blob: a3c0bb32f963e0851b778e36e19246892396274d [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdio.h>
#include <cmath>
#include <string>
#include <vector>
#include <GLES2/gl2.h>
#include <GLES2/gl2ext.h>
#include <GLES2/gl2extchromium.h>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/command_line.h"
#include "base/file_util.h"
#include "base/message_loop/message_loop.h"
#include "base/run_loop.h"
#include "base/strings/stringprintf.h"
#include "base/time/time.h"
#include "content/common/gpu/client/gl_helper.h"
#include "content/common/gpu/client/gl_helper_scaling.h"
#include "content/public/test/unittest_test_suite.h"
#include "content/test/content_test_suite.h"
#include "gpu/config/gpu_util.h"
#include "media/base/video_frame.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/skia/include/core/SkBitmap.h"
#include "third_party/skia/include/core/SkTypes.h"
#include "ui/gl/gl_surface.h"
#include "webkit/common/gpu/webgraphicscontext3d_in_process_command_buffer_impl.h"
#if defined(OS_MACOSX)
#include "base/mac/scoped_nsautorelease_pool.h"
#endif
#if defined(TOOLKIT_GTK)
#include "ui/gfx/gtk_util.h"
#endif
namespace content {
using WebKit::WebGLId;
using WebKit::WebGraphicsContext3D;
using webkit::gpu::WebGraphicsContext3DInProcessCommandBufferImpl;
content::GLHelper::ScalerQuality kQualities[] = {
content::GLHelper::SCALER_QUALITY_BEST,
content::GLHelper::SCALER_QUALITY_GOOD,
content::GLHelper::SCALER_QUALITY_FAST,
};
const char *kQualityNames[] = {
"best",
"good",
"fast",
};
class GLHelperTest : public testing::Test {
protected:
virtual void SetUp() {
WebGraphicsContext3D::Attributes attributes;
context_ = WebGraphicsContext3DInProcessCommandBufferImpl::
CreateOffscreenContext(attributes);
context_->makeContextCurrent();
context_support_ = context_->GetContextSupport();
helper_.reset(new content::GLHelper(context_.get(), context_support_));
helper_scaling_.reset(new content::GLHelperScaling(
context_.get(),
helper_.get()));
}
virtual void TearDown() {
helper_scaling_.reset(NULL);
helper_.reset(NULL);
context_.reset(NULL);
}
// Bicubic filter kernel function.
static float Bicubic(float x) {
const float a = -0.5;
x = std::abs(x);
float x2 = x * x;
float x3 = x2 * x;
if (x <= 1) {
return (a + 2) * x3 - (a + 3) * x2 + 1;
} else if (x < 2) {
return a * x3 - 5 * a * x2 + 8 * a * x - 4 * a;
} else {
return 0.0f;
}
}
// Look up a single R/G/B/A value.
// Clamp x/y.
int Channel(SkBitmap* pixels, int x, int y, int c) {
uint32 *data = pixels->getAddr32(
std::max(0, std::min(x, pixels->width() - 1)),
std::max(0, std::min(y, pixels->height() - 1)));
return (*data) >> (c * 8) & 0xff;
}
// Set a single R/G/B/A value.
void SetChannel(SkBitmap* pixels, int x, int y, int c, int v) {
DCHECK_GE(x, 0);
DCHECK_GE(y, 0);
DCHECK_LT(x, pixels->width());
DCHECK_LT(y, pixels->height());
uint32 *data = pixels->getAddr32(x, y);
v = std::max(0, std::min(v, 255));
*data = (*data & ~(0xffu << (c * 8))) | (v << (c * 8));
}
// Print all the R, G, B or A values from an SkBitmap in a
// human-readable format.
void PrintChannel(SkBitmap* pixels, int c) {
for (int y = 0; y < pixels->height(); y++) {
for (int x = 0; x < pixels->width(); x++) {
printf("%3d, ", Channel(pixels, x, y, c));
}
printf("\n");
}
}
// Print out the individual steps of a scaler pipeline.
std::string PrintStages(
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages) {
std::string ret;
for (size_t i = 0; i < scaler_stages.size(); i++) {
ret.append(base::StringPrintf("%dx%d -> %dx%d ",
scaler_stages[i].src_size.width(),
scaler_stages[i].src_size.height(),
scaler_stages[i].dst_size.width(),
scaler_stages[i].dst_size.height()));
bool xy_matters = false;
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_BILINEAR:
ret.append("bilinear");
break;
case GLHelperScaling::SHADER_BILINEAR2:
ret.append("bilinear2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR3:
ret.append("bilinear3");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR4:
ret.append("bilinear4");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
ret.append("bilinear2x2");
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
ret.append("bicubic upscale");
xy_matters = true;
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
ret.append("bicubic 1/2");
xy_matters = true;
break;
case GLHelperScaling::SHADER_PLANAR:
ret.append("planar");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
ret.append("rgb2yuv pass 1");
break;
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
ret.append("rgb2yuv pass 2");
break;
}
if (xy_matters) {
if (scaler_stages[i].scale_x) {
ret.append(" X");
} else {
ret.append(" Y");
}
}
ret.append("\n");
}
return ret;
}
bool CheckScale(double scale, int samples, bool already_scaled) {
// 1:1 is valid if there is one sample.
