blob: 503bdb8c9ffaf327bab4413ecc43091a06872360 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "webcrypto_impl.h"
#include "base/basictypes.h"
#include "base/logging.h"
#include "base/memory/ref_counted.h"
#include "base/strings/string_number_conversions.h"
#include "content/public/renderer/content_renderer_client.h"
#include "content/renderer/renderer_webkitplatformsupport_impl.h"
#include "content/renderer/webcrypto/webcrypto_impl.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/WebKit/public/platform/WebArrayBuffer.h"
#include "third_party/WebKit/public/platform/WebCryptoAlgorithm.h"
#include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h"
#include "third_party/WebKit/public/platform/WebCryptoKey.h"
namespace {
std::vector<uint8> HexStringToBytes(const std::string& hex) {
std::vector<uint8> bytes;
base::HexStringToBytes(hex, &bytes);
return bytes;
}
void ExpectArrayBufferMatchesHex(const std::string& expected_hex,
const WebKit::WebArrayBuffer& array_buffer) {
EXPECT_STRCASEEQ(
expected_hex.c_str(),
base::HexEncode(
array_buffer.data(), array_buffer.byteLength()).c_str());
}
WebKit::WebCryptoAlgorithm CreateAlgorithm(WebKit::WebCryptoAlgorithmId id) {
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(id, NULL);
}
WebKit::WebCryptoAlgorithm CreateHmacAlgorithm(
WebKit::WebCryptoAlgorithmId hashId) {
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(
WebKit::WebCryptoAlgorithmIdHmac,
new WebKit::WebCryptoHmacParams(CreateAlgorithm(hashId)));
}
WebKit::WebCryptoAlgorithm CreateHmacKeyAlgorithm(
WebKit::WebCryptoAlgorithmId hashId,
unsigned hash_length) {
// hash_length < 0 means unspecified
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(
WebKit::WebCryptoAlgorithmIdHmac,
new WebKit::WebCryptoHmacKeyParams(CreateAlgorithm(hashId),
(hash_length != 0),
hash_length));
}
// Returns a pointer to the start of |data|, or NULL if it is empty. This is a
// convenience function for getting the pointer, and should not be used beyond
// the expected lifetime of |data|.
const uint8* Start(const std::vector<uint8>& data) {
if (data.empty())
return NULL;
return &data[0];
}
WebKit::WebCryptoAlgorithm CreateAesCbcAlgorithm(
const std::vector<uint8>& iv) {
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(
WebKit::WebCryptoAlgorithmIdAesCbc,
new WebKit::WebCryptoAesCbcParams(Start(iv), iv.size()));
}
WebKit::WebCryptoAlgorithm CreateAesCbcAlgorithm(
unsigned short key_length_bits) {
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(
WebKit::WebCryptoAlgorithmIdAesCbc,
new WebKit::WebCryptoAesKeyGenParams(key_length_bits));
}
WebKit::WebCryptoAlgorithm CreateRsaAlgorithm(
WebKit::WebCryptoAlgorithmId algorithm_id,
unsigned modulus_length,
const std::vector<uint8>& public_exponent) {
DCHECK(algorithm_id == WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5 ||
algorithm_id == WebKit::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 ||
algorithm_id == WebKit::WebCryptoAlgorithmIdRsaOaep);
return WebKit::WebCryptoAlgorithm::adoptParamsAndCreate(
algorithm_id,
new WebKit::WebCryptoRsaKeyGenParams(
modulus_length, Start(public_exponent), public_exponent.size()));
}
} // namespace
namespace content {
class WebCryptoImplTest : public testing::Test {
protected:
WebKit::WebCryptoKey ImportSecretKeyFromRawHexString(
const std::string& key_hex,
const WebKit::WebCryptoAlgorithm& algorithm,
WebKit::WebCryptoKeyUsageMask usage) {
std::vector<uint8> key_raw = HexStringToBytes(key_hex);
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
bool extractable = true;
EXPECT_TRUE(crypto_.ImportKeyInternal(WebKit::WebCryptoKeyFormatRaw,
Start(key_raw),
key_raw.size(),
algorithm,
extractable,
usage,
&key));
EXPECT_EQ(WebKit::WebCryptoKeyTypeSecret, key.type());
EXPECT_TRUE(key.handle());
return key;
}
// Forwarding methods to gain access to protected methods of
// WebCryptoImpl.
