation = 1 << 22;
const int kMinFileNumber = 1 << 16;
uint32 GetCellLocation(const IndexCell& cell) {
return cell.first_part & kCellLocationMask;
}
uint32 GetCellSmallTableLocation(const IndexCell& cell) {
return cell.first_part & kCellSmallTableLocationMask;
}
uint32 GetCellId(const IndexCell& cell) {
return (cell.first_part >> kCellIdOffset) & kCellIdMask;
}
uint32 GetCellSmallTableId(const IndexCell& cell) {
return (cell.first_part >> kCellSmallTableIdOffset) &
kCellSmallTableIdMask;
}
int GetCellTimestamp(const IndexCell& cell) {
return (cell.first_part >> kCellTimestampOffset) & kCellTimestampMask;
}
int GetCellReuse(const IndexCell& cell) {
return (cell.first_part >> kCellReuseOffset) & kCellReuseMask;
}
int GetCellState(const IndexCell& cell) {
return cell.last_part & kCellStateMask;
}
int GetCellGroup(const IndexCell& cell) {
return (cell.last_part >> kCellGroupOffset) & kCellGroupMask;
}
int GetCellSum(const IndexCell& cell) {
return (cell.last_part >> kCellSumOffset) & kCellSumMask;
}
void SetCellLocation(IndexCell* cell, uint32 address) {
DCHECK_LE(address, static_cast<uint32>(kCellLocationMask));
cell->first_part &= ~kCellLocationMask;
cell->first_part |= address;
}
void SetCellSmallTableLocation(IndexCell* cell, uint32 address) {
DCHECK_LE(address, static_cast<uint32>(kCellSmallTableLocationMask));
cell->first_part &= ~kCellSmallTableLocationMask;
cell->first_part |= address;
}
void SetCellId(IndexCell* cell, uint32 hash) {
DCHECK_LE(hash, static_cast<uint32>(kCellIdMask));
cell->first_part &= ~(kCellIdMask << kCellIdOffset);
cell->first_part |= static_cast<int64>(hash) << kCellIdOffset;
}
void SetCellSmallTableId(IndexCell* cell, uint32 hash) {
DCHECK_LE(hash, static_cast<uint32>(kCellSmallTableIdMask));
cell->first_part &= ~(kCellSmallTableIdMask << kCellSmallTableIdOffset);
cell->first_part |= static_cast<int64>(hash) << kCellSmallTableIdOffset;
}
void SetCellTimestamp(IndexCell* cell, int timestamp) {
DCHECK_LT(timestamp, 1 << 20);
DCHECK_GE(timestamp, 0);
cell->first_part &= ~(kCellTimestampMask << kCellTimestampOffset);
cell->first_part |= static_cast<int64>(timestamp) << kCellTimestampOffset;
}
void SetCellReuse(IndexCell* cell, int count) {
DCHECK_LT(count, 16);
DCHECK_GE(count, 0);
cell->first_part &= ~(kCellReuseMask << kCellReuseOffset);
cell->first_part |= static_cast<int64>(count) << kCellReuseOffset;
}
void SetCellState(IndexCell* cell, disk_cache::EntryState state) {
cell->last_part &= ~kCellStateMask;
cell->last_part |= state;
}
void SetCellGroup(IndexCell* cell, disk_cache::EntryGroup group) {
cell->last_part &= ~(kCellGroupMask << kCellGroupOffset);
cell->last_part |= group << kCellGroupOffset;
}
void SetCellSum(IndexCell* cell, int sum) {
DCHECK_LT(sum, 4);
DCHECK_GE(sum, 0);
cell->last_part &= ~(kCellSumMask << kCellSumOffset);
cell->last_part |= sum << kCellSumOffset;
}
// This is a very particular way to calculate the sum, so it will not match if
// compared a gainst a pure 2 bit, modulo 2 sum.