if (samples == 1 && scale == 1.0) {
return true;
}
// Is it an exact down-scale (50%, 25%, etc.?)
if (scale == 2.0 * samples) {
return true;
}
// Upscales, only valid if we haven't already scaled in this dimension.
if (!already_scaled) {
// Is it a valid bilinear upscale?
if (samples == 1 && scale <= 1.0) {
return true;
}
// Multi-sample upscale-downscale combination?
if (scale > samples / 2.0 && scale < samples) {
return true;
}
}
return false;
}
// Make sure that the stages of the scaler pipeline are sane.
void ValidateScalerStages(
content::GLHelper::ScalerQuality quality,
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages,
const std::string& message) {
bool previous_error = HasFailure();
// First, check that the input size for each stage is equal to
// the output size of the previous stage.
for (size_t i = 1; i < scaler_stages.size(); i++) {
EXPECT_EQ(scaler_stages[i - 1].dst_size.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i - 1].dst_size.height(),
scaler_stages[i].src_size.height());
EXPECT_EQ(scaler_stages[i].src_subrect.x(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.y(), 0);
EXPECT_EQ(scaler_stages[i].src_subrect.width(),
scaler_stages[i].src_size.width());
EXPECT_EQ(scaler_stages[i].src_subrect.height(),
scaler_stages[i].src_size.height());
}
// Used to verify that up-scales are not attempted after some
// other scale.
bool scaled_x = false;
bool scaled_y = false;
for (size_t i = 0; i < scaler_stages.size(); i++) {
// Note: 2.0 means scaling down by 50%
double x_scale =
static_cast<double>(scaler_stages[i].src_subrect.width()) /
static_cast<double>(scaler_stages[i].dst_size.width());
double y_scale =
static_cast<double>(scaler_stages[i].src_subrect.height()) /
static_cast<double>(scaler_stages[i].dst_size.height());
int x_samples = 0;
int y_samples = 0;
// Codify valid scale operations.
switch (scaler_stages[i].shader) {
case GLHelperScaling::SHADER_PLANAR:
case GLHelperScaling::SHADER_YUV_MRT_PASS1:
case GLHelperScaling::SHADER_YUV_MRT_PASS2:
EXPECT_TRUE(false) << "Invalid shader.";
break;
case GLHelperScaling::SHADER_BILINEAR:
if (quality != content::GLHelper::SCALER_QUALITY_FAST) {
x_samples = 1;
y_samples = 1;
}
break;
case GLHelperScaling::SHADER_BILINEAR2:
x_samples = 2;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR3:
x_samples = 3;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR4:
x_samples = 4;
y_samples = 1;
break;
case GLHelperScaling::SHADER_BILINEAR2X2:
x_samples = 2;
y_samples = 2;
break;
case GLHelperScaling::SHADER_BICUBIC_UPSCALE:
if (scaler_stages[i].scale_x) {
EXPECT_LT(x_scale, 1.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_LT(y_scale, 1.0);
}
break;
case GLHelperScaling::SHADER_BICUBIC_HALF_1D:
if (scaler_stages[i].scale_x) {
EXPECT_EQ(x_scale, 2.0);
EXPECT_EQ(y_scale, 1.0);
} else {
EXPECT_EQ(x_scale, 1.0);
EXPECT_EQ(y_scale, 2.0);
}
break;
}
if (!scaler_stages[i].scale_x) {
std::swap(x_samples, y_samples);
}
if (x_samples) {
EXPECT_TRUE(CheckScale(x_scale, x_samples, scaled_x))
<< "x_scale = " << x_scale;
}
if (y_samples) {
EXPECT_TRUE(CheckScale(y_scale, y_samples, scaled_y))
<< "y_scale = " << y_scale;
}
if (x_scale != 1.0) {
scaled_x = true;
}
if (y_scale != 1.0) {
scaled_y = true;
}
}
if (HasFailure() && !previous_error) {
printf("Invalid scaler stages: %s\n", message.c_str());
printf("Scaler stages:\n%s", PrintStages(scaler_stages).c_str());
}
}
// Compare two bitmaps, make sure that each component of each pixel
// is no more than |maxdiff| apart. If they are not similar enough,
// prints out |truth|, |other|, |source|, |scaler_stages| and |message|.
