blob: ccbdcac863fc4501e1edee333537bbb28d92ad6f [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/test/simple_test_tick_clock.h"
#include "media/cast/cast_defines.h"
#include "media/cast/pacing/paced_sender.h"
#include "media/cast/rtcp/mock_rtcp_receiver_feedback.h"
#include "media/cast/rtcp/mock_rtcp_sender_feedback.h"
#include "media/cast/rtcp/rtcp.h"
#include "media/cast/rtcp/test_rtcp_packet_builder.h"
#include "testing/gmock/include/gmock/gmock.h"
namespace media {
namespace cast {
using testing::_;
static const uint32 kSenderSsrc = 0x10203;
static const uint32 kReceiverSsrc = 0x40506;
static const uint32 kUnknownSsrc = 0xDEAD;
static const std::string kCName("test@10.1.1.1");
static const uint32 kRtcpIntervalMs = 500;
static const int64 kStartMillisecond = GG_INT64_C(12345678900000);
static const int64 kAddedDelay = 123;
static const int64 kAddedShortDelay= 100;
class LocalRtcpTransport : public PacedPacketSender {
public:
explicit LocalRtcpTransport(base::SimpleTestTickClock* testing_clock)
: short_delay_(false),
testing_clock_(testing_clock) {}
void SetRtcpReceiver(Rtcp* rtcp) { rtcp_ = rtcp; }
void SetShortDelay() { short_delay_ = true; }
virtual bool SendRtcpPacket(const std::vector<uint8>& packet) OVERRIDE {
if (short_delay_) {
testing_clock_->Advance(
base::TimeDelta::FromMilliseconds(kAddedShortDelay));
} else {
testing_clock_->Advance(base::TimeDelta::FromMilliseconds(kAddedDelay));
}
rtcp_->IncomingRtcpPacket(&(packet[0]), packet.size());
return true;
}
virtual bool SendPackets(const PacketList& packets) OVERRIDE {
return false;
}
virtual bool ResendPackets(const PacketList& packets) OVERRIDE {
return false;
}
private:
bool short_delay_;
Rtcp* rtcp_;
base::SimpleTestTickClock* testing_clock_;
};
class RtcpPeer : public Rtcp {
public:
RtcpPeer(base::TickClock* clock,
RtcpSenderFeedback* sender_feedback,
PacedPacketSender* const paced_packet_sender,
RtpSenderStatistics* rtp_sender_statistics,
RtpReceiverStatistics* rtp_receiver_statistics,
RtcpMode rtcp_mode,
const base::TimeDelta& rtcp_interval,
bool sending_media,
uint32 local_ssrc,
const std::string& c_name)
: Rtcp(clock,
sender_feedback,
paced_packet_sender,
rtp_sender_statistics,
rtp_receiver_statistics,
rtcp_mode,
rtcp_interval,
sending_media,
local_ssrc,
c_name) {
}
using Rtcp::CheckForWrapAround;
using Rtcp::OnReceivedLipSyncInfo;
};
class RtcpTest : public ::testing::Test {
protected:
RtcpTest()
: transport_(&testing_clock_) {
testing_clock_.Advance(
base::TimeDelta::FromMilliseconds(kStartMillisecond));
}
virtual ~RtcpTest() {}
virtual void SetUp() {
EXPECT_CALL(mock_sender_feedback_, OnReceivedReportBlock(_)).Times(0);
EXPECT_CALL(mock_sender_feedback_, OnReceivedIntraFrameRequest()).Times(0);
EXPECT_CALL(mock_sender_feedback_, OnReceivedRpsi(_, _)).Times(0);
EXPECT_CALL(mock_sender_feedback_, OnReceivedRemb(_)).Times(0);
EXPECT_CALL(mock_sender_feedback_, OnReceivedNackRequest(_)).Times(0);
EXPECT_CALL(mock_sender_feedback_, OnReceivedCastFeedback(_)).Times(0);
}
base::SimpleTestTickClock testing_clock_;
LocalRtcpTransport transport_;
MockRtcpSenderFeedback mock_sender_feedback_;
};
TEST_F(RtcpTest, TimeToSend) {
base::TimeTicks start_time;
start_time += base::TimeDelta::FromMilliseconds(kStartMillisecond);
Rtcp rtcp(&testing_clock_,
&mock_sender_feedback_,
&transport_,
NULL,
NULL,
kRtcpCompound,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
true, // Media sender.
