blob: d69c97da551c8a5dce5b1e78dc9b0b1c75ad0b80 [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <fcntl.h>
#include <linux/videodev2.h>
#include <poll.h>
#include <sys/eventfd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "base/callback.h"
#include "base/command_line.h"
#include "base/debug/trace_event.h"
#include "base/message_loop/message_loop_proxy.h"
#include "base/numerics/safe_conversions.h"
#include "content/common/gpu/media/v4l2_video_encode_accelerator.h"
#include "content/public/common/content_switches.h"
#include "media/base/bitstream_buffer.h"
#define NOTIFY_ERROR(x) \
do { \
SetEncoderState(kError); \
LOG(ERROR) << "calling NotifyError(): " << x; \
NotifyError(x); \
} while (0)
#define IOCTL_OR_ERROR_RETURN_VALUE(type, arg, value) \
do { \
if (device_->Ioctl(type, arg) != 0) { \
PLOG(ERROR) << __func__ << "(): ioctl() failed: " << #type; \
NOTIFY_ERROR(kPlatformFailureError); \
return value; \
} \
} while (0)
#define IOCTL_OR_ERROR_RETURN(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, ((void)0))
#define IOCTL_OR_ERROR_RETURN_FALSE(type, arg) \
IOCTL_OR_ERROR_RETURN_VALUE(type, arg, false)
#define IOCTL_OR_LOG_ERROR(type, arg) \
do { \
if (device_->Ioctl(type, arg) != 0) \
PLOG(ERROR) << __func__ << "(): ioctl() failed: " << #type; \
} while (0)
namespace content {
struct V4L2VideoEncodeAccelerator::BitstreamBufferRef {
BitstreamBufferRef(int32 id, scoped_ptr<base::SharedMemory> shm, size_t size)
: id(id), shm(shm.Pass()), size(size) {}
const int32 id;
const scoped_ptr<base::SharedMemory> shm;
const size_t size;
};
V4L2VideoEncodeAccelerator::InputRecord::InputRecord() : at_device(false) {
}
V4L2VideoEncodeAccelerator::OutputRecord::OutputRecord()
: at_device(false), address(NULL), length(0) {
}
V4L2VideoEncodeAccelerator::V4L2VideoEncodeAccelerator(
scoped_ptr<V4L2Device> device)
: child_message_loop_proxy_(base::MessageLoopProxy::current()),
output_buffer_byte_size_(0),
device_input_format_(media::VideoFrame::UNKNOWN),
input_planes_count_(0),
output_format_fourcc_(0),
encoder_state_(kUninitialized),
stream_header_size_(0),
device_(device.Pass()),
input_streamon_(false),
input_buffer_queued_count_(0),
input_memory_type_(V4L2_MEMORY_USERPTR),
output_streamon_(false),
output_buffer_queued_count_(0),
encoder_thread_("V4L2EncoderThread"),
device_poll_thread_("V4L2EncoderDevicePollThread"),
weak_this_ptr_factory_(this) {
weak_this_ = weak_this_ptr_factory_.GetWeakPtr();
}
V4L2VideoEncodeAccelerator::~V4L2VideoEncodeAccelerator() {
DCHECK(!encoder_thread_.IsRunning());
DCHECK(!device_poll_thread_.IsRunning());
DVLOG(4) << __func__;
DestroyInputBuffers();
DestroyOutputBuffers();
}
bool V4L2VideoEncodeAccelerator::Initialize(
media::VideoFrame::Format input_format,
const gfx::Size& input_visible_size,
media::VideoCodecProfile output_profile,
uint32 initial_bitrate,
Client* client) {
DVLOG(3) << __func__ << ": input_format="
<< media::VideoFrame::FormatToString(input_format)
<< ", input_visible_size=" << input_visible_size.ToString()
<< ", output_profile=" << output_profile
<< ", initial_bitrate=" << initial_bitrate;
visible_size_ = input_visible_size;
client_ptr_factory_.reset(new base::WeakPtrFactory<Client>(client));
client_ = client_ptr_factory_->GetWeakPtr();
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK_EQ(encoder_state_, kUninitialized);
struct v4l2_capability caps;
memset(&caps, 0, sizeof(caps));
const __u32 kCapsRequired = V4L2_CAP_VIDEO_CAPTURE_MPLANE |
V4L2_CAP_VIDEO_OUTPUT_MPLANE | V4L2_CAP_STREAMING;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYCAP, &caps);
if ((caps.capabilities & kCapsRequired) != kCapsRequired) {
LOG(ERROR) << "Initialize(): ioctl() failed: VIDIOC_QUERYCAP: "
"caps check failed: 0x" << std::hex << caps.capabilities;
return false;
}
if (!SetFormats(input_format, output_profile)) {
LOG(ERROR) << "Failed setting up formats";
return false;
}
if (input_format != device_input_format_) {
DVLOG(1) << "Input format not supported by the HW, will convert to "
<< media::VideoFrame::FormatToString(device_input_format_);
scoped_ptr<V4L2Device> device =
V4L2Device::Create(V4L2Device::kImageProcessor);
image_processor_.reset(new V4L2ImageProcessor(device.Pass()));
// Convert from input_format to device_input_format_, keeping the size
// at visible_size_ and requiring the output buffers to be of at least
// input_allocated_size_.