int CalculateCellSum(const IndexCell& cell) {
uint32* words = bit_cast<uint32*>(&cell);
uint8* bytes = bit_cast<uint8*>(&cell);
uint32 result = words[0] + words[1];
result += result >> 16;
result += (result >> 8) + (bytes[8] & 0x3f);
result += result >> 4;
result += result >> 2;
return result & 3;
}
bool SanityCheck(const IndexCell& cell) {
if (GetCellSum(cell) != CalculateCellSum(cell))
return false;
if (GetCellState(cell) > disk_cache::ENTRY_USED ||
GetCellGroup(cell) == disk_cache::ENTRY_RESERVED ||
GetCellGroup(cell) > disk_cache::ENTRY_EVICTED) {
return false;
}
return true;
}
int FileNumberFromLocation(int location) {
return location / kMinFileNumber;
}
int StartBlockFromLocation(int location) {
return location % kMinFileNumber;
}
bool IsValidAddress(disk_cache::Addr address) {
if (!address.is_initialized() ||
(address.file_type() != disk_cache::BLOCK_EVICTED &&
address.file_type() != disk_cache::BLOCK_ENTRIES)) {
return false;
}
return address.FileNumber() < FileNumberFromLocation(kMaxLocation);
}
bool IsNormalState(const IndexCell& cell) {
disk_cache::EntryState state =
static_cast<disk_cache::EntryState>(GetCellState(cell));
DCHECK_NE(state, disk_cache::ENTRY_FREE);
return state != disk_cache::ENTRY_DELETED &&
state != disk_cache::ENTRY_FIXING;
}
inline int GetNextBucket(int min_bucket_num, int max_bucket_num,
disk_cache::IndexBucket* table,
disk_cache::IndexBucket** bucket) {
if (!(*bucket)->next)
return 0;
int bucket_num = (*bucket)->next / disk_cache::kCellsPerBucket;
if (bucket_num < min_bucket_num || bucket_num > max_bucket_num) {
// The next bucket must fall within the extra table. Note that this is not
// an uncommon path as growing the table may not cleanup the link from the
// main table to the extra table, and that cleanup is performed here when
// accessing that bucket for the first time. This behavior has to change if
// the tables are ever shrinked.
(*bucket)->next = 0;
return 0;
}
*bucket = &table[bucket_num - min_bucket_num];
return bucket_num;
}
// Updates the |iterator| with the current |cell|. This cell may cause all
// previous cells to be deleted (when a new target timestamp is found), the cell
// may be added to the list (if it matches the target timestamp), or may it be
// ignored.
void UpdateIterator(const disk_cache::EntryCell& cell,
int limit_time,
IndexIterator* iterator) {
int time = cell.GetTimestamp();
// Look for not interesting times.
if (iterator->forward && time <= limit_time)
return;
if (!iterator->forward && time >= limit_time)
return;
if ((iterator->forward && time < iterator->timestamp) ||
(!iterator->forward && time > iterator->timestamp)) {
// This timestamp is better than the one we had.
iterator->timestamp = time;
iterator->cells.clear();
}
if (time == iterator->timestamp) {
CellInfo cell_info = { cell.hash(), cell.GetAddress() };
iterator->cells.push_back(cell_info);
}
}
void InitIterator(IndexIterator* iterator) {
iterator->cells.clear();
iterator->timestamp = iterator->forward ? kint32max : 0;
}
} // namespace
namespace disk_cache {
EntryCell::~EntryCell() {
}
bool EntryCell::IsValid() const {
return GetCellLocation(cell_) != 0;
}
// This code has to map the cell address (up to 22 bits) to a general cache Addr
// (up to 24 bits of general addressing). It also set the implied file_number
// in the case of small tables. See also the comment by the definition of
// kEntriesFile.
Addr EntryCell::GetAddress() const {
uint32 location = GetLocation();
int file_number = FileNumberFromLocation(location);
if (small_table_) {
DCHECK_EQ(0, file_number);
file_number = (GetGroup() == ENTRY_EVICTED) ? kEvictedEntriesFile :
kEntriesFile;
}
DCHECK_NE(0, file_number);
FileType file_type = (GetGroup() == ENTRY_EVICTED) ? BLOCK_EVICTED :
BLOCK_ENTRIES;
return Addr(file_type, 1, file_number, StartBlockFromLocation(location));
}
EntryState EntryCell::GetState() const {
return static_cast<EntryState>(GetCellState(cell_));
}
EntryGroup EntryCell::GetGroup() const {
return static_cast<EntryGroup>(GetCellGroup(cell_));
}
int EntryCell::GetReuse() const {
return GetCellReuse(cell_);
}
int EntryCell::GetTimestamp() const {
return GetCellTimestamp(cell_);
}
void EntryCell::SetState(EntryState state) {
SetCellState(&cell_, state);
}
void EntryCell::SetGroup(EntryGroup group) {
SetCellGroup(&cell_, group);
}
void EntryCell::SetReuse(int count) {
SetCellReuse(&cell_, count);
}
void EntryCell::SetTimestamp(int timestamp) {
SetCellTimestamp(&cell_, timestamp);
}
// Static.