kSenderSsrc,
kCName);
transport_.SetRtcpReceiver(&rtcp);
EXPECT_LE(start_time, rtcp.TimeToSendNextRtcpReport());
EXPECT_GE(start_time + base::TimeDelta::FromMilliseconds(
kRtcpIntervalMs * 3 / 2),
rtcp.TimeToSendNextRtcpReport());
base::TimeDelta delta = rtcp.TimeToSendNextRtcpReport() - start_time;
testing_clock_.Advance(delta);
EXPECT_EQ(testing_clock_.NowTicks(), rtcp.TimeToSendNextRtcpReport());
}
TEST_F(RtcpTest, BasicSenderReport) {
Rtcp rtcp(&testing_clock_,
&mock_sender_feedback_,
&transport_,
NULL,
NULL,
kRtcpCompound,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
true, // Media sender.
kSenderSsrc,
kCName);
transport_.SetRtcpReceiver(&rtcp);
rtcp.SendRtcpReport(kUnknownSsrc);
}
TEST_F(RtcpTest, BasicReceiverReport) {
EXPECT_CALL(mock_sender_feedback_, OnReceivedReportBlock(_)).Times(1);
Rtcp rtcp(&testing_clock_,
&mock_sender_feedback_,
&transport_,
NULL,
NULL,
kRtcpCompound,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false, // Media receiver.
kSenderSsrc,
kCName);
transport_.SetRtcpReceiver(&rtcp);
rtcp.SetRemoteSSRC(kSenderSsrc);
rtcp.SendRtcpReport(kSenderSsrc);
}
TEST_F(RtcpTest, BasicPli) {
EXPECT_CALL(mock_sender_feedback_, OnReceivedReportBlock(_)).Times(1);
EXPECT_CALL(mock_sender_feedback_, OnReceivedIntraFrameRequest()).Times(1);
// Media receiver.
Rtcp rtcp(&testing_clock_,
&mock_sender_feedback_,
&transport_,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false,
kSenderSsrc,
kCName);
transport_.SetRtcpReceiver(&rtcp);
rtcp.SetRemoteSSRC(kSenderSsrc);
rtcp.SendRtcpPli(kSenderSsrc);
}
TEST_F(RtcpTest, BasicCast) {
EXPECT_CALL(mock_sender_feedback_, OnReceivedCastFeedback(_)).Times(1);
// Media receiver.
Rtcp rtcp(&testing_clock_,
&mock_sender_feedback_,
&transport_,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false,
kSenderSsrc,
kCName);
transport_.SetRtcpReceiver(&rtcp);
rtcp.SetRemoteSSRC(kSenderSsrc);
RtcpCastMessage cast_message(kSenderSsrc);
cast_message.ack_frame_id_ = kAckFrameId;
PacketIdSet missing_packets;
cast_message.missing_frames_and_packets_[
kLostFrameId] = missing_packets;
missing_packets.insert(kLostPacketId1);
missing_packets.insert(kLostPacketId2);
missing_packets.insert(kLostPacketId3);
cast_message.missing_frames_and_packets_[
kFrameIdWithLostPackets] = missing_packets;
rtcp.SendRtcpCast(cast_message);
}
TEST_F(RtcpTest, Rtt) {
// Media receiver.
LocalRtcpTransport receiver_transport(&testing_clock_);
Rtcp rtcp_receiver(&testing_clock_,
&mock_sender_feedback_,
&receiver_transport,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false,
kReceiverSsrc,
kCName);
// Media sender.