bool DigestInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const std::vector<uint8>& data,
WebKit::WebArrayBuffer* buffer) {
return crypto_.DigestInternal(algorithm, Start(data), data.size(), buffer);
}
bool GenerateKeyInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
WebKit::WebCryptoKey* key) {
bool extractable = true;
WebKit::WebCryptoKeyUsageMask usage_mask = 0;
return crypto_.GenerateKeyInternal(algorithm, extractable, usage_mask, key);
}
bool GenerateKeyPairInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
bool extractable,
WebKit::WebCryptoKeyUsageMask usage_mask,
WebKit::WebCryptoKey* public_key,
WebKit::WebCryptoKey* private_key) {
return crypto_.GenerateKeyPairInternal(
algorithm, extractable, usage_mask, public_key, private_key);
}
bool ImportKeyInternal(
WebKit::WebCryptoKeyFormat format,
const std::vector<uint8>& key_data,
const WebKit::WebCryptoAlgorithm& algorithm,
WebKit::WebCryptoKeyUsageMask usage_mask,
WebKit::WebCryptoKey* key) {
bool extractable = true;
return crypto_.ImportKeyInternal(format,
Start(key_data),
key_data.size(),
algorithm,
extractable,
usage_mask,
key);
}
bool SignInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const std::vector<uint8>& data,
WebKit::WebArrayBuffer* buffer) {
return crypto_.SignInternal(
algorithm, key, Start(data), data.size(), buffer);
}
bool VerifySignatureInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const unsigned char* signature,
unsigned signature_size,
const std::vector<uint8>& data,
bool* signature_match) {
return crypto_.VerifySignatureInternal(algorithm,
key,
signature,
signature_size,
Start(data),
data.size(),
signature_match);
}
bool EncryptInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const unsigned char* data,
unsigned data_size,
WebKit::WebArrayBuffer* buffer) {
return crypto_.EncryptInternal(algorithm, key, data, data_size, buffer);
}
bool EncryptInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const std::vector<uint8>& data,
WebKit::WebArrayBuffer* buffer) {
return crypto_.EncryptInternal(
algorithm, key, Start(data), data.size(), buffer);
}
bool DecryptInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const unsigned char* data,
unsigned data_size,
WebKit::WebArrayBuffer* buffer) {
return crypto_.DecryptInternal(algorithm, key, data, data_size, buffer);
}
bool DecryptInternal(
const WebKit::WebCryptoAlgorithm& algorithm,
const WebKit::WebCryptoKey& key,
const std::vector<uint8>& data,
WebKit::WebArrayBuffer* buffer) {
return crypto_.DecryptInternal(
algorithm, key, Start(data), data.size(), buffer);
}
private:
WebCryptoImpl crypto_;
};
TEST_F(WebCryptoImplTest, DigestSampleSets) {
// The results are stored here in hex format for readability.
//
// TODO(bryaneyler): Eventually, all these sample test sets should be replaced
// with the sets here: http://csrc.nist.gov/groups/STM/cavp/index.html#03
//
// Results were generated using the command sha{1,224,256,384,512}sum.
