blob: d57116c01bd83d5cc454d7fae96995b43a0614db [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/logging.h"
#include "base/stl_util.h"
#include "content/child/webcrypto/algorithm_dispatch.h"
#include "content/child/webcrypto/crypto_data.h"
#include "content/child/webcrypto/status.h"
#include "content/child/webcrypto/test/test_helpers.h"
#include "content/child/webcrypto/webcrypto_util.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "third_party/WebKit/public/platform/WebCryptoAlgorithmParams.h"
#include "third_party/WebKit/public/platform/WebCryptoKeyAlgorithm.h"
namespace content {
namespace webcrypto {
namespace {
// Creates an HMAC algorithm whose parameters struct is compatible with key
// generation. It is an error to call this with a hash_id that is not a SHA*.
// The key_length_bits parameter is optional, with zero meaning unspecified.
blink::WebCryptoAlgorithm CreateHmacKeyGenAlgorithm(
blink::WebCryptoAlgorithmId hash_id,
unsigned int key_length_bits) {
DCHECK(blink::WebCryptoAlgorithm::isHash(hash_id));
// key_length_bytes == 0 means unspecified
return blink::WebCryptoAlgorithm::adoptParamsAndCreate(
blink::WebCryptoAlgorithmIdHmac,
new blink::WebCryptoHmacKeyGenParams(
CreateAlgorithm(hash_id), (key_length_bits != 0), key_length_bits));
}
TEST(WebCryptoHmacTest, HMACSampleSets) {
scoped_ptr<base::ListValue> tests;
ASSERT_TRUE(ReadJsonTestFileToList("hmac.json", &tests));
for (size_t test_index = 0; test_index < tests->GetSize(); ++test_index) {
SCOPED_TRACE(test_index);
base::DictionaryValue* test;
ASSERT_TRUE(tests->GetDictionary(test_index, &test));
blink::WebCryptoAlgorithm test_hash = GetDigestAlgorithm(test, "hash");
const std::vector<uint8_t> test_key = GetBytesFromHexString(test, "key");
const std::vector<uint8_t> test_message =
GetBytesFromHexString(test, "message");
const std::vector<uint8_t> test_mac = GetBytesFromHexString(test, "mac");
blink::WebCryptoAlgorithm algorithm =
CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac);
blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithm(test_hash.id());
blink::WebCryptoKey key = ImportSecretKeyFromRaw(
test_key,
import_algorithm,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify);
EXPECT_EQ(test_hash.id(), key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(test_key.size() * 8, key.algorithm().hmacParams()->lengthBits());
// Verify exported raw key is identical to the imported data
std::vector<uint8_t> raw_key;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_BYTES_EQ(test_key, raw_key);
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(algorithm, key, CryptoData(test_message), &output));
EXPECT_BYTES_EQ(test_mac, output);
bool signature_match = false;
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(output),
CryptoData(test_message),
&signature_match));
EXPECT_TRUE(signature_match);
// Ensure truncated signature does not verify by passing one less byte.
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(vector_as_array(&output), output.size() - 1),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure truncated signature does not verify by passing no bytes.
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
// Ensure extra long signature does not cause issues and fails.
const unsigned char kLongSignature[1024] = {0};
EXPECT_EQ(Status::Success(),
Verify(algorithm,
key,
CryptoData(kLongSignature, sizeof(kLongSignature)),
CryptoData(test_message),
&signature_match));
EXPECT_FALSE(signature_match);
}
}
TEST(WebCryptoHmacTest, GenerateKeyIsRandom) {
// Generate a small sample of HMAC keys.
std::vector<std::vector<uint8_t> > keys;
for (int i = 0; i < 16; ++i) {
std::vector<uint8_t> key_bytes;
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 512);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_FALSE(key.isNull());
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
keys.push_back(raw_key);
}
// Ensure all entries in the key sample set are unique. This is a simplistic
// estimate of whether the generated keys appear random.
EXPECT_FALSE(CopiesExist(keys));
}
// If the key length is not provided, then the block size is used.
TEST(WebCryptoHmacTest, GenerateKeyNoLengthSha1) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha1, 0);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha1,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(512u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(64U, raw_key.size());
}
// If the key length is not provided, then the block size is used.
TEST(WebCryptoHmacTest, GenerateKeyNoLengthSha512) {
blink::WebCryptoKey key;
blink::WebCryptoAlgorithm algorithm =
CreateHmacKeyGenAlgorithm(blink::WebCryptoAlgorithmIdSha512, 0);
ASSERT_EQ(Status::Success(), GenerateSecretKey(algorithm, true, 0, &key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha512,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(1024u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> raw_key;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &raw_key));
EXPECT_EQ(128U, raw_key.size());
}
TEST(WebCryptoHmacTest, ImportKeyJwkKeyOpsSignVerify) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
base::ListValue* key_ops = new base::ListValue;
dict.Set("key_ops", key_ops); // Takes ownership.
key_ops->AppendString("sign");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageSign,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageSign, key.usages());
key_ops->AppendString("verify");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
}
// Test 'use' inconsistent with 'key_ops'.