if (!image_processor_->Initialize(
input_format,
device_input_format_,
visible_size_,
visible_size_,
input_allocated_size_,
base::Bind(&V4L2VideoEncodeAccelerator::ImageProcessorError,
weak_this_))) {
LOG(ERROR) << "Failed initializing image processor";
return false;
}
}
if (!InitControls())
return false;
if (!CreateOutputBuffers())
return false;
if (!encoder_thread_.Start()) {
LOG(ERROR) << "Initialize(): encoder thread failed to start";
return false;
}
RequestEncodingParametersChange(initial_bitrate, kInitialFramerate);
SetEncoderState(kInitialized);
child_message_loop_proxy_->PostTask(
FROM_HERE,
base::Bind(&Client::RequireBitstreamBuffers,
client_,
kInputBufferCount,
image_processor_.get() ?
image_processor_->input_allocated_size() :
input_allocated_size_,
output_buffer_byte_size_));
return true;
}
void V4L2VideoEncodeAccelerator::ImageProcessorError() {
LOG(ERROR) << "Image processor error";
NOTIFY_ERROR(kPlatformFailureError);
}
void V4L2VideoEncodeAccelerator::Encode(
const scoped_refptr<media::VideoFrame>& frame,
bool force_keyframe) {
DVLOG(3) << "Encode(): force_keyframe=" << force_keyframe;
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
if (image_processor_) {
image_processor_->Process(
frame,
base::Bind(&V4L2VideoEncodeAccelerator::FrameProcessed,
weak_this_,
force_keyframe));
} else {
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::EncodeTask,
base::Unretained(this),
frame,
force_keyframe));
}
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBuffer(
const media::BitstreamBuffer& buffer) {
DVLOG(3) << "UseOutputBitstreamBuffer(): id=" << buffer.id();
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
if (buffer.size() < output_buffer_byte_size_) {
NOTIFY_ERROR(kInvalidArgumentError);
return;
}
scoped_ptr<base::SharedMemory> shm(
new base::SharedMemory(buffer.handle(), false));
if (!shm->Map(buffer.size())) {
NOTIFY_ERROR(kPlatformFailureError);
return;
}
scoped_ptr<BitstreamBufferRef> buffer_ref(
new BitstreamBufferRef(buffer.id(), shm.Pass(), buffer.size()));
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask,
base::Unretained(this),
base::Passed(&buffer_ref)));
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChange(
uint32 bitrate,
uint32 framerate) {
DVLOG(3) << "RequestEncodingParametersChange(): bitrate=" << bitrate
<< ", framerate=" << framerate;
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(
&V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask,
base::Unretained(this),
bitrate,
framerate));
}
void V4L2VideoEncodeAccelerator::Destroy() {
DVLOG(3) << "Destroy()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
// We're destroying; cancel all callbacks.
client_ptr_factory_.reset();
weak_this_ptr_factory_.InvalidateWeakPtrs();
if (image_processor_.get())
image_processor_.release()->Destroy();
// If the encoder thread is running, destroy using posted task.
if (encoder_thread_.IsRunning()) {
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::DestroyTask,
base::Unretained(this)));
// DestroyTask() will put the encoder into kError state and cause all tasks
// to no-op.
encoder_thread_.Stop();
} else {
// Otherwise, call the destroy task directly.
DestroyTask();
}
// Set to kError state just in case.