struct TestCase {
WebKit::WebCryptoAlgorithmId algorithm;
const std::string hex_input;
const char* hex_result;
};
const TestCase kTests[] = {
{ WebKit::WebCryptoAlgorithmIdSha1, "",
"da39a3ee5e6b4b0d3255bfef95601890afd80709"
},
{ WebKit::WebCryptoAlgorithmIdSha224, "",
"d14a028c2a3a2bc9476102bb288234c415a2b01f828ea62ac5b3e42f"
},
{ WebKit::WebCryptoAlgorithmIdSha256, "",
"e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855"
},
{ WebKit::WebCryptoAlgorithmIdSha384, "",
"38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274e"
"debfe76f65fbd51ad2f14898b95b"
},
{ WebKit::WebCryptoAlgorithmIdSha512, "",
"cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0"
"d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e",
},
{ WebKit::WebCryptoAlgorithmIdSha1, "00",
"5ba93c9db0cff93f52b521d7420e43f6eda2784f",
},
{ WebKit::WebCryptoAlgorithmIdSha224, "00",
"fff9292b4201617bdc4d3053fce02734166a683d7d858a7f5f59b073",
},
{ WebKit::WebCryptoAlgorithmIdSha256, "00",
"6e340b9cffb37a989ca544e6bb780a2c78901d3fb33738768511a30617afa01d",
},
{ WebKit::WebCryptoAlgorithmIdSha384, "00",
"bec021b4f368e3069134e012c2b4307083d3a9bdd206e24e5f0d86e13d6636655933"
"ec2b413465966817a9c208a11717",
},
{ WebKit::WebCryptoAlgorithmIdSha512, "00",
"b8244d028981d693af7b456af8efa4cad63d282e19ff14942c246e50d9351d22704a"
"802a71c3580b6370de4ceb293c324a8423342557d4e5c38438f0e36910ee",
},
{ WebKit::WebCryptoAlgorithmIdSha1, "000102030405",
"868460d98d09d8bbb93d7b6cdd15cc7fbec676b9",
},
{ WebKit::WebCryptoAlgorithmIdSha224, "000102030405",
"7d92e7f1cad1818ed1d13ab41f04ebabfe1fef6bb4cbeebac34c29bc",
},
{ WebKit::WebCryptoAlgorithmIdSha256, "000102030405",
"17e88db187afd62c16e5debf3e6527cd006bc012bc90b51a810cd80c2d511f43",
},
{ WebKit::WebCryptoAlgorithmIdSha384, "000102030405",
"79f4738706fce9650ac60266675c3cd07298b09923850d525604d040e6e448adc7dc"
"22780d7e1b95bfeaa86a678e4552",
},
{ WebKit::WebCryptoAlgorithmIdSha512, "000102030405",
"2f3831bccc94cf061bcfa5f8c23c1429d26e3bc6b76edad93d9025cb91c903af6cf9"
"c935dc37193c04c2c66e7d9de17c358284418218afea2160147aaa912f4c",
},
};
for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
++test_index) {
SCOPED_TRACE(test_index);
const TestCase& test = kTests[test_index];
WebKit::WebCryptoAlgorithm algorithm = CreateAlgorithm(test.algorithm);
std::vector<uint8> input = HexStringToBytes(test.hex_input);
WebKit::WebArrayBuffer output;
ASSERT_TRUE(DigestInternal(algorithm, input, &output));
ExpectArrayBufferMatchesHex(test.hex_result, output);
}
}
TEST_F(WebCryptoImplTest, HMACSampleSets) {
struct TestCase {
WebKit::WebCryptoAlgorithmId algorithm;
const char* key;
const char* message;
const char* mac;
};
const TestCase kTests[] = {
// Empty sets. Result generated via OpenSSL commandline tool. These
// particular results are also posted on the Wikipedia page examples:
// http://en.wikipedia.org/wiki/Hash-based_message_authentication_code
{
WebKit::WebCryptoAlgorithmIdSha1,
"",
"",
// openssl dgst -sha1 -hmac "" < /dev/null
"fbdb1d1b18aa6c08324b7d64b71fb76370690e1d",
},
{
WebKit::WebCryptoAlgorithmIdSha256,
"",
"",
// openssl dgst -sha256 -hmac "" < /dev/null