TEST(WebCryptoHmacTest, ImportKeyJwkUseInconsisteWithKeyOps) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
base::ListValue* key_ops = new base::ListValue;
dict.Set("key_ops", key_ops); // Takes ownership.
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
key_ops->AppendString("sign");
key_ops->AppendString("verify");
key_ops->AppendString("encrypt");
EXPECT_EQ(Status::ErrorJwkUseAndKeyopsInconsistent(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&key));
}
// Test JWK composite 'sig' use
TEST(WebCryptoHmacTest, ImportKeyJwkUseSig) {
blink::WebCryptoKey key;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "GADWrMRHwQfoNaXU5fZvTg==");
dict.SetString("use", "sig");
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
false,
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
&key));
EXPECT_EQ(blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
key.usages());
}
TEST(WebCryptoHmacTest, ImportJwkInputConsistency) {
// The Web Crypto spec says that if a JWK value is present, but is
// inconsistent with the input value, the operation must fail.
// Consistency rules when JWK value is not present: Inputs should be used.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageVerify;
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
std::vector<uint8_t> json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
extractable,
usages,
&key));
EXPECT_TRUE(key.handle());
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(extractable, key.extractable());
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, key.algorithm().id());
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
key.algorithm().hmacParams()->hash().id());
EXPECT_EQ(320u, key.algorithm().hmacParams()->lengthBits());
EXPECT_EQ(blink::WebCryptoKeyUsageVerify, key.usages());
key = blink::WebCryptoKey::createNull();
// Consistency rules when JWK value exists: Fail if inconsistency is found.
// Pass: All input values are consistent with the JWK values.
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
json_vec = MakeJsonVector(dict);
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
extractable,
usages,
&key));
// Extractable cases:
// 1. input=T, JWK=F ==> fail (inconsistent)
// 4. input=F, JWK=F ==> pass, result extractable is F
// 2. input=T, JWK=T ==> pass, result extractable is T
// 3. input=F, JWK=T ==> pass, result extractable is F
EXPECT_EQ(Status::ErrorJwkExtInconsistent(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
true,
usages,
&key));
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
false,
usages,
&key));
EXPECT_FALSE(key.extractable());
dict.SetBoolean("ext", true);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, true, usages, &key));
EXPECT_TRUE(key.extractable());
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, false, usages, &key));
EXPECT_FALSE(key.extractable());
dict.SetBoolean("ext", true); // restore previous value
// Fail: Input algorithm (AES-CBC) is inconsistent with JWK value
// (HMAC SHA256).
dict.Clear();
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
EXPECT_EQ(
Status::ErrorJwkAlgorithmInconsistent(),
ImportKeyJwkFromDict(dict,
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input usage (encrypt) is inconsistent with JWK value (use=sig).
EXPECT_EQ(Status::ErrorJwkUseInconsistent(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
CreateAlgorithm(blink::WebCryptoAlgorithmIdAesCbc),
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input algorithm (HMAC SHA1) is inconsistent with JWK value
// (HMAC SHA256).
EXPECT_EQ(
Status::ErrorJwkAlgorithmInconsistent(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
extractable,
usages,
&key));
// Pass: JWK alg missing but input algorithm specified: use input value
dict.Remove("alg", NULL);
EXPECT_EQ(Status::Success(),
ImportKeyJwkFromDict(
dict,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256),
extractable,
usages,
&key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdHmac, algorithm.id());
dict.SetString("alg", "HS256");
// Fail: Input usages (encrypt) is not a subset of the JWK value
// (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
extractable,
blink::WebCryptoKeyUsageEncrypt,
&key));
// Fail: Input usages (encrypt|sign|verify) is not a subset of the JWK
// value (sign|verify). Moreover "encrypt" is not a valid usage for HMAC.
usages = blink::WebCryptoKeyUsageEncrypt | blink::WebCryptoKeyUsageSign |
blink::WebCryptoKeyUsageVerify;
EXPECT_EQ(Status::ErrorCreateKeyBadUsages(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json_vec),
algorithm,
extractable,
usages,
&key));
// TODO(padolph): kty vs alg consistency tests: Depending on the kty value,
// only certain alg values are permitted. For example, when kty = "RSA" alg
// must be of the RSA family, or when kty = "oct" alg must be symmetric
// algorithm.