EntryCell EntryCell::GetEntryCellForTest(int32 cell_num,
uint32 hash,
Addr address,
IndexCell* cell,
bool small_table) {
if (cell) {
EntryCell entry_cell(cell_num, hash, *cell, small_table);
return entry_cell;
}
return EntryCell(cell_num, hash, address, small_table);
}
void EntryCell::SerializaForTest(IndexCell* destination) {
FixSum();
Serialize(destination);
}
EntryCell::EntryCell() : cell_num_(0), hash_(0), small_table_(false) {
cell_.Clear();
}
EntryCell::EntryCell(int32 cell_num,
uint32 hash,
Addr address,
bool small_table)
: cell_num_(cell_num),
hash_(hash),
small_table_(small_table) {
DCHECK(IsValidAddress(address) || !address.value());
cell_.Clear();
SetCellState(&cell_, ENTRY_NEW);
SetCellGroup(&cell_, ENTRY_NO_USE);
if (small_table) {
DCHECK(address.FileNumber() == kEntriesFile ||
address.FileNumber() == kEvictedEntriesFile);
SetCellSmallTableLocation(&cell_, address.start_block());
SetCellSmallTableId(&cell_, hash >> kSmallTableHashShift);
} else {
uint32 location = address.FileNumber() << 16 | address.start_block();
SetCellLocation(&cell_, location);
SetCellId(&cell_, hash >> kHashShift);
}
}
EntryCell::EntryCell(int32 cell_num,
uint32 hash,
const IndexCell& cell,
bool small_table)
: cell_num_(cell_num),
hash_(hash),
cell_(cell),
small_table_(small_table) {
}
void EntryCell::FixSum() {
SetCellSum(&cell_, CalculateCellSum(cell_));
}
uint32 EntryCell::GetLocation() const {
if (small_table_)
return GetCellSmallTableLocation(cell_);
return GetCellLocation(cell_);
}
uint32 EntryCell::RecomputeHash() {
if (small_table_) {
hash_ &= (1 << kSmallTableHashShift) - 1;
hash_ |= GetCellSmallTableId(cell_) << kSmallTableHashShift;
return hash_;
}
hash_ &= (1 << kHashShift) - 1;
hash_ |= GetCellId(cell_) << kHashShift;
return hash_;
}
void EntryCell::Serialize(IndexCell* destination) const {
*destination = cell_;
}
EntrySet::EntrySet() : evicted_count(0), current(0) {
}
EntrySet::~EntrySet() {
}
IndexIterator::IndexIterator() {
}
IndexIterator::~IndexIterator() {
}
IndexTableInitData::IndexTableInitData() {
}
IndexTableInitData::~IndexTableInitData() {
}
// -----------------------------------------------------------------------
IndexTable::IndexTable(IndexTableBackend* backend)
: backend_(backend),
header_(NULL),
main_table_(NULL),
extra_table_(NULL),
modified_(false),
small_table_(false) {
}
IndexTable::~IndexTable() {
}
// For a general description of the index tables see:
// http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Index
//
// The index is split between two tables: the main_table_ and the extra_table_.
// The main table can grow only by doubling its number of cells, while the
// extra table can grow slowly, because it only contain cells that overflow
// from the main table. In order to locate a given cell, part of the hash is
// used directly as an index into the main table; once that bucket is located,
// all cells with that partial hash (i.e., belonging to that bucket) are
// inspected, and if present, the next bucket (located on the extra table) is
// then located. For more information on bucket chaining see:
// http://www.chromium.org/developers/design-documents/network-stack/disk-cache/disk-cache-v3#TOC-Buckets
//
// There are two cases when increasing the size:
// - Doubling the size of the main table
// - Adding more entries to the extra table
//
// For example, consider a 64k main table with 8k cells on the extra table (for
// a total of 72k cells). Init can be called to add another 8k cells at the end
// (grow to 80k cells). When the size of the extra table approaches 64k, Init
// can be called to double the main table (to 128k) and go back to a small extra
// table.
void IndexTable::Init(IndexTableInitData* params) {
bool growing = header_ != NULL;
scoped_ptr<IndexBucket[]> old_extra_table;
header_ = &params->index_bitmap->header;
if (params->main_table) {
if (main_table_) {
// This is doubling the size of main table.
