blob: 5f2059731672e601776819fb08323e718d53315e [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/congestion_control/tcp_cubic_sender.h"
#include <algorithm>
#include "base/metrics/histogram.h"
#include "net/quic/congestion_control/prr_sender.h"
#include "net/quic/congestion_control/rtt_stats.h"
#include "net/quic/crypto/crypto_protocol.h"
using std::max;
using std::min;
namespace net {
namespace {
// Constants based on TCP defaults.
// The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a
// fast retransmission. The cwnd after a timeout is still 1.
const QuicPacketCount kMinimumCongestionWindow = 2;
const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS;
const int kMaxBurstLength = 3;
const float kRenoBeta = 0.7f; // Reno backoff factor.
const uint32 kDefaultNumConnections = 2; // N-connection emulation.
} // namespace
TcpCubicSender::TcpCubicSender(
const QuicClock* clock,
const RttStats* rtt_stats,
bool reno,
QuicPacketCount max_tcp_congestion_window,
QuicConnectionStats* stats)
: hybrid_slow_start_(clock),
cubic_(clock, stats),
rtt_stats_(rtt_stats),
stats_(stats),
reno_(reno),
num_connections_(kDefaultNumConnections),
congestion_window_count_(0),
largest_sent_sequence_number_(0),
largest_acked_sequence_number_(0),
largest_sent_at_last_cutback_(0),
congestion_window_(kDefaultInitialWindow),
previous_congestion_window_(0),
slowstart_threshold_(max_tcp_congestion_window),
previous_slowstart_threshold_(0),
last_cutback_exited_slowstart_(false),
max_tcp_congestion_window_(max_tcp_congestion_window) {
}
TcpCubicSender::~TcpCubicSender() {
UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_);
}
void TcpCubicSender::SetFromConfig(const QuicConfig& config, bool is_server) {
if (is_server) {
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) {
// Initial window experiment. Ignore the initial congestion
// window suggested by the client and use the default ICWND of
// 10 instead.
congestion_window_ = kDefaultInitialWindow;
} else if (config.HasReceivedInitialCongestionWindow()) {
// Set the initial window size.
congestion_window_ = max(kMinimumCongestionWindow,
min(kMaxInitialWindow,
static_cast<QuicPacketCount>(
config.ReceivedInitialCongestionWindow())));
}
}
}
void TcpCubicSender::SetNumEmulatedConnections(int num_connections) {
num_connections_ = max(1, num_connections);
cubic_.SetNumConnections(num_connections_);
}
float TcpCubicSender::RenoBeta() const {
// kNConnectionBeta is the backoff factor after loss for our N-connection
// emulation, which emulates the effective backoff of an ensemble of N
// TCP-Reno connections on a single loss event. The effective multiplier is
// computed as:
return (num_connections_ - 1 + kRenoBeta) / num_connections_;
}
void TcpCubicSender::OnCongestionEvent(
bool rtt_updated,
QuicByteCount bytes_in_flight,
const CongestionVector& acked_packets,
const CongestionVector& lost_packets) {
if (rtt_updated && InSlowStart() &&
hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(),
rtt_stats_->min_rtt(),
congestion_window_)) {
slowstart_threshold_ = congestion_window_;
}
for (CongestionVector::const_iterator it = lost_packets.begin();
it != lost_packets.end(); ++it) {
OnPacketLost(it->first, bytes_in_flight);
}
for (CongestionVector::const_iterator it = acked_packets.begin();
it != acked_packets.end(); ++it) {
OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight);
}
}
void TcpCubicSender::OnPacketAcked(
QuicPacketSequenceNumber acked_sequence_number,
QuicByteCount acked_bytes,
QuicByteCount bytes_in_flight) {
largest_acked_sequence_number_ = max(acked_sequence_number,
largest_acked_sequence_number_);
if (InRecovery()) {
// PRR is used when in recovery.
prr_.OnPacketAcked(acked_bytes);
return;
}
MaybeIncreaseCwnd(acked_sequence_number, bytes_in_flight);
// TODO(ianswett): Should this even be called when not in slow start?
hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart());
}
void TcpCubicSender::OnPacketLost(QuicPacketSequenceNumber sequence_number,
QuicByteCount bytes_in_flight) {
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
// already sent should be treated as a single loss event, since it's expected.
if (sequence_number <= largest_sent_at_last_cutback_) {
if (last_cutback_exited_slowstart_) {
++stats_->slowstart_packets_lost;
}
DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number
<< " because it was sent prior to the last CWND cutback.";
return;
}
++stats_->tcp_loss_events;
last_cutback_exited_slowstart_ = InSlowStart();
if (InSlowStart()) {
++stats_->slowstart_packets_lost;
}
prr_.OnPacketLost(bytes_in_flight);
if (reno_) {
congestion_window_ = congestion_window_ * RenoBeta();
} else {
congestion_window_ =
cubic_.CongestionWindowAfterPacketLoss(congestion_window_);
}
slowstart_threshold_ = congestion_window_;
// Enforce TCP's minimum congestion window of 2*MSS.
if (congestion_window_ < kMinimumCongestionWindow) {
congestion_window_ = kMinimumCongestionWindow;
}
largest_sent_at_last_cutback_ = largest_sent_sequence_number_;
// reset packet count from congestion avoidance mode. We start
// counting again when we're out of recovery.
congestion_window_count_ = 0;
DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
}
bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/,
QuicByteCount /*bytes_in_flight*/,
QuicPacketSequenceNumber sequence_number,
QuicByteCount bytes,
HasRetransmittableData is_retransmittable) {
// Only update bytes_in_flight_ for data packets.
