blob: e820449cb703607862da639f604b7134c22b79d8 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "sandbox/linux/services/thread_helpers.h"
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
#include <string>
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/posix/eintr_wrapper.h"
#include "base/strings/string_number_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
namespace sandbox {
namespace {
bool IsSingleThreadedImpl(int proc_self_task) {
CHECK_LE(0, proc_self_task);
struct stat task_stat;
int fstat_ret = fstat(proc_self_task, &task_stat);
PCHECK(0 == fstat_ret);
// At least "..", "." and the current thread should be present.
CHECK_LE(3UL, task_stat.st_nlink);
// Counting threads via /proc/self/task could be racy. For the purpose of
// determining if the current proces is monothreaded it works: if at any
// time it becomes monothreaded, it'll stay so.
return task_stat.st_nlink == 3;
}
} // namespace
bool ThreadHelpers::IsSingleThreaded(int proc_self_task) {
DCHECK_LE(-1, proc_self_task);
if (-1 == proc_self_task) {
const int task_fd = open("/proc/self/task/", O_RDONLY | O_DIRECTORY);
PCHECK(0 <= task_fd);
const bool result = IsSingleThreadedImpl(task_fd);
PCHECK(0 == IGNORE_EINTR(close(task_fd)));
return result;
} else {
return IsSingleThreadedImpl(proc_self_task);
}
}
bool ThreadHelpers::StopThreadAndWatchProcFS(int proc_self_task,
base::Thread* thread) {
DCHECK_LE(0, proc_self_task);
DCHECK(thread);
const base::PlatformThreadId thread_id = thread->thread_id();
const std::string thread_id_dir_str = base::IntToString(thread_id) + "/";
// The kernel is at liberty to wake the thread id futex before updating
// /proc. Following Stop(), the thread is joined, but entries in /proc may
// not have been updated.
thread->Stop();
unsigned int iterations = 0;
bool thread_present_in_procfs = true;
// Poll /proc with an exponential back-off, sleeping 2^iterations nanoseconds
// in nanosleep(2).
// Note: the clock may not allow for nanosecond granularity, in this case the
// first iterations would sleep a tiny bit more instead, which would not
// change the calculations significantly.
while (thread_present_in_procfs) {
struct stat task_stat;
const int fstat_ret =
fstatat(proc_self_task, thread_id_dir_str.c_str(), &task_stat, 0);
if (fstat_ret < 0) {
PCHECK(ENOENT == errno);
// The thread disappeared from /proc, we're done.
thread_present_in_procfs = false;
break;
}
// Increase the waiting time exponentially.
struct timespec ts = {0, 1L << iterations /* nanoseconds */};
PCHECK(0 == HANDLE_EINTR(nanosleep(&ts, &ts)));
++iterations;
// Crash after 30 iterations, which means having spent roughly 2s in
// nanosleep(2) cumulatively.
CHECK_GT(30U, iterations);
// In practice, this never goes through more than a couple iterations. In
// debug mode, crash after 64ms (+ eventually 25 times the granularity of
// the clock) in nanosleep(2).
DCHECK_GT(25U, iterations);
}
return true;
}
} // namespace sandbox