DCHECK_EQ(base::bits::Log2Floor(header_->table_len),
base::bits::Log2Floor(backup_header_->table_len) + 1);
int extra_size = (header()->max_bucket - mask_) * kCellsPerBucket;
DCHECK_GE(extra_size, 0);
// Doubling the size implies deleting the extra table and moving as many
// cells as we can to the main table, so we first copy the old one. This
// is not required when just growing the extra table because we don't
// move any cell in that case.
old_extra_table.reset(new IndexBucket[extra_size]);
memcpy(old_extra_table.get(), extra_table_,
extra_size * sizeof(IndexBucket));
memset(params->extra_table, 0, extra_size * sizeof(IndexBucket));
}
main_table_ = params->main_table;
}
DCHECK(main_table_);
extra_table_ = params->extra_table;
// extra_bits_ is really measured against table-size specific values.
const int kMaxAbsoluteExtraBits = 12; // From smallest to largest table.
const int kMaxExtraBitsSmallTable = 6; // From smallest to 64K table.
extra_bits_ = base::bits::Log2Floor(header_->table_len) -
base::bits::Log2Floor(kBaseTableLen);
DCHECK_GE(extra_bits_, 0);
DCHECK_LT(extra_bits_, kMaxAbsoluteExtraBits);
// Note that following the previous code the constants could be derived as
// kMaxAbsoluteExtraBits = base::bits::Log2Floor(max table len) -
// base::bits::Log2Floor(kBaseTableLen);
// = 22 - base::bits::Log2Floor(1024) = 22 - 10;
// kMaxExtraBitsSmallTable = base::bits::Log2Floor(max 16 bit table) - 10.
mask_ = ((kBaseTableLen / kCellsPerBucket) << extra_bits_) - 1;
small_table_ = extra_bits_ < kMaxExtraBitsSmallTable;
if (!small_table_)
extra_bits_ -= kMaxExtraBitsSmallTable;
// table_len keeps the max number of cells stored by the index. We need a
// bitmap with 1 bit per cell, and that bitmap has num_words 32-bit words.
int num_words = (header_->table_len + 31) / 32;
if (old_extra_table) {
// All the cells from the extra table are moving to the new tables so before
// creating the bitmaps, clear the part of the bitmap referring to the extra
// table.
int old_main_table_bit_words = ((mask_ >> 1) + 1) * kCellsPerBucket / 32;
DCHECK_GT(num_words, old_main_table_bit_words);
memset(params->index_bitmap->bitmap + old_main_table_bit_words, 0,
(num_words - old_main_table_bit_words) * sizeof(int32));
DCHECK(growing);
int old_num_words = (backup_header_.get()->table_len + 31) / 32;
DCHECK_GT(old_num_words, old_main_table_bit_words);
memset(backup_bitmap_storage_.get() + old_main_table_bit_words, 0,
(old_num_words - old_main_table_bit_words) * sizeof(int32));
}
bitmap_.reset(new Bitmap(params->index_bitmap->bitmap, header_->table_len,
num_words));
if (growing) {
int old_num_words = (backup_header_.get()->table_len + 31) / 32;
DCHECK_GE(num_words, old_num_words);
scoped_ptr<uint32[]> storage(new uint32[num_words]);
memcpy(storage.get(), backup_bitmap_storage_.get(),
old_num_words * sizeof(int32));
memset(storage.get() + old_num_words, 0,
(num_words - old_num_words) * sizeof(int32));
backup_bitmap_storage_.swap(storage);
backup_header_->table_len = header_->table_len;
} else {
backup_bitmap_storage_.reset(params->backup_bitmap.release());
backup_header_.reset(params->backup_header.release());
}
num_words = (backup_header_->table_len + 31) / 32;
backup_bitmap_.reset(new Bitmap(backup_bitmap_storage_.get(),
backup_header_->table_len, num_words));
if (old_extra_table)
MoveCells(old_extra_table.get());
if (small_table_)
DCHECK(header_->flags & SMALL_CACHE);
// All tables and backups are needed for operation.
DCHECK(main_table_);
DCHECK(extra_table_);
DCHECK(bitmap_.get());
}
void IndexTable::Shutdown() {
header_ = NULL;
main_table_ = NULL;
extra_table_ = NULL;
bitmap_.reset();
backup_bitmap_.reset();
backup_header_.reset();
backup_bitmap_storage_.reset();
modified_ = false;
}
// The general method for locating cells is to:
// 1. Get the first bucket. This usually means directly indexing the table (as
// this method does), or iterating through all possible buckets.
// 2. Iterate through all the cells in that first bucket.
// 3. If there is a linked bucket, locate it directly in the extra table.
// 4. Go back to 2, as needed.
//
// One consequence of this pattern is that we never start looking at buckets in
// the extra table, unless we are following a link from the main table.