SetEncoderState(kError);
delete this;
}
std::vector<media::VideoEncodeAccelerator::SupportedProfile>
V4L2VideoEncodeAccelerator::GetSupportedProfiles() {
std::vector<SupportedProfile> profiles;
SupportedProfile profile;
const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
if (cmd_line->HasSwitch(switches::kEnableWebRtcHWVp8Encoding)) {
profile.profile = media::VP8PROFILE_ANY;
profile.max_resolution.SetSize(1920, 1088);
profile.max_framerate_numerator = 30;
profile.max_framerate_denominator = 1;
profiles.push_back(profile);
}
profile.profile = media::H264PROFILE_MAIN;
profile.max_resolution.SetSize(1920, 1088);
profile.max_framerate_numerator = 30;
profile.max_framerate_denominator = 1;
profiles.push_back(profile);
return profiles;
}
void V4L2VideoEncodeAccelerator::FrameProcessed(
bool force_keyframe,
const scoped_refptr<media::VideoFrame>& frame) {
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DVLOG(3) << "FrameProcessed(): force_keyframe=" << force_keyframe;
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::EncodeTask,
base::Unretained(this),
frame,
force_keyframe));
}
void V4L2VideoEncodeAccelerator::EncodeTask(
const scoped_refptr<media::VideoFrame>& frame,
bool force_keyframe) {
DVLOG(3) << "EncodeTask(): force_keyframe=" << force_keyframe;
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
DCHECK_NE(encoder_state_, kUninitialized);
if (encoder_state_ == kError) {
DVLOG(2) << "EncodeTask(): early out: kError state";
return;
}
encoder_input_queue_.push_back(frame);
Enqueue();
if (force_keyframe) {
// TODO(posciak): this presently makes for slightly imprecise encoding
// parameters updates. To precisely align the parameter updates with the
// incoming input frame, we should queue the parameters together with the
// frame onto encoder_input_queue_ and apply them when the input is about
// to be queued to the codec.
struct v4l2_ext_control ctrls[1];
struct v4l2_ext_controls control;
memset(&ctrls, 0, sizeof(ctrls));
memset(&control, 0, sizeof(control));
ctrls[0].id = V4L2_CID_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE;
ctrls[0].value = V4L2_MPEG_MFC51_VIDEO_FORCE_FRAME_TYPE_I_FRAME;
control.ctrl_class = V4L2_CTRL_CLASS_MPEG;
control.count = 1;
control.controls = ctrls;
IOCTL_OR_ERROR_RETURN(VIDIOC_S_EXT_CTRLS, &control);
}
}
void V4L2VideoEncodeAccelerator::UseOutputBitstreamBufferTask(
scoped_ptr<BitstreamBufferRef> buffer_ref) {
DVLOG(3) << "UseOutputBitstreamBufferTask(): id=" << buffer_ref->id;
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
encoder_output_queue_.push_back(
linked_ptr<BitstreamBufferRef>(buffer_ref.release()));
Enqueue();
if (encoder_state_ == kInitialized) {
// Finish setting up our OUTPUT queue. See: Initialize().
// VIDIOC_REQBUFS on OUTPUT queue.
if (!CreateInputBuffers())
return;
if (!StartDevicePoll())
return;
encoder_state_ = kEncoding;
}
}
void V4L2VideoEncodeAccelerator::DestroyTask() {
DVLOG(3) << "DestroyTask()";
// DestroyTask() should run regardless of encoder_state_.
// Stop streaming and the device_poll_thread_.
StopDevicePoll();
// Set our state to kError, and early-out all tasks.
encoder_state_ = kError;
}
void V4L2VideoEncodeAccelerator::ServiceDeviceTask() {
DVLOG(3) << "ServiceDeviceTask()";
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
DCHECK_NE(encoder_state_, kUninitialized);
DCHECK_NE(encoder_state_, kInitialized);
if (encoder_state_ == kError) {
DVLOG(2) << "ServiceDeviceTask(): early out: kError state";
return;
}
Dequeue();
Enqueue();
// Clear the interrupt fd.
if (!device_->ClearDevicePollInterrupt())
return;
// Device can be polled as soon as either input or output buffers are queued.
bool poll_device =
(input_buffer_queued_count_ + output_buffer_queued_count_ > 0);
// ServiceDeviceTask() should only ever be scheduled from DevicePollTask(),
// so either:
// * device_poll_thread_ is running normally
// * device_poll_thread_ scheduled us, but then a DestroyTask() shut it down,
// in which case we're in kError state, and we should have early-outed
// already.
DCHECK(device_poll_thread_.message_loop());
// Queue the DevicePollTask() now.
device_poll_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this),
poll_device));
DVLOG(2) << __func__ << ": buffer counts: ENC["
<< encoder_input_queue_.size() << "] => DEVICE["
<< free_input_buffers_.size() << "+"
<< input_buffer_queued_count_ << "/"
<< input_buffer_map_.size() << "->"
<< free_output_buffers_.size() << "+"
<< output_buffer_queued_count_ << "/"
<< output_buffer_map_.size() << "] => OUT["
<< encoder_output_queue_.size() << "]";
}
void V4L2VideoEncodeAccelerator::Enqueue() {
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
DVLOG(3) << "Enqueue() "
<< "free_input_buffers: " << free_input_buffers_.size()
<< "input_queue: " << encoder_input_queue_.size();
// Enqueue all the inputs we can.