"b613679a0814d9ec772f95d778c35fc5ff1697c493715653c6c712144292c5ad",
},
// For this data, see http://csrc.nist.gov/groups/STM/cavp/index.html#07
// Download:
// http://csrc.nist.gov/groups/STM/cavp/documents/mac/hmactestvectors.zip
// L=20 set 45
{
WebKit::WebCryptoAlgorithmIdSha1,
// key
"59785928d72516e31272",
// message
"a3ce8899df1022e8d2d539b47bf0e309c66f84095e21438ec355bf119ce5fdcb4e73a6"
"19cdf36f25b369d8c38ff419997f0c59830108223606e31223483fd39edeaa4d3f0d21"
"198862d239c9fd26074130ff6c86493f5227ab895c8f244bd42c7afce5d147a20a5907"
"98c68e708e964902d124dadecdbda9dbd0051ed710e9bf",
// mac
"3c8162589aafaee024fc9a5ca50dd2336fe3eb28",
},
// L=20 set 299
{
WebKit::WebCryptoAlgorithmIdSha1,
// key
"ceb9aedf8d6efcf0ae52bea0fa99a9e26ae81bacea0cff4d5eecf201e3bca3c3577480"
"621b818fd717ba99d6ff958ea3d59b2527b019c343bb199e648090225867d994607962"
"f5866aa62930d75b58f6",
// message
"99958aa459604657c7bf6e4cdfcc8785f0abf06ffe636b5b64ecd931bd8a4563055924"
"21fc28dbcccb8a82acea2be8e54161d7a78e0399a6067ebaca3f2510274dc9f92f2c8a"
"e4265eec13d7d42e9f8612d7bc258f913ecb5a3a5c610339b49fb90e9037b02d684fc6"
"0da835657cb24eab352750c8b463b1a8494660d36c3ab2",
// mac
"4ac41ab89f625c60125ed65ffa958c6b490ea670",
},
// L=32, set 30
{
WebKit::WebCryptoAlgorithmIdSha256,
// key
"9779d9120642797f1747025d5b22b7ac607cab08e1758f2f3a46c8be1e25c53b8c6a8f"
"58ffefa176",
// message
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
"92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
"d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
"22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e",
// mac
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b",
},
// L=32, set 224
{
WebKit::WebCryptoAlgorithmIdSha256,
// key
"4b7ab133efe99e02fc89a28409ee187d579e774f4cba6fc223e13504e3511bef8d4f63"
"8b9aca55d4a43b8fbd64cf9d74dcc8c9e8d52034898c70264ea911a3fd70813fa73b08"
"3371289b",
// message
"138efc832c64513d11b9873c6fd4d8a65dbf367092a826ddd587d141b401580b798c69"
"025ad510cff05fcfbceb6cf0bb03201aaa32e423d5200925bddfadd418d8e30e18050e"
"b4f0618eb9959d9f78c1157d4b3e02cd5961f138afd57459939917d9144c95d8e6a94c"
"8f6d4eef3418c17b1ef0b46c2a7188305d9811dccb3d99",
// mac
"4f1ee7cb36c58803a8721d4ac8c4cf8cae5d8832392eed2a96dc59694252801b",
},
};
for (size_t test_index = 0; test_index < ARRAYSIZE_UNSAFE(kTests);
++test_index) {
SCOPED_TRACE(test_index);
const TestCase& test = kTests[test_index];
WebKit::WebCryptoAlgorithm algorithm = CreateHmacAlgorithm(test.algorithm);
WebKit::WebCryptoKey key = ImportSecretKeyFromRawHexString(
test.key, algorithm, WebKit::WebCryptoKeyUsageSign);
std::vector<uint8> message_raw = HexStringToBytes(test.message);
WebKit::WebArrayBuffer output;
ASSERT_TRUE(SignInternal(algorithm, key, message_raw, &output));
ExpectArrayBufferMatchesHex(test.mac, output);
bool signature_match = false;
EXPECT_TRUE(VerifySignatureInternal(
algorithm,
key,
static_cast<const unsigned char*>(output.data()),
output.byteLength(),
message_raw,
&signature_match));
EXPECT_TRUE(signature_match);
// Ensure truncated signature does not verify by passing one less byte.