EntrySet IndexTable::LookupEntries(uint32 hash) {
EntrySet entries;
int bucket_num = static_cast<int>(hash & mask_);
IndexBucket* bucket = &main_table_[bucket_num];
do {
for (int i = 0; i < kCellsPerBucket; i++) {
IndexCell* current_cell = &bucket->cells[i];
if (!GetLocation(*current_cell))
continue;
if (!SanityCheck(*current_cell)) {
NOTREACHED();
int cell_num = bucket_num * kCellsPerBucket + i;
current_cell->Clear();
bitmap_->Set(cell_num, false);
backup_bitmap_->Set(cell_num, false);
modified_ = true;
continue;
}
int cell_num = bucket_num * kCellsPerBucket + i;
if (MisplacedHash(*current_cell, hash)) {
HandleMisplacedCell(current_cell, cell_num, hash & mask_);
} else if (IsHashMatch(*current_cell, hash)) {
EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
CheckState(entry_cell);
if (entry_cell.GetState() != ENTRY_DELETED) {
entries.cells.push_back(entry_cell);
if (entry_cell.GetGroup() == ENTRY_EVICTED)
entries.evicted_count++;
}
}
}
bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
&bucket);
} while (bucket_num);
return entries;
}
EntryCell IndexTable::CreateEntryCell(uint32 hash, Addr address) {
DCHECK(IsValidAddress(address));
DCHECK(address.FileNumber() || address.start_block());
int bucket_num = static_cast<int>(hash & mask_);
int cell_num = 0;
IndexBucket* bucket = &main_table_[bucket_num];
IndexCell* current_cell = NULL;
bool found = false;
do {
for (int i = 0; i < kCellsPerBucket && !found; i++) {
current_cell = &bucket->cells[i];
if (!GetLocation(*current_cell)) {
cell_num = bucket_num * kCellsPerBucket + i;
found = true;
}
}
if (found)
break;
bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
&bucket);
} while (bucket_num);
if (!found) {
bucket_num = NewExtraBucket();
if (bucket_num) {
cell_num = bucket_num * kCellsPerBucket;
bucket->next = cell_num;
bucket = &extra_table_[bucket_num - (mask_ + 1)];
bucket->hash = hash & mask_;
found = true;
} else {
// address 0 is a reserved value, and the caller interprets it as invalid.
address.set_value(0);
}
}
EntryCell entry_cell(cell_num, hash, address, small_table_);
if (address.file_type() == BLOCK_EVICTED)
entry_cell.SetGroup(ENTRY_EVICTED);
else
entry_cell.SetGroup(ENTRY_NO_USE);
Save(&entry_cell);
if (found) {
bitmap_->Set(cell_num, true);
backup_bitmap_->Set(cell_num, true);
header()->used_cells++;
modified_ = true;
}
return entry_cell;
}
EntryCell IndexTable::FindEntryCell(uint32 hash, Addr address) {
return FindEntryCellImpl(hash, address, false);
}
int IndexTable::CalculateTimestamp(Time time) {
TimeDelta delta = time - Time::FromInternalValue(header_->base_time);
return std::max(delta.InMinutes(), 0);
}
base::Time IndexTable::TimeFromTimestamp(int timestamp) {
return Time::FromInternalValue(header_->base_time) +
TimeDelta::FromMinutes(timestamp);
}
void IndexTable::SetSate(uint32 hash, Addr address, EntryState state) {
EntryCell cell = FindEntryCellImpl(hash, address, state == ENTRY_FREE);
if (!cell.IsValid()) {
NOTREACHED();
return;
}
EntryState old_state = cell.GetState();
switch (state) {
case ENTRY_FREE:
DCHECK_EQ(old_state, ENTRY_DELETED);
break;
case ENTRY_NEW:
DCHECK_EQ(old_state, ENTRY_FREE);
break;
case ENTRY_OPEN:
DCHECK_EQ(old_state, ENTRY_USED);
break;
case ENTRY_MODIFIED:
DCHECK_EQ(old_state, ENTRY_OPEN);
break;
case ENTRY_DELETED:
DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
old_state == ENTRY_MODIFIED);
break;
case ENTRY_USED:
DCHECK(old_state == ENTRY_NEW || old_state == ENTRY_OPEN ||
old_state == ENTRY_MODIFIED);
break;
case ENTRY_FIXING:
break;
};
modified_ = true;
if (state == ENTRY_DELETED) {
bitmap_->Set(cell.cell_num(), false);
backup_bitmap_->Set(cell.cell_num(), false);
} else if (state == ENTRY_FREE) {
cell.Clear();
Write(cell);
header()->used_cells--;
return;
}
cell.SetState(state);
Save(&cell);
}
void IndexTable::UpdateTime(uint32 hash, Addr address, base::Time current) {
EntryCell cell = FindEntryCell(hash, address);
if (!cell.IsValid())
return;
int minutes = CalculateTimestamp(current);
// Keep about 3 months of headroom.