void Compare(SkBitmap* truth,
SkBitmap* other,
int maxdiff,
SkBitmap* source,
const std::vector<GLHelperScaling::ScalerStage> &scaler_stages,
std::string message) {
EXPECT_EQ(truth->width(), other->width());
EXPECT_EQ(truth->height(), other->height());
for (int x = 0; x < truth->width(); x++) {
for (int y = 0; y < truth->height(); y++) {
for (int c = 0; c < 4; c++) {
int a = Channel(truth, x, y, c);
int b = Channel(other, x, y, c);
EXPECT_NEAR(a, b, maxdiff)
<< " x=" << x
<< " y=" << y
<< " c=" << c
<< " " << message;
if (std::abs(a - b) > maxdiff) {
printf("-------expected--------\n");
PrintChannel(truth, c);
printf("-------actual--------\n");
PrintChannel(other, c);
if (source) {
printf("-------before scaling--------\n");
PrintChannel(source, c);
}
printf("-----Scaler stages------\n%s",
PrintStages(scaler_stages).c_str());
return;
}
}
}
}
}
// Get a single R, G, B or A value as a float.
float ChannelAsFloat(SkBitmap* pixels, int x, int y, int c) {
return Channel(pixels, x, y, c) / 255.0;
}
// Works like a GL_LINEAR lookup on an SkBitmap.
float Bilinear(SkBitmap* pixels, float x, float y, int c) {
x -= 0.5;
y -= 0.5;
int base_x = static_cast<int>(floorf(x));
int base_y = static_cast<int>(floorf(y));
x -= base_x;
y -= base_y;
return (ChannelAsFloat(pixels, base_x, base_y, c) * (1 - x) * (1 - y) +
ChannelAsFloat(pixels, base_x + 1, base_y, c) * x * (1 - y) +
ChannelAsFloat(pixels, base_x, base_y + 1, c) * (1 - x) * y +
ChannelAsFloat(pixels, base_x + 1, base_y + 1, c) * x * y);
}
// Very slow bicubic / bilinear scaler for reference.
void ScaleSlow(SkBitmap* input,
SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
float xscale = static_cast<float>(input->width()) / output->width();
float yscale = static_cast<float>(input->height()) / output->height();
float clamped_xscale = xscale < 1.0 ? 1.0 : 1.0 / xscale;
float clamped_yscale = yscale < 1.0 ? 1.0 : 1.0 / yscale;
for (int dst_y = 0; dst_y < output->height(); dst_y++) {
for (int dst_x = 0; dst_x < output->width(); dst_x++) {
for (int channel = 0; channel < 4; channel++) {
float dst_x_in_src = (dst_x + 0.5f) * xscale;
float dst_y_in_src = (dst_y + 0.5f) * yscale;
float value = 0.0f;
float sum = 0.0f;
switch (quality) {
case content::GLHelper::SCALER_QUALITY_BEST:
for (int src_y = -10; src_y < input->height() + 10; ++src_y) {
float coeff_y = Bicubic(
(src_y + 0.5f - dst_y_in_src) * clamped_yscale);
if (coeff_y == 0.0f) {
continue;
}
for (int src_x = -10; src_x < input->width() + 10; ++src_x) {
float coeff = coeff_y * Bicubic(
(src_x + 0.5f - dst_x_in_src) * clamped_xscale);
if (coeff == 0.0f) {
continue;
}
sum += coeff;
float c = ChannelAsFloat(input, src_x, src_y, channel);
value += c * coeff;
}
}
break;
case content::GLHelper::SCALER_QUALITY_GOOD: {
int xshift = 0, yshift = 0;
while ((output->width() << xshift) < input->width()) {
xshift++;
}
while ((output->height() << yshift) < input->height()) {
yshift++;
}
int xmag = 1 << xshift;
int ymag = 1 << yshift;
if (xmag == 4 && output->width() * 3 >= input->width()) {
xmag=3;
}
if (ymag == 4 && output->height() * 3 >= input->height()) {
ymag=3;
}
for (int x = 0; x < xmag; x++) {
for (int y = 0; y < ymag; y++) {
value += Bilinear(input,
(dst_x * xmag + x + 0.5) * xscale / xmag,
(dst_y * ymag + y + 0.5) * yscale / ymag,
channel);
sum += 1.0;
}
}
break;
}
case content::GLHelper::SCALER_QUALITY_FAST:
value = Bilinear(input, dst_x_in_src, dst_y_in_src, channel);
sum = 1.0;
}
value /= sum;
SetChannel(output, dst_x, dst_y, channel,
static_cast<int>(value * 255.0f + 0.5f));
}
}
}
}
void FlipSKBitmap(SkBitmap* bitmap) {
int top_line = 0;
int bottom_line = bitmap->height() - 1;
while (top_line < bottom_line) {
for (int x = 0; x < bitmap->width(); x++) {
std::swap(*bitmap->getAddr32(x, top_line),
*bitmap->getAddr32(x, bottom_line));
}
top_line++;
bottom_line--;
}
}
// gl_helper scales recursively, so we'll need to do that
// in the reference implementation too.
void ScaleSlowRecursive(SkBitmap* input,
SkBitmap* output,
content::GLHelper::ScalerQuality quality) {
if (quality == content::GLHelper::SCALER_QUALITY_FAST ||
quality == content::GLHelper::SCALER_QUALITY_GOOD) {
ScaleSlow(input, output, quality);
return;
}
float xscale = static_cast<float>(output->width()) / input->width();
// This corresponds to all the operations we can do directly.