const int old_inputs_queued = input_buffer_queued_count_;
// while (!ready_input_buffers_.empty()) {
while (!encoder_input_queue_.empty() && !free_input_buffers_.empty()) {
if (!EnqueueInputRecord())
return;
}
if (old_inputs_queued == 0 && input_buffer_queued_count_ != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Start VIDIOC_STREAMON if we haven't yet.
if (!input_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
input_streamon_ = true;
}
}
// Enqueue all the outputs we can.
const int old_outputs_queued = output_buffer_queued_count_;
while (!free_output_buffers_.empty() && !encoder_output_queue_.empty()) {
if (!EnqueueOutputRecord())
return;
}
if (old_outputs_queued == 0 && output_buffer_queued_count_ != 0) {
// We just started up a previously empty queue.
// Queue state changed; signal interrupt.
if (!device_->SetDevicePollInterrupt())
return;
// Start VIDIOC_STREAMON if we haven't yet.
if (!output_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN(VIDIOC_STREAMON, &type);
output_streamon_ = true;
}
}
}
void V4L2VideoEncodeAccelerator::Dequeue() {
DVLOG(3) << "Dequeue()";
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
// Dequeue completed input (VIDEO_OUTPUT) buffers, and recycle to the free
// list.
struct v4l2_buffer dqbuf;
struct v4l2_plane planes[VIDEO_MAX_PLANES];
while (input_buffer_queued_count_ > 0) {
DVLOG(4) << "inputs queued: " << input_buffer_queued_count_;
DCHECK(input_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(&planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
dqbuf.memory = V4L2_MEMORY_MMAP;
dqbuf.m.planes = planes;
dqbuf.length = input_planes_count_;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
PLOG(ERROR) << "Dequeue(): ioctl() failed: VIDIOC_DQBUF";
NOTIFY_ERROR(kPlatformFailureError);
return;
}
InputRecord& input_record = input_buffer_map_[dqbuf.index];
DCHECK(input_record.at_device);
input_record.at_device = false;
input_record.frame = NULL;
free_input_buffers_.push_back(dqbuf.index);
input_buffer_queued_count_--;
}
// Dequeue completed output (VIDEO_CAPTURE) buffers, and recycle to the
// free list. Notify the client that an output buffer is complete.
while (output_buffer_queued_count_ > 0) {
DCHECK(output_streamon_);
memset(&dqbuf, 0, sizeof(dqbuf));
memset(planes, 0, sizeof(planes));
dqbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
dqbuf.memory = V4L2_MEMORY_MMAP;
dqbuf.m.planes = planes;
dqbuf.length = 1;
if (device_->Ioctl(VIDIOC_DQBUF, &dqbuf) != 0) {
if (errno == EAGAIN) {
// EAGAIN if we're just out of buffers to dequeue.
break;
}
PLOG(ERROR) << "Dequeue(): ioctl() failed: VIDIOC_DQBUF";
NOTIFY_ERROR(kPlatformFailureError);
return;
}
const bool key_frame = ((dqbuf.flags & V4L2_BUF_FLAG_KEYFRAME) != 0);
OutputRecord& output_record = output_buffer_map_[dqbuf.index];
DCHECK(output_record.at_device);
DCHECK(output_record.buffer_ref.get());
void* output_data = output_record.address;
size_t output_size = dqbuf.m.planes[0].bytesused;
// This shouldn't happen, but just in case. We should be able to recover
// after next keyframe after showing some corruption.
DCHECK_LE(output_size, output_buffer_byte_size_);
if (output_size > output_buffer_byte_size_)
output_size = output_buffer_byte_size_;
uint8* target_data =
reinterpret_cast<uint8*>(output_record.buffer_ref->shm->memory());
if (output_format_fourcc_ == V4L2_PIX_FMT_H264) {
if (stream_header_size_ == 0) {
// Assume that the first buffer dequeued is the stream header.
stream_header_size_ = output_size;
stream_header_.reset(new uint8[stream_header_size_]);
memcpy(stream_header_.get(), output_data, stream_header_size_);
}
if (key_frame &&
output_buffer_byte_size_ - stream_header_size_ >= output_size) {
// Insert stream header before every keyframe.