const int kMaxTimestamp = (1 << 20) - 60 * 24 * 90;
if (minutes > kMaxTimestamp) {
// TODO(rvargas):
// Update header->old_time and trigger a timer
// Rebaseline timestamps and don't update sums
// Start a timer (about 2 backups)
// fix all ckecksums and trigger another timer
// update header->old_time because rebaseline is done.
minutes = std::min(minutes, (1 << 20) - 1);
}
cell.SetTimestamp(minutes);
Save(&cell);
}
void IndexTable::Save(EntryCell* cell) {
cell->FixSum();
Write(*cell);
}
void IndexTable::GetOldest(IndexIterator* no_use,
IndexIterator* low_use,
IndexIterator* high_use) {
no_use->forward = true;
low_use->forward = true;
high_use->forward = true;
InitIterator(no_use);
InitIterator(low_use);
InitIterator(high_use);
WalkTables(-1, no_use, low_use, high_use);
}
bool IndexTable::GetNextCells(IndexIterator* iterator) {
int current_time = iterator->timestamp;
InitIterator(iterator);
WalkTables(current_time, iterator, iterator, iterator);
return !iterator->cells.empty();
}
void IndexTable::OnBackupTimer() {
if (!modified_)
return;
int num_words = (header_->table_len + 31) / 32;
int num_bytes = num_words * 4 + static_cast<int>(sizeof(*header_));
scoped_refptr<net::IOBuffer> buffer(new net::IOBuffer(num_bytes));
memcpy(buffer->data(), header_, sizeof(*header_));
memcpy(buffer->data() + sizeof(*header_), backup_bitmap_storage_.get(),
num_words * 4);
backend_->SaveIndex(buffer, num_bytes);
modified_ = false;
}
// -----------------------------------------------------------------------
EntryCell IndexTable::FindEntryCellImpl(uint32 hash, Addr address,
bool allow_deleted) {
int bucket_num = static_cast<int>(hash & mask_);
IndexBucket* bucket = &main_table_[bucket_num];
do {
for (int i = 0; i < kCellsPerBucket; i++) {
IndexCell* current_cell = &bucket->cells[i];
if (!GetLocation(*current_cell))
continue;
DCHECK(SanityCheck(*current_cell));
if (IsHashMatch(*current_cell, hash)) {
// We have a match.
int cell_num = bucket_num * kCellsPerBucket + i;
EntryCell entry_cell(cell_num, hash, *current_cell, small_table_);
if (entry_cell.GetAddress() != address)
continue;
if (!allow_deleted && entry_cell.GetState() == ENTRY_DELETED)
continue;
return entry_cell;
}
}
bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
&bucket);
} while (bucket_num);
return EntryCell();
}
void IndexTable::CheckState(const EntryCell& cell) {
int current_state = cell.GetState();
if (current_state != ENTRY_FIXING) {
bool present = ((current_state & 3) != 0); // Look at the last two bits.
if (present != bitmap_->Get(cell.cell_num()) ||
present != backup_bitmap_->Get(cell.cell_num())) {
// There's a mismatch.
if (current_state == ENTRY_DELETED) {
// We were in the process of deleting this entry. Finish now.
backend_->DeleteCell(cell);
} else {
current_state = ENTRY_FIXING;
EntryCell bad_cell(cell);
bad_cell.SetState(ENTRY_FIXING);
Save(&bad_cell);
}
}
}
if (current_state == ENTRY_FIXING)
backend_->FixCell(cell);
}
void IndexTable::Write(const EntryCell& cell) {
IndexBucket* bucket = NULL;
int bucket_num = cell.cell_num() / kCellsPerBucket;
if (bucket_num < static_cast<int32>(mask_ + 1)) {
bucket = &main_table_[bucket_num];
} else {
DCHECK_LE(bucket_num, header()->max_bucket);
bucket = &extra_table_[bucket_num - (mask_ + 1)];
}
int cell_number = cell.cell_num() % kCellsPerBucket;
if (GetLocation(bucket->cells[cell_number]) && cell.GetLocation()) {
DCHECK_EQ(cell.GetLocation(),
GetLocation(bucket->cells[cell_number]));
}
cell.Serialize(&bucket->cells[cell_number]);
}
int IndexTable::NewExtraBucket() {
int safe_window = (header()->table_len < kNumExtraBlocks * 2) ?