float yscale = static_cast<float>(output->height()) / input->height();
if ((xscale == 1.0f && yscale == 1.0f) ||
(xscale == 0.5f && yscale == 1.0f) ||
(xscale == 1.0f && yscale == 0.5f) ||
(xscale >= 1.0f && yscale == 1.0f) ||
(xscale == 1.0f && yscale >= 1.0f)) {
ScaleSlow(input, output, quality);
return;
}
// Now we break the problem down into smaller pieces, using the
// operations available.
int xtmp = input->width();
int ytmp = input->height();
if (output->height() != input->height()) {
ytmp = output->height();
while (ytmp < input->height() && ytmp * 2 != input->height()) {
ytmp += ytmp;
}
} else {
xtmp = output->width();
while (xtmp < input->width() && xtmp * 2 != input->width()) {
xtmp += xtmp;
}
}
SkBitmap tmp;
tmp.setConfig(SkBitmap::kARGB_8888_Config, xtmp, ytmp);
tmp.allocPixels();
SkAutoLockPixels lock(tmp);
ScaleSlowRecursive(input, &tmp, quality);
ScaleSlowRecursive(&tmp, output, quality);
}
// Scaling test: Create a test image, scale it using GLHelperScaling
// and a reference implementation and compare the results.
void TestScale(int xsize, int ysize,
int scaled_xsize, int scaled_ysize,
int test_pattern,
size_t quality,
bool flip) {
WebGLId src_texture = context_->createTexture();
WebGLId framebuffer = context_->createFramebuffer();
SkBitmap input_pixels;
input_pixels.setConfig(SkBitmap::kARGB_8888_Config, xsize, ysize);
input_pixels.allocPixels();
SkAutoLockPixels lock(input_pixels);
for (int x = 0; x < xsize; ++x) {
for (int y = 0; y < ysize; ++y) {
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(&input_pixels, x, y, 0, x * 10);
SetChannel(&input_pixels, x, y, 1, y * 10);
SetChannel(&input_pixels, x, y, 2, (x + y) * 10);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(&input_pixels, x, y, 0, x & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 1, y & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 2, (x + y) & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(&input_pixels, x, y, 0, 10 + x/2 * 50);
SetChannel(&input_pixels, x, y, 1, 10 + y/3 * 50);
SetChannel(&input_pixels, x, y, 2, (x + y)/5 * 50 + 5);
SetChannel(&input_pixels, x, y, 3, 255);
break;
}
}
}
context_->bindFramebuffer(GL_FRAMEBUFFER, framebuffer);
context_->bindTexture(GL_TEXTURE_2D, src_texture);
context_->texImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
xsize,
ysize,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
input_pixels.getPixels());
std::string message = base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"pattern: %d quality: %s",
xsize, ysize,
scaled_xsize, scaled_ysize,
test_pattern,
kQualityNames[quality]);
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality],
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
flip,
false,
&stages);
ValidateScalerStages(kQualities[quality], stages, message);
WebGLId dst_texture = helper_->CopyAndScaleTexture(
src_texture,
gfx::Size(xsize, ysize),
gfx::Size(scaled_xsize, scaled_ysize),
flip,
kQualities[quality]);
SkBitmap output_pixels;
output_pixels.setConfig(SkBitmap::kARGB_8888_Config,
scaled_xsize, scaled_ysize);
output_pixels.allocPixels();
SkAutoLockPixels output_lock(output_pixels);
helper_->ReadbackTextureSync(
dst_texture,
gfx::Rect(0, 0, scaled_xsize, scaled_ysize),
static_cast<unsigned char *>(output_pixels.getPixels()));
if (flip) {
// Flip the pixels back.
FlipSKBitmap(&output_pixels);
}
if (xsize == scaled_xsize && ysize == scaled_ysize) {
Compare(&input_pixels,
&output_pixels,
2,
NULL,
stages,
message + " comparing against input");
}
SkBitmap truth_pixels;
truth_pixels.setConfig(SkBitmap::kARGB_8888_Config,
scaled_xsize, scaled_ysize);
truth_pixels.allocPixels();
SkAutoLockPixels truth_lock(truth_pixels);
ScaleSlowRecursive(&input_pixels, &truth_pixels, kQualities[quality]);
Compare(&truth_pixels,
&output_pixels,
2,
&input_pixels,
stages,
message + " comparing against scaled");
context_->deleteTexture(src_texture);
context_->deleteTexture(dst_texture);
context_->deleteFramebuffer(framebuffer);
}
// Create a scaling pipeline and check that it is made up of
// valid scaling operations.
void TestScalerPipeline(size_t quality,
int xsize, int ysize,
int dst_xsize, int dst_ysize) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
kQualities[quality],
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&stages);
ValidateScalerStages(kQualities[quality], stages,
base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"quality: %s",
xsize, ysize,
dst_xsize, dst_ysize,
kQualityNames[quality]));
}
// Create a scaling pipeline and make sure that the steps
// are exactly the steps we expect.