memcpy(target_data, stream_header_.get(), stream_header_size_);
memcpy(target_data + stream_header_size_, output_data, output_size);
output_size += stream_header_size_;
} else {
memcpy(target_data, output_data, output_size);
}
} else {
memcpy(target_data, output_data, output_size);
}
DVLOG(3) << "Dequeue(): returning "
"bitstream_buffer_id=" << output_record.buffer_ref->id
<< ", size=" << output_size << ", key_frame=" << key_frame;
child_message_loop_proxy_->PostTask(
FROM_HERE,
base::Bind(&Client::BitstreamBufferReady,
client_,
output_record.buffer_ref->id,
output_size,
key_frame));
output_record.at_device = false;
output_record.buffer_ref.reset();
free_output_buffers_.push_back(dqbuf.index);
output_buffer_queued_count_--;
}
}
bool V4L2VideoEncodeAccelerator::EnqueueInputRecord() {
DVLOG(3) << "EnqueueInputRecord()";
DCHECK(!free_input_buffers_.empty());
DCHECK(!encoder_input_queue_.empty());
// Enqueue an input (VIDEO_OUTPUT) buffer.
scoped_refptr<media::VideoFrame> frame = encoder_input_queue_.front();
const int index = free_input_buffers_.back();
InputRecord& input_record = input_buffer_map_[index];
DCHECK(!input_record.at_device);
struct v4l2_buffer qbuf;
struct v4l2_plane qbuf_planes[VIDEO_MAX_PLANES];
memset(&qbuf, 0, sizeof(qbuf));
memset(qbuf_planes, 0, sizeof(qbuf_planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
qbuf.m.planes = qbuf_planes;
DCHECK_EQ(device_input_format_, frame->format());
for (size_t i = 0; i < input_planes_count_; ++i) {
qbuf.m.planes[i].bytesused =
base::checked_cast<__u32>(media::VideoFrame::PlaneAllocationSize(
frame->format(), i, input_allocated_size_));
switch (input_memory_type_) {
case V4L2_MEMORY_USERPTR:
qbuf.m.planes[i].length = qbuf.m.planes[i].bytesused;
qbuf.m.planes[i].m.userptr =
reinterpret_cast<unsigned long>(frame->data(i));
DCHECK(qbuf.m.planes[i].m.userptr);
break;
case V4L2_MEMORY_DMABUF:
qbuf.m.planes[i].m.fd = frame->dmabuf_fd(i);
DCHECK_NE(qbuf.m.planes[i].m.fd, -1);
break;
default:
NOTREACHED();
return false;
}
}
qbuf.memory = input_memory_type_;
qbuf.length = input_planes_count_;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
input_record.at_device = true;
input_record.frame = frame;
encoder_input_queue_.pop_front();
free_input_buffers_.pop_back();
input_buffer_queued_count_++;
return true;
}
bool V4L2VideoEncodeAccelerator::EnqueueOutputRecord() {
DVLOG(3) << "EnqueueOutputRecord()";
DCHECK(!free_output_buffers_.empty());
DCHECK(!encoder_output_queue_.empty());
// Enqueue an output (VIDEO_CAPTURE) buffer.
linked_ptr<BitstreamBufferRef> output_buffer = encoder_output_queue_.back();
const int index = free_output_buffers_.back();
OutputRecord& output_record = output_buffer_map_[index];
DCHECK(!output_record.at_device);
DCHECK(!output_record.buffer_ref.get());
struct v4l2_buffer qbuf;
struct v4l2_plane qbuf_planes[1];
memset(&qbuf, 0, sizeof(qbuf));
memset(qbuf_planes, 0, sizeof(qbuf_planes));
qbuf.index = index;
qbuf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
qbuf.memory = V4L2_MEMORY_MMAP;
qbuf.m.planes = qbuf_planes;
qbuf.length = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QBUF, &qbuf);
output_record.at_device = true;
output_record.buffer_ref = output_buffer;
encoder_output_queue_.pop_back();
free_output_buffers_.pop_back();
output_buffer_queued_count_++;
return true;
}
bool V4L2VideoEncodeAccelerator::StartDevicePoll() {
DVLOG(3) << "StartDevicePoll()";
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
DCHECK(!device_poll_thread_.IsRunning());
// Start up the device poll thread and schedule its first DevicePollTask().
if (!device_poll_thread_.Start()) {
LOG(ERROR) << "StartDevicePoll(): Device thread failed to start";
NOTIFY_ERROR(kPlatformFailureError);
return false;
}
// Enqueue a poll task with no devices to poll on -- it will wait only on the
// interrupt fd.
device_poll_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::DevicePollTask,
base::Unretained(this),
false));
return true;
}
bool V4L2VideoEncodeAccelerator::StopDevicePoll() {
DVLOG(3) << "StopDevicePoll()";
// Signal the DevicePollTask() to stop, and stop the device poll thread.
if (!device_->SetDevicePollInterrupt())
return false;
device_poll_thread_.Stop();
// Clear the interrupt now, to be sure.