LocalRtcpTransport sender_transport(&testing_clock_);
Rtcp rtcp_sender(&testing_clock_,
&mock_sender_feedback_,
&sender_transport,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
true,
kSenderSsrc,
kCName);
receiver_transport.SetRtcpReceiver(&rtcp_sender);
sender_transport.SetRtcpReceiver(&rtcp_receiver);
rtcp_sender.SetRemoteSSRC(kReceiverSsrc);
rtcp_receiver.SetRemoteSSRC(kSenderSsrc);
EXPECT_CALL(mock_sender_feedback_, OnReceivedReportBlock(_)).Times(2);
base::TimeDelta rtt;
base::TimeDelta avg_rtt;
base::TimeDelta min_rtt;
base::TimeDelta max_rtt;
EXPECT_FALSE(rtcp_sender.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_FALSE(rtcp_receiver.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
rtcp_sender.SendRtcpReport(kSenderSsrc);
rtcp_receiver.SendRtcpReport(kSenderSsrc);
EXPECT_TRUE(rtcp_sender.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_FALSE(rtcp_receiver.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_NEAR(2 * kAddedDelay, rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, avg_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, min_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, max_rtt.InMilliseconds(), 1);
rtcp_sender.SendRtcpReport(kSenderSsrc);
EXPECT_TRUE(rtcp_receiver.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_NEAR(2 * kAddedDelay, rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, avg_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, min_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, max_rtt.InMilliseconds(), 1);
receiver_transport.SetShortDelay();
sender_transport.SetShortDelay();
rtcp_receiver.SendRtcpReport(kSenderSsrc);
EXPECT_TRUE(rtcp_sender.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_NEAR(kAddedDelay + kAddedShortDelay, rtt.InMilliseconds(), 1);
EXPECT_NEAR((kAddedShortDelay + 3 * kAddedDelay) / 2,
avg_rtt.InMilliseconds(),
1);
EXPECT_NEAR(kAddedDelay + kAddedShortDelay, min_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, max_rtt.InMilliseconds(), 1);
rtcp_sender.SendRtcpReport(kSenderSsrc);
EXPECT_TRUE(rtcp_receiver.Rtt(&rtt, &avg_rtt, &min_rtt, &max_rtt));
EXPECT_NEAR(2 * kAddedShortDelay, rtt.InMilliseconds(), 1);
EXPECT_NEAR((2 * kAddedShortDelay + 2 * kAddedDelay) / 2,
avg_rtt.InMilliseconds(),
1);
EXPECT_NEAR(2 * kAddedShortDelay, min_rtt.InMilliseconds(), 1);
EXPECT_NEAR(2 * kAddedDelay, max_rtt.InMilliseconds(), 1);
}
TEST_F(RtcpTest, NtpAndTime) {
const int64 kSecondsbetweenYear1900and2010 = GG_INT64_C(40176 * 24 * 60 * 60);
const int64 kSecondsbetweenYear1900and2030 = GG_INT64_C(47481 * 24 * 60 * 60);
uint32 ntp_seconds_1 = 0;
uint32 ntp_fractions_1 = 0;
base::TimeTicks input_time = base::TimeTicks::Now();
ConvertTimeTicksToNtp(input_time, &ntp_seconds_1, &ntp_fractions_1);
// Verify absolute value.
EXPECT_GT(ntp_seconds_1, kSecondsbetweenYear1900and2010);
EXPECT_LT(ntp_seconds_1, kSecondsbetweenYear1900and2030);
base::TimeTicks out_1 = ConvertNtpToTimeTicks(ntp_seconds_1, ntp_fractions_1);
EXPECT_EQ(input_time, out_1); // Verify inverse.
base::TimeDelta time_delta = base::TimeDelta::FromMilliseconds(1100);
input_time += time_delta;
uint32 ntp_seconds_2 = 0;
uint32 ntp_fractions_2 = 0;
ConvertTimeTicksToNtp(input_time, &ntp_seconds_2, &ntp_fractions_2);
base::TimeTicks out_2 = ConvertNtpToTimeTicks(ntp_seconds_2, ntp_fractions_2);
EXPECT_EQ(input_time, out_2); // Verify inverse.