void CheckPipeline(content::GLHelper::ScalerQuality quality,
int xsize, int ysize,
int dst_xsize, int dst_ysize,
const std::string &description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ComputeScalerStages(
quality,
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&stages);
ValidateScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
stages,
"");
EXPECT_EQ(PrintStages(stages), description);
}
// Note: Left/Right means Top/Bottom when used for Y dimension.
enum Margin {
MarginLeft,
MarginMiddle,
MarginRight,
MarginInvalid,
};
static Margin NextMargin(Margin m) {
switch (m) {
case MarginLeft:
return MarginMiddle;
case MarginMiddle:
return MarginRight;
case MarginRight:
return MarginInvalid;
default:
return MarginInvalid;
}
}
int compute_margin(int insize, int outsize, Margin m) {
int available = outsize - insize;
switch (m) {
default:
EXPECT_TRUE(false) << "This should not happen.";
return 0;
case MarginLeft:
return 0;
case MarginMiddle:
return (available / 2) & ~1;
case MarginRight:
return available;
}
}
// Convert 0.0 - 1.0 to 0 - 255
int float_to_byte(float v) {
int ret = static_cast<int>(floorf(v * 255.0f + 0.5f));
if (ret < 0) {
return 0;
}
if (ret > 255) {
return 255;
}
return ret;
}
static void callcallback(const base::Callback<void()>& callback,
bool result) {
callback.Run();
}
void PrintPlane(unsigned char *plane, int xsize, int stride, int ysize) {
for (int y = 0; y < ysize; y++) {
for (int x = 0; x < xsize ; x++) {
printf("%3d, ", plane[y * stride + x]);
}
printf(" (%p)\n", plane + y * stride);
}
}
// Compare two planes make sure that each component of each pixel
// is no more than |maxdiff| apart.
void ComparePlane(unsigned char* truth,
unsigned char* other,
int maxdiff,
int xsize,
int stride,
int ysize,
SkBitmap* source,
std::string message) {
int truth_stride = stride;
for (int x = 0; x < xsize; x++) {
for (int y = 0; y < ysize; y++) {
int a = other[y * stride + x];
int b = truth[y * stride + x];
EXPECT_NEAR(a, b, maxdiff)
<< " x=" << x
<< " y=" << y
<< " " << message;
if (std::abs(a - b) > maxdiff) {
printf("-------expected--------\n");
PrintPlane(truth, xsize, truth_stride, ysize);
printf("-------actual--------\n");
PrintPlane(other, xsize, stride, ysize);
if (source) {
printf("-------before yuv conversion: red--------\n");
PrintChannel(source, 0);
printf("-------before yuv conversion: green------\n");
PrintChannel(source, 1);
printf("-------before yuv conversion: blue-------\n");
PrintChannel(source, 2);
}
return;
}
}
}
}
// YUV readback test. Create a test pattern, convert to YUV
// with reference implementation and compare to what gl_helper
// returns.
void TestYUVReadback(int xsize,
int ysize,
int output_xsize,
int output_ysize,
int xmargin,
int ymargin,
int test_pattern,
bool flip,
bool use_mrt) {
WebGLId src_texture = context_->createTexture();
SkBitmap input_pixels;
input_pixels.setConfig(SkBitmap::kARGB_8888_Config, xsize, ysize);
input_pixels.allocPixels();
SkAutoLockPixels lock(input_pixels);
for (int x = 0; x < xsize; ++x) {
for (int y = 0; y < ysize; ++y) {
switch (test_pattern) {
case 0: // Smooth test pattern
SetChannel(&input_pixels, x, y, 0, x * 10);
SetChannel(&input_pixels, x, y, 1, y * 10);
SetChannel(&input_pixels, x, y, 2, (x + y) * 10);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 1: // Small blocks
SetChannel(&input_pixels, x, y, 0, x & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 1, y & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 2, (x + y) & 1 ? 255 : 0);
SetChannel(&input_pixels, x, y, 3, 255);
break;
case 2: // Medium blocks
SetChannel(&input_pixels, x, y, 0, 10 + x/2 * 50);
SetChannel(&input_pixels, x, y, 1, 10 + y/3 * 50);
SetChannel(&input_pixels, x, y, 2, (x + y)/5 * 50 + 5);
SetChannel(&input_pixels, x, y, 3, 255);
break;
}
}
}
context_->bindTexture(GL_TEXTURE_2D, src_texture);
context_->texImage2D(GL_TEXTURE_2D,
0,
GL_RGBA,
xsize,
ysize,
0,
GL_RGBA,
GL_UNSIGNED_BYTE,
input_pixels.getPixels());
gpu::Mailbox mailbox;