if (!device_->ClearDevicePollInterrupt())
return false;
if (input_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
}
input_streamon_ = false;
if (output_streamon_) {
__u32 type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_STREAMOFF, &type);
}
output_streamon_ = false;
// Reset all our accounting info.
encoder_input_queue_.clear();
free_input_buffers_.clear();
for (size_t i = 0; i < input_buffer_map_.size(); ++i) {
InputRecord& input_record = input_buffer_map_[i];
input_record.at_device = false;
input_record.frame = NULL;
free_input_buffers_.push_back(i);
}
input_buffer_queued_count_ = 0;
free_output_buffers_.clear();
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
OutputRecord& output_record = output_buffer_map_[i];
output_record.at_device = false;
output_record.buffer_ref.reset();
free_output_buffers_.push_back(i);
}
output_buffer_queued_count_ = 0;
encoder_output_queue_.clear();
DVLOG(3) << "StopDevicePoll(): device poll stopped";
return true;
}
void V4L2VideoEncodeAccelerator::DevicePollTask(bool poll_device) {
DVLOG(3) << "DevicePollTask()";
DCHECK_EQ(device_poll_thread_.message_loop(), base::MessageLoop::current());
bool event_pending;
if (!device_->Poll(poll_device, &event_pending)) {
NOTIFY_ERROR(kPlatformFailureError);
return;
}
// All processing should happen on ServiceDeviceTask(), since we shouldn't
// touch encoder state from this thread.
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::ServiceDeviceTask,
base::Unretained(this)));
}
void V4L2VideoEncodeAccelerator::NotifyError(Error error) {
DVLOG(1) << "NotifyError(): error=" << error;
if (!child_message_loop_proxy_->BelongsToCurrentThread()) {
child_message_loop_proxy_->PostTask(
FROM_HERE,
base::Bind(
&V4L2VideoEncodeAccelerator::NotifyError, weak_this_, error));
return;
}
if (client_) {
client_->NotifyError(error);
client_ptr_factory_.reset();
}
}
void V4L2VideoEncodeAccelerator::SetEncoderState(State state) {
DVLOG(3) << "SetEncoderState(): state=" << state;
// We can touch encoder_state_ only if this is the encoder thread or the
// encoder thread isn't running.
if (encoder_thread_.message_loop() != NULL &&
encoder_thread_.message_loop() != base::MessageLoop::current()) {
encoder_thread_.message_loop()->PostTask(
FROM_HERE,
base::Bind(&V4L2VideoEncodeAccelerator::SetEncoderState,
base::Unretained(this),
state));
} else {
encoder_state_ = state;
}
}
void V4L2VideoEncodeAccelerator::RequestEncodingParametersChangeTask(
uint32 bitrate,
uint32 framerate) {
DVLOG(3) << "RequestEncodingParametersChangeTask(): bitrate=" << bitrate
<< ", framerate=" << framerate;
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
if (bitrate < 1)
bitrate = 1;
if (framerate < 1)
framerate = 1;
struct v4l2_ext_control ctrls[1];
struct v4l2_ext_controls control;
memset(&ctrls, 0, sizeof(ctrls));
memset(&control, 0, sizeof(control));
ctrls[0].id = V4L2_CID_MPEG_VIDEO_BITRATE;
ctrls[0].value = bitrate;
control.ctrl_class = V4L2_CTRL_CLASS_MPEG;
control.count = arraysize(ctrls);
control.controls = ctrls;
IOCTL_OR_ERROR_RETURN(VIDIOC_S_EXT_CTRLS, &control);
struct v4l2_streamparm parms;
memset(&parms, 0, sizeof(parms));
parms.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
// Note that we are provided "frames per second" but V4L2 expects "time per
// frame"; hence we provide the reciprocal of the framerate here.
parms.parm.output.timeperframe.numerator = 1;
parms.parm.output.timeperframe.denominator = framerate;
IOCTL_OR_ERROR_RETURN(VIDIOC_S_PARM, &parms);
}
bool V4L2VideoEncodeAccelerator::SetOutputFormat(
media::VideoCodecProfile output_profile) {
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
output_format_fourcc_ =
V4L2Device::VideoCodecProfileToV4L2PixFmt(output_profile);
if (!output_format_fourcc_) {
LOG(ERROR) << "Initialize(): invalid output_profile=" << output_profile;
return false;
}
output_buffer_byte_size_ = kOutputBufferSize;
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
format.fmt.pix_mp.width = visible_size_.width();
format.fmt.pix_mp.height = visible_size_.height();
format.fmt.pix_mp.pixelformat = output_format_fourcc_;
format.fmt.pix_mp.plane_fmt[0].sizeimage =
base::checked_cast<__u32>(output_buffer_byte_size_);
format.fmt.pix_mp.num_planes = 1;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
// Device might have adjusted the required output size.