EXPECT_TRUE(VerifySignatureInternal(
algorithm,
key,
static_cast<const unsigned char*>(output.data()),
output.byteLength() - 1,
message_raw,
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure extra long signature does not cause issues and fails.
const unsigned char kLongSignature[1024] = { 0 };
EXPECT_TRUE(VerifySignatureInternal(
algorithm,
key,
kLongSignature,
sizeof(kLongSignature),
message_raw,
&signature_match));
EXPECT_FALSE(signature_match);
}
}
TEST_F(WebCryptoImplTest, AesCbcFailures) {
WebKit::WebCryptoKey key = ImportSecretKeyFromRawHexString(
"2b7e151628aed2a6abf7158809cf4f3c",
CreateAlgorithm(WebKit::WebCryptoAlgorithmIdAesCbc),
WebKit::WebCryptoKeyUsageEncrypt | WebKit::WebCryptoKeyUsageDecrypt);
WebKit::WebArrayBuffer output;
// Use an invalid |iv| (fewer than 16 bytes)
{
std::vector<uint8> input(32);
std::vector<uint8> iv;
EXPECT_FALSE(
EncryptInternal(CreateAesCbcAlgorithm(iv), key, input, &output));
EXPECT_FALSE(
DecryptInternal(CreateAesCbcAlgorithm(iv), key, input, &output));
}
// Use an invalid |iv| (more than 16 bytes)
{
std::vector<uint8> input(32);
std::vector<uint8> iv(17);
EXPECT_FALSE(
EncryptInternal(CreateAesCbcAlgorithm(iv), key, input, &output));
EXPECT_FALSE(
DecryptInternal(CreateAesCbcAlgorithm(iv), key, input, &output));
}
// Give an input that is too large (would cause integer overflow when
// narrowing to an int).
{
std::vector<uint8> iv(16);
// Pretend the input is large. Don't pass data pointer as NULL in case that
// is special cased; the implementation shouldn't actually dereference the
// data.
const unsigned char* input = &iv[0];
unsigned input_len = INT_MAX - 3;
EXPECT_FALSE(EncryptInternal(
CreateAesCbcAlgorithm(iv), key, input, input_len, &output));
EXPECT_FALSE(DecryptInternal(
CreateAesCbcAlgorithm(iv), key, input, input_len, &output));
}
// Fail importing the key (too few bytes specified)
{
std::vector<uint8> key_raw(1);
std::vector<uint8> iv(16);
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
EXPECT_FALSE(ImportKeyInternal(WebKit::WebCryptoKeyFormatRaw,
key_raw,
CreateAesCbcAlgorithm(iv),
WebKit::WebCryptoKeyUsageDecrypt,
&key));
}
}
TEST_F(WebCryptoImplTest, AesCbcSampleSets) {
struct TestCase {
const char* key;
const char* iv;
const char* plain_text;
const char* cipher_text;
};
TestCase kTests[] = {
// F.2.1 (CBC-AES128.Encrypt)
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
{
// key
"2b7e151628aed2a6abf7158809cf4f3c",
// iv
"000102030405060708090a0b0c0d0e0f",
// plain_text
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
"f69f2445df4f9b17ad2b417be66c3710",
// cipher_text
"7649abac8119b246cee98e9b12e9197d"
"5086cb9b507219ee95db113a917678b2"
"73bed6b8e3c1743b7116e69e22229516"
"3ff1caa1681fac09120eca307586e1a7"
// Padding block: encryption of {0x10, 0x10, ... 0x10}) (not given by the
// NIST test vector)
"8cb82807230e1321d3fae00d18cc2012"
},
// F.2.6 CBC-AES256.Decrypt [*]
// http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
//
// [*] Truncated 3 bytes off the plain text, so block 4 differs from the
// NIST vector.
{
// key
"603deb1015ca71be2b73aef0857d7781"
"1f352c073b6108d72d9810a30914dff4",
// iv
"000102030405060708090a0b0c0d0e0f",
// plain_text
"6bc1bee22e409f96e93d7e117393172a"
"ae2d8a571e03ac9c9eb76fac45af8e51"
"30c81c46a35ce411e5fbc1191a0a52ef"
// Truncated this last block to make it more interesting.