// TODO(padolph): key_ops consistency tests
}
TEST(WebCryptoHmacTest, ImportJwkHappy) {
// This test verifies the happy path of JWK import, including the application
// of the imported key material.
blink::WebCryptoKey key;
bool extractable = false;
blink::WebCryptoAlgorithm algorithm =
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha256);
blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageSign;
// Import a symmetric key JWK and HMAC-SHA256 sign()
// Uses the first SHA256 test vector from the HMAC sample set above.
base::DictionaryValue dict;
dict.SetString("kty", "oct");
dict.SetString("alg", "HS256");
dict.SetString("use", "sig");
dict.SetBoolean("ext", false);
dict.SetString("k", "l3nZEgZCeX8XRwJdWyK3rGB8qwjhdY8vOkbIvh4lxTuMao9Y_--hdg");
ASSERT_EQ(Status::Success(),
ImportKeyJwkFromDict(dict, algorithm, extractable, usages, &key));
EXPECT_EQ(blink::WebCryptoAlgorithmIdSha256,
key.algorithm().hmacParams()->hash().id());
const std::vector<uint8_t> message_raw = HexStringToBytes(
"b1689c2591eaf3c9e66070f8a77954ffb81749f1b00346f9dfe0b2ee905dcc288baf4a"
"92de3f4001dd9f44c468c3d07d6c6ee82faceafc97c2fc0fc0601719d2dcd0aa2aec92"
"d1b0ae933c65eb06a03c9c935c2bad0459810241347ab87e9f11adb30415424c6c7f5f"
"22a003b8ab8de54f6ded0e3ab9245fa79568451dfa258e");
std::vector<uint8_t> output;
ASSERT_EQ(Status::Success(),
Sign(CreateAlgorithm(blink::WebCryptoAlgorithmIdHmac),
key,
CryptoData(message_raw),
&output));
const std::string mac_raw =
"769f00d3e6a6cc1fb426a14a4f76c6462e6149726e0dee0ec0cf97a16605ac8b";
EXPECT_BYTES_EQ_HEX(mac_raw, output);
// TODO(padolph): Import an RSA public key JWK and use it
}
TEST(WebCryptoHmacTest, ImportExportJwk) {
// HMAC SHA-1
ImportExportJwkSymmetricKey(
256,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
blink::WebCryptoKeyUsageSign | blink::WebCryptoKeyUsageVerify,
"HS1");
// HMAC SHA-384
ImportExportJwkSymmetricKey(
384,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha384),
blink::WebCryptoKeyUsageSign,
"HS384");
// HMAC SHA-512
ImportExportJwkSymmetricKey(
512,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512),
blink::WebCryptoKeyUsageVerify,
"HS512");
// Zero usage value
ImportExportJwkSymmetricKey(
512,
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha512),
0,
"HS512");
}
TEST(WebCryptoHmacTest, ExportJwkEmptyKey) {
const blink::WebCryptoAlgorithm import_algorithm =
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1);
blink::WebCryptoKeyUsageMask usages = blink::WebCryptoKeyUsageSign;
blink::WebCryptoKey key;
// Import a zero-byte HMAC key.
const char key_data_hex[] = "";
key = ImportSecretKeyFromRaw(
HexStringToBytes(key_data_hex), import_algorithm, usages);
EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
// Export the key in JWK format and validate.
std::vector<uint8_t> json;
ASSERT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatJwk, key, &json));
EXPECT_TRUE(VerifySecretJwk(json, "HS1", key_data_hex, usages));
// Now try re-importing the JWK key.
key = blink::WebCryptoKey::createNull();
EXPECT_EQ(Status::Success(),
ImportKey(blink::WebCryptoKeyFormatJwk,
CryptoData(json),
import_algorithm,
true,
usages,
&key));
EXPECT_EQ(blink::WebCryptoKeyTypeSecret, key.type());
EXPECT_EQ(0u, key.algorithm().hmacParams()->lengthBits());
std::vector<uint8_t> exported_key_data;
EXPECT_EQ(Status::Success(),
ExportKey(blink::WebCryptoKeyFormatRaw, key, &exported_key_data));
EXPECT_EQ(0u, exported_key_data.size());
}
// Import a huge hmac key (UINT_MAX bytes). This will fail before actually
// reading the bytes, as the key is too large.
TEST(WebCryptoHmacTest, ImportRawKeyTooLarge) {
CryptoData big_data(NULL, UINT_MAX); // Invalid data of big length.
blink::WebCryptoKey key;
EXPECT_EQ(
Status::ErrorDataTooLarge(),
ImportKey(blink::WebCryptoKeyFormatRaw,
CryptoData(big_data),
CreateHmacImportAlgorithm(blink::WebCryptoAlgorithmIdSha1),
true,
blink::WebCryptoKeyUsageSign,
&key));
}
} // namespace
} // namespace webcrypto
} // namespace content