size_t adjusted_output_buffer_size =
base::checked_cast<size_t>(format.fmt.pix_mp.plane_fmt[0].sizeimage);
DCHECK_GE(adjusted_output_buffer_size, output_buffer_byte_size_);
output_buffer_byte_size_ = adjusted_output_buffer_size;
return true;
}
bool V4L2VideoEncodeAccelerator::NegotiateInputFormat(
media::VideoFrame::Format input_format) {
DVLOG(3) << "NegotiateInputFormat()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
device_input_format_ = media::VideoFrame::UNKNOWN;
input_planes_count_ = 0;
uint32 input_format_fourcc =
V4L2Device::VideoFrameFormatToV4L2PixFmt(input_format);
if (!input_format_fourcc) {
LOG(ERROR) << "Unsupported input format";
return false;
}
size_t input_planes_count = media::VideoFrame::NumPlanes(input_format);
DCHECK_LE(input_planes_count, static_cast<size_t>(VIDEO_MAX_PLANES));
// First see if we the device can use the provided input_format directly.
struct v4l2_format format;
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.width = visible_size_.width();
format.fmt.pix_mp.height = visible_size_.height();
format.fmt.pix_mp.pixelformat = input_format_fourcc;
format.fmt.pix_mp.num_planes = input_planes_count;
if (device_->Ioctl(VIDIOC_S_FMT, &format) != 0) {
// Error or format unsupported by device, try to negotiate a fallback.
input_format_fourcc = device_->PreferredInputFormat();
input_format =
V4L2Device::V4L2PixFmtToVideoFrameFormat(input_format_fourcc);
if (input_format == media::VideoFrame::UNKNOWN)
return false;
input_planes_count = media::VideoFrame::NumPlanes(input_format);
DCHECK_LE(input_planes_count, static_cast<size_t>(VIDEO_MAX_PLANES));
// Device might have adjusted parameters, reset them along with the format.
memset(&format, 0, sizeof(format));
format.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
format.fmt.pix_mp.width = visible_size_.width();
format.fmt.pix_mp.height = visible_size_.height();
format.fmt.pix_mp.pixelformat = input_format_fourcc;
format.fmt.pix_mp.num_planes = input_planes_count;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_FMT, &format);
DCHECK_EQ(format.fmt.pix_mp.num_planes, input_planes_count);
}
// Take device-adjusted sizes for allocated size.
input_allocated_size_ = V4L2Device::CodedSizeFromV4L2Format(format);
DCHECK(gfx::Rect(input_allocated_size_).Contains(gfx::Rect(visible_size_)));
device_input_format_ = input_format;
input_planes_count_ = input_planes_count;
return true;
}
bool V4L2VideoEncodeAccelerator::SetFormats(
media::VideoFrame::Format input_format,
media::VideoCodecProfile output_profile) {
DVLOG(3) << "SetFormats()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
DCHECK(!output_streamon_);
if (!SetOutputFormat(output_profile))
return false;
if (!NegotiateInputFormat(input_format))
return false;
struct v4l2_crop crop;
memset(&crop, 0, sizeof(crop));
crop.type = V4L2_BUF_TYPE_VIDEO_OUTPUT;
crop.c.left = 0;
crop.c.top = 0;
crop.c.width = visible_size_.width();
crop.c.height = visible_size_.height();
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_CROP, &crop);
return true;
}
bool V4L2VideoEncodeAccelerator::InitControls() {
struct v4l2_ext_control ctrls[9];
struct v4l2_ext_controls control;
memset(&ctrls, 0, sizeof(ctrls));
memset(&control, 0, sizeof(control));
// No B-frames, for lowest decoding latency.
ctrls[0].id = V4L2_CID_MPEG_VIDEO_B_FRAMES;
ctrls[0].value = 0;
// Enable frame-level bitrate control.
ctrls[1].id = V4L2_CID_MPEG_VIDEO_FRAME_RC_ENABLE;
ctrls[1].value = 1;
// Enable "tight" bitrate mode. For this to work properly, frame- and mb-level
// bitrate controls have to be enabled as well.
ctrls[2].id = V4L2_CID_MPEG_MFC51_VIDEO_RC_REACTION_COEFF;
ctrls[2].value = 1;
// Force bitrate control to average over a GOP (for tight bitrate
// tolerance).
ctrls[3].id = V4L2_CID_MPEG_MFC51_VIDEO_RC_FIXED_TARGET_BIT;
ctrls[3].value = 1;
// Quantization parameter maximum value (for variable bitrate control).
ctrls[4].id = V4L2_CID_MPEG_VIDEO_H264_MAX_QP;
ctrls[4].value = 51;
// Separate stream header so we can cache it and insert into the stream.