"f69f2445df4f9b17ad2b417be6",
// cipher_text
"f58c4c04d6e5f1ba779eabfb5f7bfbd6"
"9cfc4e967edb808d679f777bc6702c7d"
"39f23369a9d9bacfa530e26304231461"
// This block differs from source vector (due to truncation)
"c9aaf02a6a54e9e242ccbf48c59daca6"
},
// Taken from encryptor_unittest.cc (EncryptorTest.EmptyEncrypt())
{
// key
"3132383d5369787465656e4279746573",
// iv
"5377656574205369787465656e204956",
// plain_text
"",
// cipher_text
"8518b8878d34e7185e300d0fcc426396"
},
};
for (size_t index = 0; index < ARRAYSIZE_UNSAFE(kTests); index++) {
SCOPED_TRACE(index);
const TestCase& test = kTests[index];
WebKit::WebCryptoKey key = ImportSecretKeyFromRawHexString(
test.key,
CreateAlgorithm(WebKit::WebCryptoAlgorithmIdAesCbc),
WebKit::WebCryptoKeyUsageEncrypt | WebKit::WebCryptoKeyUsageDecrypt);
std::vector<uint8> plain_text = HexStringToBytes(test.plain_text);
std::vector<uint8> iv = HexStringToBytes(test.iv);
WebKit::WebArrayBuffer output;
// Test encryption.
EXPECT_TRUE(EncryptInternal(CreateAesCbcAlgorithm(iv),
key,
plain_text,
&output));
ExpectArrayBufferMatchesHex(test.cipher_text, output);
// Test decryption.
std::vector<uint8> cipher_text = HexStringToBytes(test.cipher_text);
EXPECT_TRUE(DecryptInternal(CreateAesCbcAlgorithm(iv),
key,
cipher_text,
&output));
ExpectArrayBufferMatchesHex(test.plain_text, output);
const unsigned kAesCbcBlockSize = 16;
// Decrypt with a padding error by stripping the last block. This also ends
// up testing decryption over empty cipher text.
if (cipher_text.size() >= kAesCbcBlockSize) {
EXPECT_FALSE(DecryptInternal(CreateAesCbcAlgorithm(iv),
key,
&cipher_text[0],
cipher_text.size() - kAesCbcBlockSize,
&output));
}
// Decrypt cipher text which is not a multiple of block size by stripping
// a few bytes off the cipher text.
if (cipher_text.size() > 3) {
EXPECT_FALSE(DecryptInternal(CreateAesCbcAlgorithm(iv),
key,
&cipher_text[0],
cipher_text.size() - 3,
&output));
}
}
}
// TODO (padolph): Add test to verify generated symmetric keys appear random.
TEST_F(WebCryptoImplTest, GenerateKeyAes) {
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
ASSERT_TRUE(GenerateKeyInternal(CreateAesCbcAlgorithm(128), &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(WebKit::WebCryptoKeyTypeSecret, key.type());
}
TEST_F(WebCryptoImplTest, GenerateKeyAesBadLength) {
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
EXPECT_FALSE(GenerateKeyInternal(CreateAesCbcAlgorithm(0), &key));
EXPECT_FALSE(GenerateKeyInternal(CreateAesCbcAlgorithm(129), &key));
}
TEST_F(WebCryptoImplTest, GenerateKeyHmac) {
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
WebKit::WebCryptoAlgorithm algorithm =
CreateHmacKeyAlgorithm(WebKit::WebCryptoAlgorithmIdSha1, 128);
ASSERT_TRUE(GenerateKeyInternal(algorithm, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(WebKit::WebCryptoKeyTypeSecret, key.type());
}
TEST_F(WebCryptoImplTest, GenerateKeyHmacNoLength) {
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
WebKit::WebCryptoAlgorithm algorithm =
CreateHmacKeyAlgorithm(WebKit::WebCryptoAlgorithmIdSha1, 0);
ASSERT_TRUE(GenerateKeyInternal(algorithm, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(WebKit::WebCryptoKeyTypeSecret, key.type());
}
TEST_F(WebCryptoImplTest, ImportSecretKeyNoAlgorithm) {
WebKit::WebCryptoKey key = WebKit::WebCryptoKey::createNull();
// This fails because the algorithm is null.