context_->genMailboxCHROMIUM(mailbox.name);
EXPECT_FALSE(mailbox.IsZero());
context_->produceTextureCHROMIUM(GL_TEXTURE_2D, mailbox.name);
uint32 sync_point = context_->insertSyncPoint();
std::string message = base::StringPrintf("input size: %dx%d "
"output size: %dx%d "
"margin: %dx%d "
"pattern: %d %s %s",
xsize, ysize,
output_xsize, output_ysize,
xmargin, ymargin,
test_pattern,
flip ? "flip" : "noflip",
flip ? "mrt" : "nomrt");
scoped_ptr<ReadbackYUVInterface> yuv_reader(
helper_->CreateReadbackPipelineYUV(
content::GLHelper::SCALER_QUALITY_GOOD,
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(output_xsize, output_ysize),
gfx::Rect(xmargin, ymargin, xsize, ysize),
flip,
use_mrt));
scoped_refptr<media::VideoFrame> output_frame =
media::VideoFrame::CreateFrame(
media::VideoFrame::YV12,
gfx::Size(output_xsize, output_ysize),
gfx::Rect(0, 0, output_xsize, output_ysize),
gfx::Size(output_xsize, output_ysize),
base::TimeDelta::FromSeconds(0));
scoped_refptr<media::VideoFrame> truth_frame =
media::VideoFrame::CreateFrame(
media::VideoFrame::YV12,
gfx::Size(output_xsize, output_ysize),
gfx::Rect(0, 0, output_xsize, output_ysize),
gfx::Size(output_xsize, output_ysize),
base::TimeDelta::FromSeconds(0));
base::RunLoop run_loop;
yuv_reader->ReadbackYUV(
mailbox,
sync_point,
output_frame.get(),
base::Bind(&callcallback, run_loop.QuitClosure()));
run_loop.Run();
if (flip) {
FlipSKBitmap(&input_pixels);
}
unsigned char* Y = truth_frame->data(media::VideoFrame::kYPlane);
unsigned char* U = truth_frame->data(media::VideoFrame::kUPlane);
unsigned char* V = truth_frame->data(media::VideoFrame::kVPlane);
int32 y_stride = truth_frame->stride(media::VideoFrame::kYPlane);
int32 u_stride = truth_frame->stride(media::VideoFrame::kUPlane);
int32 v_stride = truth_frame->stride(media::VideoFrame::kVPlane);
memset(Y, 0x00, y_stride * output_ysize);
memset(U, 0x80, u_stride * output_ysize / 2);
memset(V, 0x80, v_stride * output_ysize / 2);
for (int y = 0; y < ysize; y++) {
for (int x = 0; x < xsize; x++) {
Y[(y + ymargin) * y_stride + x + xmargin] = float_to_byte(
ChannelAsFloat(&input_pixels, x, y, 0) * 0.257 +
ChannelAsFloat(&input_pixels, x, y, 1) * 0.504 +
ChannelAsFloat(&input_pixels, x, y, 2) * 0.098 +
0.0625);
}
}
for (int y = 0; y < ysize / 2; y++) {
for (int x = 0; x < xsize / 2; x++) {
U[(y + ymargin / 2) * u_stride + x + xmargin / 2] =
float_to_byte(
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) * -0.148 +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) * -0.291 +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) * 0.439 +
0.5);
V[(y + ymargin / 2) * v_stride + x + xmargin / 2] =
float_to_byte(
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 0) * 0.439 +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 1) * -0.368 +
Bilinear(&input_pixels, x * 2 + 1.0, y * 2 + 1.0, 2) * -0.071 +
0.5);
}
}
ComparePlane(Y,
output_frame->data(media::VideoFrame::kYPlane), 2,
output_xsize,
y_stride,
output_ysize,
&input_pixels,
message + " Y plane");
ComparePlane(U,
output_frame->data(media::VideoFrame::kUPlane), 2,
output_xsize / 2,
u_stride,
output_ysize / 2,
&input_pixels,
message + " U plane");
ComparePlane(V,
output_frame->data(media::VideoFrame::kVPlane), 2,
output_xsize / 2,
v_stride,
output_ysize / 2,
&input_pixels,
message + " V plane");
context_->deleteTexture(src_texture);
}
void TestAddOps(int src,
int dst,
bool scale_x,
bool allow3) {
std::deque<GLHelperScaling::ScaleOp> ops;
GLHelperScaling::ScaleOp::AddOps(src, dst, scale_x, allow3, &ops);
// Scale factor 3 is a special case.
// It is currently only allowed by itself.
if (allow3 && dst * 3 >= src && dst * 2 < src) {
EXPECT_EQ(ops[0].scale_factor, 3);
EXPECT_EQ(ops.size(), 1U);
EXPECT_EQ(ops[0].scale_x, scale_x);
EXPECT_EQ(ops[0].scale_size, dst);
return;
}
for (size_t i = 0; i < ops.size(); i++) {
EXPECT_EQ(ops[i].scale_x, scale_x);
if (i == 0) {
// Only the first op is allowed to be a scale up.
// (Scaling up *after* scaling down would make it fuzzy.)