if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) {
return false;
}
if (InRecovery()) {
// PRR is used when in recovery.
prr_.OnPacketSent(bytes);
}
DCHECK_LT(largest_sent_sequence_number_, sequence_number);
largest_sent_sequence_number_ = sequence_number;
hybrid_slow_start_.OnPacketSent(sequence_number);
return true;
}
QuicTime::Delta TcpCubicSender::TimeUntilSend(
QuicTime /* now */,
QuicByteCount bytes_in_flight,
HasRetransmittableData has_retransmittable_data) const {
if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) {
// For TCP we can always send an ACK immediately.
return QuicTime::Delta::Zero();
}
if (InRecovery()) {
// PRR is used when in recovery.
return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight,
slowstart_threshold_);
}
if (GetCongestionWindow() > bytes_in_flight) {
return QuicTime::Delta::Zero();
}
return QuicTime::Delta::Infinite();
}
QuicBandwidth TcpCubicSender::PacingRate() const {
// We pace at twice the rate of the underlying sender's bandwidth estimate
// during slow start and 1.25x during congestion avoidance to ensure pacing
// doesn't prevent us from filling the window.
QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
if (srtt.IsZero()) {
srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us());
}
const QuicBandwidth bandwidth =
QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
return bandwidth.Scale(InSlowStart() ? 2 : 1.25);
}
QuicBandwidth TcpCubicSender::BandwidthEstimate() const {
QuicTime::Delta srtt = rtt_stats_->smoothed_rtt();
if (srtt.IsZero()) {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return QuicBandwidth::Zero();
}
return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt);
}
bool TcpCubicSender::HasReliableBandwidthEstimate() const {
return !InSlowStart() && !InRecovery() &&
!rtt_stats_->smoothed_rtt().IsZero();;
}
QuicTime::Delta TcpCubicSender::RetransmissionDelay() const {
if (rtt_stats_->smoothed_rtt().IsZero()) {
return QuicTime::Delta::Zero();
}
return rtt_stats_->smoothed_rtt().Add(
rtt_stats_->mean_deviation().Multiply(4));
}
QuicByteCount TcpCubicSender::GetCongestionWindow() const {
return congestion_window_ * kMaxSegmentSize;
}
bool TcpCubicSender::InSlowStart() const {
return congestion_window_ < slowstart_threshold_;
}
QuicByteCount TcpCubicSender::GetSlowStartThreshold() const {
return slowstart_threshold_ * kMaxSegmentSize;
}
bool TcpCubicSender::IsCwndLimited(QuicByteCount bytes_in_flight) const {
const QuicByteCount congestion_window_bytes = congestion_window_ *
kMaxSegmentSize;
if (bytes_in_flight >= congestion_window_bytes) {
return true;
}
const QuicByteCount max_burst = kMaxBurstLength * kMaxSegmentSize;
const QuicByteCount available_bytes =
congestion_window_bytes - bytes_in_flight;
const bool slow_start_limited = InSlowStart() &&
bytes_in_flight > congestion_window_bytes / 2;
return slow_start_limited || available_bytes <= max_burst;
}
bool TcpCubicSender::InRecovery() const {
return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ &&
largest_acked_sequence_number_ != 0;
}
// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
void TcpCubicSender::MaybeIncreaseCwnd(
QuicPacketSequenceNumber acked_sequence_number,
QuicByteCount bytes_in_flight) {
LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery.";
if (!IsCwndLimited(bytes_in_flight)) {
// We don't update the congestion window unless we are close to using the
// window we have available.
return;
}
if (InSlowStart()) {
// congestion_window_cnt is the number of acks since last change of snd_cwnd
if (congestion_window_ < max_tcp_congestion_window_) {
// TCP slow start, exponential growth, increase by one for each ACK.
++congestion_window_;
}
DVLOG(1) << "Slow start; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
return;
}
if (congestion_window_ >= max_tcp_congestion_window_) {
return;
}
// Congestion avoidance
if (reno_) {
// Classic Reno congestion avoidance.
++congestion_window_count_;
// Divide by num_connections to smoothly increase the CWND at a faster
// rate than conventional Reno.
if (congestion_window_count_ * num_connections_ >= congestion_window_) {
++congestion_window_;
congestion_window_count_ = 0;
}
DVLOG(1) << "Reno; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_
<< " congestion window count: " << congestion_window_count_;
} else {
congestion_window_ = min(max_tcp_congestion_window_,
cubic_.CongestionWindowAfterAck(
congestion_window_, rtt_stats_->min_rtt()));
DVLOG(1) << "Cubic; congestion window: " << congestion_window_
<< " slowstart threshold: " << slowstart_threshold_;
}
}
void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) {
largest_sent_at_last_cutback_ = 0;
if (!packets_retransmitted) {
return;
}
cubic_.Reset();
hybrid_slow_start_.Restart();
previous_slowstart_threshold_ = slowstart_threshold_;
slowstart_threshold_ = congestion_window_ / 2;
previous_congestion_window_ = congestion_window_;
congestion_window_ = kMinimumCongestionWindow;
}
void TcpCubicSender::RevertRetransmissionTimeout() {
if (previous_congestion_window_ == 0) {
LOG(DFATAL) << "No previous congestion window to revert to.";
return;
}
congestion_window_ = previous_congestion_window_;
slowstart_threshold_ = previous_slowstart_threshold_;
previous_congestion_window_ = 0;
}
CongestionControlType TcpCubicSender::GetCongestionControlType() const {
return reno_ ? kReno : kCubic;
}
} // namespace net