EXPECT_FALSE(ImportKeyInternal(
WebKit::WebCryptoKeyFormatRaw,
HexStringToBytes("00000000000000000000"),
WebKit::WebCryptoAlgorithm::createNull(),
WebKit::WebCryptoKeyUsageSign,
&key));
}
#if !defined(USE_OPENSSL)
TEST_F(WebCryptoImplTest, GenerateKeyPairRsa) {
// Note: using unrealistic short key lengths here to avoid bogging down tests.
// Successful WebCryptoAlgorithmIdRsaEsPkcs1v1_5 key generation.
const unsigned modulus_length = 256;
const std::vector<uint8> public_exponent = HexStringToBytes("010001");
WebKit::WebCryptoAlgorithm algorithm =
CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5,
modulus_length,
public_exponent);
const bool extractable = false;
const WebKit::WebCryptoKeyUsageMask usage_mask = 0;
WebKit::WebCryptoKey public_key = WebKit::WebCryptoKey::createNull();
WebKit::WebCryptoKey private_key = WebKit::WebCryptoKey::createNull();
EXPECT_TRUE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(WebKit::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(WebKit::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(extractable, public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Fail with bad modulus.
algorithm = CreateRsaAlgorithm(
WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5, 0, public_exponent);
EXPECT_FALSE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: larger than unsigned long.
unsigned exponent_length = sizeof(unsigned long) + 1;
const std::vector<uint8> long_exponent(exponent_length, 0x01);
algorithm = CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5,
modulus_length,
long_exponent);
EXPECT_FALSE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: empty.
const std::vector<uint8> empty_exponent;
algorithm = CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5,
modulus_length,
empty_exponent);
EXPECT_FALSE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Fail with bad exponent: all zeros.
std::vector<uint8> exponent_with_leading_zeros(15, 0x00);
algorithm = CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5,
modulus_length,
exponent_with_leading_zeros);
EXPECT_FALSE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
// Key generation success using exponent with leading zeros.
exponent_with_leading_zeros.insert(exponent_with_leading_zeros.end(),
public_exponent.begin(),
public_exponent.end());
algorithm = CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaEsPkcs1v1_5,
modulus_length,
exponent_with_leading_zeros);
EXPECT_TRUE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(WebKit::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(WebKit::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(extractable, public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Successful WebCryptoAlgorithmIdRsaOaep key generation.
algorithm = CreateRsaAlgorithm(
WebKit::WebCryptoAlgorithmIdRsaOaep, modulus_length, public_exponent);
EXPECT_TRUE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(WebKit::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(WebKit::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(extractable, public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
// Successful WebCryptoAlgorithmIdRsaSsaPkcs1v1_5 key generation.
algorithm = CreateRsaAlgorithm(WebKit::WebCryptoAlgorithmIdRsaSsaPkcs1v1_5,
modulus_length,
public_exponent);
EXPECT_TRUE(GenerateKeyPairInternal(
algorithm, extractable, usage_mask, &public_key, &private_key));
EXPECT_FALSE(public_key.isNull());
EXPECT_FALSE(private_key.isNull());
EXPECT_EQ(WebKit::WebCryptoKeyTypePublic, public_key.type());
EXPECT_EQ(WebKit::WebCryptoKeyTypePrivate, private_key.type());
EXPECT_EQ(extractable, public_key.extractable());
EXPECT_EQ(extractable, private_key.extractable());
EXPECT_EQ(usage_mask, public_key.usages());
EXPECT_EQ(usage_mask, private_key.usages());
}
#endif // #if !defined(USE_OPENSSL)
} // namespace content