kNumExtraBlocks / 4 : kNumExtraBlocks;
if (header()->table_len - header()->max_bucket * kCellsPerBucket <
safe_window) {
backend_->GrowIndex();
}
if (header()->max_bucket * kCellsPerBucket ==
header()->table_len - kCellsPerBucket) {
return 0;
}
header()->max_bucket++;
return header()->max_bucket;
}
void IndexTable::WalkTables(int limit_time,
IndexIterator* no_use,
IndexIterator* low_use,
IndexIterator* high_use) {
header_->num_no_use_entries = 0;
header_->num_low_use_entries = 0;
header_->num_high_use_entries = 0;
header_->num_evicted_entries = 0;
for (int i = 0; i < static_cast<int32>(mask_ + 1); i++) {
int bucket_num = i;
IndexBucket* bucket = &main_table_[i];
do {
UpdateFromBucket(bucket, i, limit_time, no_use, low_use, high_use);
bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
&bucket);
} while (bucket_num);
}
header_->num_entries = header_->num_no_use_entries +
header_->num_low_use_entries +
header_->num_high_use_entries +
header_->num_evicted_entries;
modified_ = true;
}
void IndexTable::UpdateFromBucket(IndexBucket* bucket, int bucket_hash,
int limit_time,
IndexIterator* no_use,
IndexIterator* low_use,
IndexIterator* high_use) {
for (int i = 0; i < kCellsPerBucket; i++) {
IndexCell& current_cell = bucket->cells[i];
if (!GetLocation(current_cell))
continue;
DCHECK(SanityCheck(current_cell));
if (!IsNormalState(current_cell))
continue;
EntryCell entry_cell(0, GetFullHash(current_cell, bucket_hash),
current_cell, small_table_);
switch (GetCellGroup(current_cell)) {
case ENTRY_NO_USE:
UpdateIterator(entry_cell, limit_time, no_use);
header_->num_no_use_entries++;
break;
case ENTRY_LOW_USE:
UpdateIterator(entry_cell, limit_time, low_use);
header_->num_low_use_entries++;
break;
case ENTRY_HIGH_USE:
UpdateIterator(entry_cell, limit_time, high_use);
header_->num_high_use_entries++;
break;
case ENTRY_EVICTED:
header_->num_evicted_entries++;
break;
default:
NOTREACHED();
}
}
}
// This code is only called from Init() so the internal state of this object is
// in flux (this method is performing the last steps of re-initialization). As
// such, random methods are not supposed to work at this point, so whatever this
// method calls should be relatively well controlled and it may require some
// degree of "stable state faking".
void IndexTable::MoveCells(IndexBucket* old_extra_table) {
int max_hash = (mask_ + 1) / 2;
int max_bucket = header()->max_bucket;
header()->max_bucket = mask_;
int used_cells = header()->used_cells;
// Consider a large cache: a cell stores the upper 18 bits of the hash
// (h >> 14). If the table is say 8 times the original size (growing from 4x),
// the bit that we are interested in would be the 3rd bit of the stored value,
// in other words 'multiplier' >> 1.
uint32 new_bit = (1 << extra_bits_) >> 1;
scoped_ptr<IndexBucket[]> old_main_table;
IndexBucket* source_table = main_table_;
bool upgrade_format = !extra_bits_;
if (upgrade_format) {
// This method should deal with migrating a small table to a big one. Given
// that the first thing to do is read the old table, set small_table_ for
// the size of the old table. Now, when moving a cell, the result cannot be
// placed in the old table or we will end up reading it again and attempting
// to move it, so we have to copy the whole table at once.
DCHECK(!small_table_);
small_table_ = true;
old_main_table.reset(new IndexBucket[max_hash]);
memcpy(old_main_table.get(), main_table_, max_hash * sizeof(IndexBucket));
memset(main_table_, 0, max_hash * sizeof(IndexBucket));
source_table = old_main_table.get();
}
for (int i = 0; i < max_hash; i++) {
int bucket_num = i;
IndexBucket* bucket = &source_table[i];
do {
for (int j = 0; j < kCellsPerBucket; j++) {
IndexCell& current_cell = bucket->cells[j];
if (!GetLocation(current_cell))
continue;
DCHECK(SanityCheck(current_cell));
if (bucket_num == i) {
if (upgrade_format || (GetHashValue(current_cell) & new_bit)) {
// Move this cell to the upper half of the table.
MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
true);
}
} else {
// All cells on extra buckets have to move.