EXPECT_TRUE(ops[0].scale_factor == 0 ||
ops[0].scale_factor == 2);
} else {
// All other operations must be 50% downscales.
EXPECT_EQ(ops[i].scale_factor, 2);
}
}
// Check that the scale factors make sense and add up.
int tmp = dst;
for (int i = static_cast<int>(ops.size() - 1); i >= 0; i--) {
EXPECT_EQ(tmp, ops[i].scale_size);
if (ops[i].scale_factor == 0) {
EXPECT_EQ(i, 0);
EXPECT_GT(tmp, src);
tmp = src;
} else {
tmp *= ops[i].scale_factor;
}
}
EXPECT_EQ(tmp, src);
}
void CheckPipeline2(int xsize, int ysize,
int dst_xsize, int dst_ysize,
const std::string &description) {
std::vector<GLHelperScaling::ScalerStage> stages;
helper_scaling_->ConvertScalerOpsToScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
gfx::Size(xsize, ysize),
gfx::Rect(0, 0, xsize, ysize),
gfx::Size(dst_xsize, dst_ysize),
false,
false,
&x_ops_,
&y_ops_,
&stages);
EXPECT_EQ(x_ops_.size(), 0U);
EXPECT_EQ(y_ops_.size(), 0U);
ValidateScalerStages(
content::GLHelper::SCALER_QUALITY_GOOD,
stages,
"");
EXPECT_EQ(PrintStages(stages), description);
}
void CheckOptimizationsTest() {
// Basic upscale. X and Y should be combined into one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 2000, 2000,
"1024x768 -> 2000x2000 bilinear\n");
// X scaled 1/2, Y upscaled, should still be one pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 2000));
CheckPipeline2(1024, 768, 512, 2000,
"1024x768 -> 512x2000 bilinear\n");
// X upscaled, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 2000));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384,
"1024x768 -> 2000x384 bilinear\n");
// X scaled 1/2, Y scaled 1/2, one bilinear pass
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 512));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 384));
CheckPipeline2(1024, 768, 2000, 384,
"1024x768 -> 512x384 bilinear\n");
// X scaled 1/2, Y scaled to 60%, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 50, 60,
"100x100 -> 50x60 bilinear2 Y\n");
// X scaled to 60%, Y scaled 1/2, one bilinear2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 50));
CheckPipeline2(100, 100, 50, 60,
"100x100 -> 60x50 bilinear2 X\n");
// X scaled to 60%, Y scaled 60%, one bilinear2x2 pass.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 60, 60,
"100x100 -> 60x60 bilinear2x2\n");
// X scaled to 40%, Y scaled 40%, two bilinear3 passes.
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 40, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 40x40 bilinear3 X\n");
// X scaled to 60%, Y scaled 40%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(3, false, 40));
CheckPipeline2(100, 100, 60, 40,
"100x100 -> 100x40 bilinear3 Y\n"
"100x40 -> 60x40 bilinear2 X\n");
// X scaled to 40%, Y scaled 60%
x_ops_.push_back(GLHelperScaling::ScaleOp(3, true, 40));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
CheckPipeline2(100, 100, 40, 60,
"100x100 -> 100x60 bilinear2 Y\n"
"100x60 -> 40x60 bilinear3 X\n");
// X scaled to 30%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 120));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 60));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 30));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 30x30 bilinear4 X\n");
// X scaled to 50%, Y scaled 30%
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 50));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 50, 30,
"100x100 -> 50x30 bilinear4 Y\n");
// X scaled to 150%, Y scaled 30%
// Note that we avoid combinding X and Y passes
// as that would probably be LESS efficient here.
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 150));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 120));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 60));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 30));
CheckPipeline2(100, 100, 150, 30,
"100x100 -> 100x30 bilinear4 Y\n"
"100x30 -> 150x30 bilinear\n");
// X scaled to 1%, Y scaled 1%
x_ops_.push_back(GLHelperScaling::ScaleOp(0, true, 128));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 64));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 32));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 16));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 8));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 4));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 2));
x_ops_.push_back(GLHelperScaling::ScaleOp(2, true, 1));
y_ops_.push_back(GLHelperScaling::ScaleOp(0, false, 128));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 64));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 32));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 16));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 8));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 4));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 2));
y_ops_.push_back(GLHelperScaling::ScaleOp(2, false, 1));
CheckPipeline2(100, 100, 30, 30,
"100x100 -> 100x32 bilinear4 Y\n"
"100x32 -> 100x4 bilinear4 Y\n"
"100x4 -> 64x1 bilinear2x2\n"
"64x1 -> 8x1 bilinear4 X\n"
"8x1 -> 1x1 bilinear4 X\n");
}
scoped_ptr<WebGraphicsContext3DInProcessCommandBufferImpl> context_;
gpu::ContextSupport* context_support_;
scoped_ptr<content::GLHelper> helper_;
scoped_ptr<content::GLHelperScaling> helper_scaling_;
std::deque<GLHelperScaling::ScaleOp> x_ops_, y_ops_;
};
TEST_F(GLHelperTest, YUVReadbackTest) {
int sizes[] = { 2, 4, 14 };
for (int flip = 0; flip <= 1; flip++) {
for (int use_mrt = 0; use_mrt <= 1; use_mrt++) {
for (unsigned int x = 0; x < arraysize(sizes); x++) {
for (unsigned int y = 0; y < arraysize(sizes); y++) {
for (unsigned int ox = x; ox < arraysize(sizes); ox++) {
for (unsigned int oy = y; oy < arraysize(sizes); oy++) {
// If output is a subsection of the destination frame, (letterbox)
// then try different variations of where the subsection goes.