// Verify delta.
EXPECT_EQ((out_2 - out_1), time_delta);
EXPECT_EQ((ntp_seconds_2 - ntp_seconds_1), GG_UINT32_C(1));
EXPECT_NEAR((ntp_fractions_2 - ntp_fractions_1), 0xffffffff / 10, 1);
}
TEST_F(RtcpTest, WrapAround) {
RtcpPeer rtcp_peer(&testing_clock_,
&mock_sender_feedback_,
NULL,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false,
kReceiverSsrc,
kCName);
uint32 new_timestamp = 0;
uint32 old_timestamp = 0;
EXPECT_EQ(0, rtcp_peer.CheckForWrapAround(new_timestamp, old_timestamp));
new_timestamp = 1234567890;
old_timestamp = 1234567000;
EXPECT_EQ(0, rtcp_peer.CheckForWrapAround(new_timestamp, old_timestamp));
new_timestamp = 1234567000;
old_timestamp = 1234567890;
EXPECT_EQ(0, rtcp_peer.CheckForWrapAround(new_timestamp, old_timestamp));
new_timestamp = 123;
old_timestamp = 4234567890u;
EXPECT_EQ(1, rtcp_peer.CheckForWrapAround(new_timestamp, old_timestamp));
new_timestamp = 4234567890u;
old_timestamp = 123;
EXPECT_EQ(-1, rtcp_peer.CheckForWrapAround(new_timestamp, old_timestamp));
}
TEST_F(RtcpTest, RtpTimestampInSenderTime) {
RtcpPeer rtcp_peer(&testing_clock_,
&mock_sender_feedback_,
NULL,
NULL,
NULL,
kRtcpReducedSize,
base::TimeDelta::FromMilliseconds(kRtcpIntervalMs),
false,
kReceiverSsrc,
kCName);
int frequency = 32000;
uint32 rtp_timestamp = 64000;
base::TimeTicks rtp_timestamp_in_ticks;
// Test fail before we get a OnReceivedLipSyncInfo.
EXPECT_FALSE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
uint32 ntp_seconds = 0;
uint32 ntp_fractions = 0;
uint64 input_time_us = 12345678901000LL;
base::TimeTicks input_time;
input_time += base::TimeDelta::FromMicroseconds(input_time_us);
// Test exact match.
ConvertTimeTicksToNtp(input_time, &ntp_seconds, &ntp_fractions);
rtcp_peer.OnReceivedLipSyncInfo(rtp_timestamp, ntp_seconds, ntp_fractions);
EXPECT_TRUE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
EXPECT_EQ(input_time, rtp_timestamp_in_ticks);
// Test older rtp_timestamp.
rtp_timestamp = 32000;
EXPECT_TRUE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
EXPECT_EQ(input_time - base::TimeDelta::FromMilliseconds(1000),
rtp_timestamp_in_ticks);
// Test older rtp_timestamp with wrap.
rtp_timestamp = 4294903296u;
EXPECT_TRUE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
EXPECT_EQ(input_time - base::TimeDelta::FromMilliseconds(4000),
rtp_timestamp_in_ticks);
// Test newer rtp_timestamp.
rtp_timestamp = 128000;
EXPECT_TRUE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
EXPECT_EQ(input_time + base::TimeDelta::FromMilliseconds(2000),
rtp_timestamp_in_ticks);
// Test newer rtp_timestamp with wrap.
rtp_timestamp = 4294903296u;
rtcp_peer.OnReceivedLipSyncInfo(rtp_timestamp, ntp_seconds, ntp_fractions);
rtp_timestamp = 64000;
EXPECT_TRUE(rtcp_peer.RtpTimestampInSenderTime(frequency, rtp_timestamp,
&rtp_timestamp_in_ticks));
EXPECT_EQ(input_time + base::TimeDelta::FromMilliseconds(4000),
rtp_timestamp_in_ticks);
}
} // namespace cast
} // namespace media