MoveSingleCell(&current_cell, bucket_num * kCellsPerBucket + j, i,
true);
}
}
// There is no need to clear the old bucket->next value because if falls
// within the main table so it will be fixed when attempting to follow
// the link.
bucket_num = GetNextBucket(max_hash, max_bucket, old_extra_table,
&bucket);
} while (bucket_num);
}
DCHECK_EQ(header()->used_cells, used_cells);
if (upgrade_format) {
small_table_ = false;
header()->flags &= ~SMALL_CACHE;
}
}
void IndexTable::MoveSingleCell(IndexCell* current_cell, int cell_num,
int main_table_index, bool growing) {
uint32 hash = GetFullHash(*current_cell, main_table_index);
EntryCell old_cell(cell_num, hash, *current_cell, small_table_);
// This method may be called when moving entries from a small table to a
// normal table. In that case, the caller (MoveCells) has to read the old
// table, so it needs small_table_ set to true, but this method needs to
// write to the new table so small_table_ has to be set to false, and the
// value restored to true before returning.
bool upgrade_format = !extra_bits_ && growing;
if (upgrade_format)
small_table_ = false;
EntryCell new_cell = CreateEntryCell(hash, old_cell.GetAddress());
if (!new_cell.IsValid()) {
// We'll deal with this entry later.
if (upgrade_format)
small_table_ = true;
return;
}
new_cell.SetState(old_cell.GetState());
new_cell.SetGroup(old_cell.GetGroup());
new_cell.SetReuse(old_cell.GetReuse());
new_cell.SetTimestamp(old_cell.GetTimestamp());
Save(&new_cell);
modified_ = true;
if (upgrade_format)
small_table_ = true;
if (old_cell.GetState() == ENTRY_DELETED) {
bitmap_->Set(new_cell.cell_num(), false);
backup_bitmap_->Set(new_cell.cell_num(), false);
}
if (!growing || cell_num / kCellsPerBucket == main_table_index) {
// Only delete entries that live on the main table.
if (!upgrade_format) {
old_cell.Clear();
Write(old_cell);
}
if (cell_num != new_cell.cell_num()) {
bitmap_->Set(old_cell.cell_num(), false);
backup_bitmap_->Set(old_cell.cell_num(), false);
}
}
header()->used_cells--;
}
void IndexTable::HandleMisplacedCell(IndexCell* current_cell, int cell_num,
int main_table_index) {
NOTREACHED(); // No unit tests yet.
// The cell may be misplaced, or a duplicate cell exists with this data.
uint32 hash = GetFullHash(*current_cell, main_table_index);
MoveSingleCell(current_cell, cell_num, main_table_index, false);
// Now look for a duplicate cell.
CheckBucketList(hash & mask_);
}
void IndexTable::CheckBucketList(int bucket_num) {
typedef std::pair<int, EntryGroup> AddressAndGroup;
std::set<AddressAndGroup> entries;
IndexBucket* bucket = &main_table_[bucket_num];
int bucket_hash = bucket_num;
do {
for (int i = 0; i < kCellsPerBucket; i++) {
IndexCell* current_cell = &bucket->cells[i];
if (!GetLocation(*current_cell))
continue;
if (!SanityCheck(*current_cell)) {
NOTREACHED();
current_cell->Clear();
continue;
}
int cell_num = bucket_num * kCellsPerBucket + i;
EntryCell cell(cell_num, GetFullHash(*current_cell, bucket_hash),
*current_cell, small_table_);
if (!entries.insert(std::make_pair(cell.GetAddress().value(),
cell.GetGroup())).second) {
current_cell->Clear();
continue;
}
CheckState(cell);
}
bucket_num = GetNextBucket(mask_ + 1, header()->max_bucket, extra_table_,
&bucket);
} while (bucket_num);
}
uint32 IndexTable::GetLocation(const IndexCell& cell) {
if (small_table_)
return GetCellSmallTableLocation(cell);
return GetCellLocation(cell);
}
uint32 IndexTable::GetHashValue(const IndexCell& cell) {
if (small_table_)
return GetCellSmallTableId(cell);
return GetCellId(cell);
}
uint32 IndexTable::GetFullHash(const IndexCell& cell, uint32 lower_part) {
// It is OK for the high order bits of lower_part to overlap with the stored
// part of the hash.
if (small_table_)
return (GetCellSmallTableId(cell) << kSmallTableHashShift) | lower_part;
return (GetCellId(cell) << kHashShift) | lower_part;
}
// All the bits stored in the cell should match the provided hash.
bool IndexTable::IsHashMatch(const IndexCell& cell, uint32 hash) {
hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
return GetHashValue(cell) == hash;
}
bool IndexTable::MisplacedHash(const IndexCell& cell, uint32 hash) {
if (!extra_bits_)
return false;
uint32 mask = (1 << extra_bits_) - 1;
hash = small_table_ ? hash >> kSmallTableHashShift : hash >> kHashShift;
return (GetHashValue(cell) & mask) != (hash & mask);
}
} // namespace disk_cache