for (Margin xm = x < ox ? MarginLeft : MarginRight;
xm <= MarginRight;
xm = NextMargin(xm)) {
for (Margin ym = y < oy ? MarginLeft : MarginRight;
ym <= MarginRight;
ym = NextMargin(ym)) {
for (int pattern = 0; pattern < 3; pattern++) {
TestYUVReadback(
sizes[x],
sizes[y],
sizes[ox],
sizes[oy],
compute_margin(sizes[x], sizes[ox], xm),
compute_margin(sizes[y], sizes[oy], ym),
pattern,
flip == 1,
use_mrt == 1);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
}
}
}
}
// Per pixel tests, all sizes are small so that we can print
// out the generated bitmaps.
TEST_F(GLHelperTest, ScaleTest) {
int sizes[] = {3, 6, 16};
for (int flip = 0; flip <= 1; flip++) {
for (size_t q = 0; q < arraysize(kQualities); q++) {
for (int x = 0; x < 3; x++) {
for (int y = 0; y < 3; y++) {
for (int dst_x = 0; dst_x < 3; dst_x++) {
for (int dst_y = 0; dst_y < 3; dst_y++) {
for (int pattern = 0; pattern < 3; pattern++) {
TestScale(sizes[x],
sizes[y],
sizes[dst_x],
sizes[dst_y],
pattern,
q,
flip == 1);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
}
}
// Validate that all scaling generates valid pipelines.
TEST_F(GLHelperTest, ValidateScalerPipelines) {
int sizes[] = {7, 99, 128, 256, 512, 719, 720, 721, 1920, 2011, 3217, 4096};
for (size_t q = 0; q < arraysize(kQualities); q++) {
for (size_t x = 0; x < arraysize(sizes); x++) {
for (size_t y = 0; y < arraysize(sizes); y++) {
for (size_t dst_x = 0; dst_x < arraysize(sizes); dst_x++) {
for (size_t dst_y = 0; dst_y < arraysize(sizes); dst_y++) {
TestScalerPipeline(q,
sizes[x], sizes[y],
sizes[dst_x], sizes[dst_y]);
if (HasFailure()) {
return;
}
}
}
}
}
}
}
// Make sure we don't create overly complicated pipelines
// for a few common use cases.
TEST_F(GLHelperTest, CheckSpecificPipelines) {
// Upscale should be single pass.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
1024, 700, 1280, 720,
"1024x700 -> 1280x720 bilinear\n");
// Slight downscale should use BILINEAR2X2.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
1280, 720, 1024, 700,
"1280x720 -> 1024x700 bilinear2x2\n");
// Most common tab capture pipeline on the Pixel.
// Should be using two BILINEAR3 passes.
CheckPipeline(content::GLHelper::SCALER_QUALITY_GOOD,
2560, 1476, 1249, 720,
"2560x1476 -> 2560x720 bilinear3 Y\n"
"2560x720 -> 1249x720 bilinear3 X\n");
}
TEST_F(GLHelperTest, ScalerOpTest) {
for (int allow3 = 0; allow3 <= 1; allow3++) {
for (int dst = 1; dst < 2049; dst += 1 + (dst >> 3)) {
for (int src = 1; src < 2049; src++) {
TestAddOps(src, dst, allow3 == 1, (src & 1) == 1);
if (HasFailure()) {
LOG(ERROR) << "Failed for src=" << src
<< " dst=" << dst
<< " allow3=" << allow3;
return;
}
}
}
}
}
TEST_F(GLHelperTest, CheckOptimizations) {
// Test in baseclass since it is friends with GLHelperScaling
CheckOptimizationsTest();
}
} // namespace
// These tests needs to run against a proper GL environment, so we
// need to set it up before we can run the tests.
int main(int argc, char** argv) {
CommandLine::Init(argc, argv);
base::TestSuite* suite = new content::ContentTestSuite(argc, argv);
#if defined(OS_MACOSX)
base::mac::ScopedNSAutoreleasePool pool;
#endif
#if defined(TOOLKIT_GTK)
gfx::GtkInitFromCommandLine(*CommandLine::ForCurrentProcess());
#endif
gfx::GLSurface::InitializeOneOff();
gpu::ApplyGpuDriverBugWorkarounds(CommandLine::ForCurrentProcess());
content::UnitTestTestSuite runner(suite);
base::MessageLoop message_loop;
return runner.Run();
}