ctrls[5].id = V4L2_CID_MPEG_VIDEO_HEADER_MODE;
ctrls[5].value = V4L2_MPEG_VIDEO_HEADER_MODE_SEPARATE;
// Enable macroblock-level bitrate control.
ctrls[6].id = V4L2_CID_MPEG_VIDEO_MB_RC_ENABLE;
ctrls[6].value = 1;
// Use H.264 level 4.0 to match the supported max resolution.
ctrls[7].id = V4L2_CID_MPEG_VIDEO_H264_LEVEL;
ctrls[7].value = V4L2_MPEG_VIDEO_H264_LEVEL_4_0;
// Disable periodic key frames.
ctrls[8].id = V4L2_CID_MPEG_VIDEO_GOP_SIZE;
ctrls[8].value = 0;
control.ctrl_class = V4L2_CTRL_CLASS_MPEG;
control.count = arraysize(ctrls);
control.controls = ctrls;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_S_EXT_CTRLS, &control);
return true;
}
bool V4L2VideoEncodeAccelerator::CreateInputBuffers() {
DVLOG(3) << "CreateInputBuffers()";
// This function runs on encoder_thread_ after output buffers have been
// provided by the client.
DCHECK_EQ(encoder_thread_.message_loop(), base::MessageLoop::current());
DCHECK(!input_streamon_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
// Driver will modify to the appropriate number of buffers.
reqbufs.count = 1;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
// TODO(posciak): Once we start doing zero-copy, we should decide based on
// the current pipeline setup which memory type to use. This should probably
// be decided based on an argument to Initialize().
if (image_processor_.get())
input_memory_type_ = V4L2_MEMORY_DMABUF;
else
input_memory_type_ = V4L2_MEMORY_USERPTR;
reqbufs.memory = input_memory_type_;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(input_buffer_map_.empty());
input_buffer_map_.resize(reqbufs.count);
for (size_t i = 0; i < input_buffer_map_.size(); ++i)
free_input_buffers_.push_back(i);
return true;
}
bool V4L2VideoEncodeAccelerator::CreateOutputBuffers() {
DVLOG(3) << "CreateOutputBuffers()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!output_streamon_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = kOutputBufferCount;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_REQBUFS, &reqbufs);
DCHECK(output_buffer_map_.empty());
output_buffer_map_.resize(reqbufs.count);
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
struct v4l2_plane planes[1];
struct v4l2_buffer buffer;
memset(&buffer, 0, sizeof(buffer));
memset(planes, 0, sizeof(planes));
buffer.index = i;
buffer.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
buffer.memory = V4L2_MEMORY_MMAP;
buffer.m.planes = planes;
buffer.length = arraysize(planes);
IOCTL_OR_ERROR_RETURN_FALSE(VIDIOC_QUERYBUF, &buffer);
void* address = device_->Mmap(NULL,
buffer.m.planes[0].length,
PROT_READ | PROT_WRITE,
MAP_SHARED,
buffer.m.planes[0].m.mem_offset);
if (address == MAP_FAILED) {
PLOG(ERROR) << "CreateOutputBuffers(): mmap() failed";
return false;
}
output_buffer_map_[i].address = address;
output_buffer_map_[i].length = buffer.m.planes[0].length;
free_output_buffers_.push_back(i);
}
return true;
}
void V4L2VideoEncodeAccelerator::DestroyInputBuffers() {
DVLOG(3) << "DestroyInputBuffers()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!input_streamon_);
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_OUTPUT_MPLANE;
reqbufs.memory = input_memory_type_;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
input_buffer_map_.clear();
free_input_buffers_.clear();
}
void V4L2VideoEncodeAccelerator::DestroyOutputBuffers() {
DVLOG(3) << "DestroyOutputBuffers()";
DCHECK(child_message_loop_proxy_->BelongsToCurrentThread());
DCHECK(!output_streamon_);
for (size_t i = 0; i < output_buffer_map_.size(); ++i) {
if (output_buffer_map_[i].address != NULL)
device_->Munmap(output_buffer_map_[i].address,
output_buffer_map_[i].length);
}
struct v4l2_requestbuffers reqbufs;
memset(&reqbufs, 0, sizeof(reqbufs));
reqbufs.count = 0;
reqbufs.type = V4L2_BUF_TYPE_VIDEO_CAPTURE_MPLANE;
reqbufs.memory = V4L2_MEMORY_MMAP;
IOCTL_OR_LOG_ERROR(VIDIOC_REQBUFS, &reqbufs);
output_buffer_map_.clear();
free_output_buffers_.clear();
}
} // namespace content